Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.870
Filtrar
1.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200278, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38954781

RESUMO

BACKGROUND AND OBJECTIVES: Neutrophils, underestimated in multiple sclerosis (MS), are gaining increased attention for their significant functions in patients with MS and the experimental autoimmune encephalomyelitis (EAE) animal model. However, the precise role of neutrophils in cervical lymph nodes (CLNs), the primary CNS-draining lymph nodes where the autoimmune response is initiated during the progression of EAE, remains poorly understood. METHODS: Applying single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive immune cell atlas of CLNs during development of EAE. Through this atlas, we concentrated on and uncovered the transcriptional landscape, phenotypic and functional heterogeneity of neutrophils, and their crosstalk with immune cells within CLNs in the neuroinflammatory processes in EAE. RESULTS: Notably, we observed a substantial increase in the neutrophil population in EAE mice, with a particular emphasis on the significant rise within the CLNs. Neutrophils in CLNs were categorized into 3 subtypes, and we explored the specific roles and developmental trajectories of each distinct neutrophil subtype. Neutrophils were found to engage in extensive interactions with other immune cells, playing crucial roles in T-cell activation. Moreover, our findings highlighted the strong migratory ability of neutrophils to CLNs, partly regulated by triggering the receptor expressed on myeloid cells 1 (TREM-1). Inhibiting TREM1 with LR12 prevents neutrophil migration both in vivo and in vitro. In addition, in patients with MS, we confirmed an increase in peripheral neutrophils with an upregulation of TREM-1. DISCUSSION: Our research provides a comprehensive and precise single-cell atlas of CLNs in EAE, highlighting the role of neutrophils in regulating the periphery immune response. In addition, TREM-1 emerged as an essential regulator of neutrophil migration to CLNs, holding promise as a potential therapeutic target in MS.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Neutrófilos , Análise de Célula Única , Receptor Gatilho 1 Expresso em Células Mieloides , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/genética , Neutrófilos/metabolismo , Neutrófilos/imunologia , Animais , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Camundongos , Feminino , Análise de Sequência de RNA , Linfonodos/metabolismo
2.
Nat Commun ; 15(1): 5961, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013878

RESUMO

Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-ß and exerts a crucial role in the therapeutic efficacy of IFN-ß for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.


Assuntos
Diferenciação Celular , Proteína Forkhead Box O1 , Interferon beta , Linfócitos T Reguladores , Ubiquitina-Proteína Ligases , Ubiquitinação , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Camundongos , Humanos , Interferon beta/metabolismo , Camundongos Endogâmicos C57BL , Núcleo Celular/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Transporte Ativo do Núcleo Celular , Feminino , Camundongos Knockout , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/genética , Células HEK293
3.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200275, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996203

RESUMO

At one time considered a possible form of neuromyelitis optica (NMO) spectrum disorder (NMOSD), it is now accepted that myelin oligodendrocyte glycoprotein (MOG) antibody (Ab)-associated disorder (MOGAD) is a distinct entity from either NMO or multiple sclerosis (MS) and represents a broad spectrum of clinical phenotypes. Whereas Abs targeting aquaporin-4 (AQP4) in NMO are pathogenic, the extent that anti-MOG Abs contribute to CNS damage in MOGAD is unclear. Both AQP4-specific Abs in NMO and MOG-specific Abs in MOGAD are predominantly IgG1, a T cell-dependent immunoglobulin (Ig) subclass. Key insights in neuroimmunology and MOGAD pathogenesis have been learned from MOG experimental autoimmune encephalomyelitis (EAE), described 2 decades before the term MOGAD was introduced. MOG-specific T cells are required in MOG EAE, and while anti-MOG Abs can exacerbate EAE and CNS demyelination, those Abs are neither necessary nor sufficient to cause EAE. Knowledge regarding the spectrum of MOGAD clinical and radiologic presentations is advancing rapidly, yet our grasp of MOGAD pathogenesis is incomplete. Understanding both the humoral and cellular immunology of MOGAD has implications for diagnosis, treatment, and prognosis.


Assuntos
Autoanticorpos , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica , Glicoproteína Mielina-Oligodendrócito/imunologia , Humanos , Animais , Autoanticorpos/imunologia , Neuromielite Óptica/imunologia , Autoimunidade/imunologia , Encefalomielite Autoimune Experimental/imunologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia
4.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000569

RESUMO

Regulation of neuroinflammation is critical for maintaining central nervous system (CNS) homeostasis and holds therapeutic promise in autoimmune diseases such as multiple sclerosis (MS). Previous studies have highlighted the significance of selective innate signaling in triggering anti-inflammatory mechanisms, which play a protective role in an MS-like disease, experimental autoimmune encephalomyelitis (EAE). However, the individual intra-CNS administration of specific innate receptor ligands or agonists, such as for toll-like receptor 7 (TLR7) and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2), failed to elicit the desired anti-inflammatory response in EAE. In this study, we investigated the potential synergistic effect of targeting both TLR7 and NOD2 simultaneously to prevent EAE progression. Our findings demonstrate that simultaneous intrathecal administration of NOD2- and TLR7-agonists led to synergistic induction of Type I IFN (IFN I) and effectively suppressed EAE in an IFN I-dependent manner. Suppression of EAE was correlated with a significant decrease in the infiltration of monocytes, granulocytes, and natural killer cells, reduced demyelination, and downregulation of IL-1ß, CCL2, and IFNγ gene expression in the spinal cord. These results underscore the therapeutic promise of concurrently targeting the TLR7 and NOD2 pathways in alleviating neuroinflammation associated with MS, paving the way for novel and more efficacious treatment strategies.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Proteína Adaptadora de Sinalização NOD2 , Receptor 7 Toll-Like , Animais , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/agonistas , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Imunidade Inata/efeitos dos fármacos , Feminino , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000478

RESUMO

Monocytes play a critical role in the initiation and progression of multiple sclerosis (MS). Recent research indicates the importance of considering the roles of monocytes in the management of MS and the development of effective interventions. This systematic review examined published research on the roles of nonclassical monocytes in MS and how they influence disease management. Reputable databases, such as PubMed, EMBASE, Cochrane, and Google Scholar, were searched for relevant studies on the influence of monocytes on MS. The search focused on studies on humans and patients with experimental autoimmune encephalomyelitis (EAE) published between 2014 and 2024 to provide insights into the study topic. Fourteen articles that examined the role of monocytes in MS were identified; the findings reported in these articles revealed that nonclassical monocytes could act as MS biomarkers, aid in the development of therapeutic interventions, reveal disease pathology, and improve approaches for monitoring disease progression. This review provides support for the consideration of monocytes when researching effective diagnostics, therapeutic interventions, and procedures for managing MS pathophysiology. These findings may guide future research aimed at gaining further insights into the role of monocytes in MS.


Assuntos
Monócitos , Esclerose Múltipla , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Biomarcadores , Animais , Progressão da Doença
6.
Proc Natl Acad Sci U S A ; 121(28): e2322577121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968104

RESUMO

Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Estimulação do Nervo Vago , Nervo Vago , Animais , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/imunologia , Ratos , Esclerose Múltipla/terapia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Estimulação do Nervo Vago/métodos , Inflamação/terapia , Inflamação/patologia , Modelos Animais de Doenças , Feminino , Bainha de Mielina/metabolismo , Barreira Hematoencefálica
7.
Front Immunol ; 15: 1400641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933267

RESUMO

Background and objectives: B cell depleting anti-CD20 monoclonal antibodies (aCD20 mAbs) are highly effective in treatment of multiple sclerosis (MS) but fail to halt the formation of meningeal ectopic lymphoid tissue (mELT) in the murine model experimental autoimmune encephalomyelitis (EAE). While mELT can be examined in EAE, it is not accessible in vivo in MS patients. Our key objectives were to compare the immune cells in cerebrospinal fluid (CSF), which is accessible in patients, with those in mELT, and to study the effects of aCD20 mAbs on CSF and mELT in EAE. Methods: Applying single cell RNA sequencing, we compared gene expression profiles in immune cells from (1) CSF with mELT and (2) aCD20 mAbs treated with control treated mice in a spontaneous 2D2xTh EAE model. Results: The immune cell composition in CSF and mELT was very similar. Gene expression profiles and pathway enrichment analysis revealed no striking differences between the two compartments. aCD20 mAbs led not only to a virtually complete depletion of B cells in the CSF but also to a reduction of naïve CD4+ T cells and marked increase of macrophages. No remarkable differences in regulated genes or pathways were observed. Discussion: Our results suggest that immune cells in the CSF may serve as a surrogate for mELT in EAE. Future studies are required to confirm this in MS patients. The observed increase of macrophages in B cell depleted CSF is a novel finding and requires verification in CSF of aCD20 mAbs treated MS patients. Due to unresolved technical challenges, we were unable to study the effects of aCD20 mAbs on mELT. This should be addressed in future studies.


Assuntos
Linfócitos B , Encefalomielite Autoimune Experimental , Meninges , Análise de Célula Única , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/líquido cefalorraquidiano , Camundongos , Meninges/imunologia , Meninges/patologia , Linfócitos B/imunologia , Feminino , Estruturas Linfoides Terciárias/imunologia , Camundongos Endogâmicos C57BL , Anticorpos Monoclonais/imunologia , Transcriptoma , Perfilação da Expressão Gênica , Antígenos CD20/imunologia , Líquido Cefalorraquidiano/imunologia , Modelos Animais de Doenças , Esclerose Múltipla/imunologia , Esclerose Múltipla/líquido cefalorraquidiano
8.
Front Immunol ; 15: 1416133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911847

RESUMO

Background: Secondary progressive multiple sclerosis (SPMS) is defined by the irreversible accumulation of disability following a relapsing-remitting MS (RRMS) course. Despite treatments advances, a reliable tool able to capture the transition from RRMS to SPMS is lacking. A T cell chimeric MS model demonstrated that T cells derived from relapsing patients exacerbate excitatory transmission of central neurons, a synaptotoxic event absent during remitting stages. We hypothesized the re-emergence of T cell synaptotoxicity during SPMS and investigated the synaptoprotective effects of siponimod, a sphingosine 1-phosphate receptor (S1PR) modulator, known to reduce grey matter damage in SPMS patients. Methods: Data from healthy controls (HC), SPMS patients, and siponimod-treated SPMS patients were collected. Chimeric experiments were performed incubating human T cells on murine cortico-striatal slices, and recording spontaneous glutamatergic activity from striatal neurons. Homologous chimeric experiments were executed incubating EAE mice T cells with siponimod and specific S1PR agonists or antagonists to identify the receptor involved in siponimod-mediated synaptic recovery. Results: SPMS patient-derived T cells significantly increased the striatal excitatory synaptic transmission (n=40 synapses) compared to HC T cells (n=55 synapses), mimicking the glutamatergic alterations observed in active RRMS-T cells. Siponimod treatment rescued SPMS T cells synaptotoxicity (n=51 synapses). Homologous chimeric experiments highlighted S1P5R involvement in the siponimod's protective effects. Conclusion: Transition from RRMS to SPMS involves the reappearance of T cell-mediated synaptotoxicity. Siponimod counteracts T cell-induced excitotoxicity, emphasizing the significance of inflammatory synaptopathy in progressive MS and its potential as a promising pharmacological target.


Assuntos
Azetidinas , Compostos de Benzil , Esclerose Múltipla Crônica Progressiva , Sinapses , Linfócitos T , Humanos , Animais , Camundongos , Feminino , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Compostos de Benzil/farmacologia , Compostos de Benzil/uso terapêutico , Masculino , Adulto , Sinapses/metabolismo , Pessoa de Meia-Idade , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Camundongos Endogâmicos C57BL , Receptores de Esfingosina-1-Fosfato/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia
9.
Sci Rep ; 14(1): 13146, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849434

RESUMO

Multiple sclerosis (MS) is an autoimmune demyelinating disease affecting the central nervous system (CNS). T helper (Th) 17 cells are involved in the pathogenesis of MS and its animal model of experimental autoimmune encephalomyelitis (EAE) by infiltrating the CNS and producing effector molecules that engage resident glial cells. Among these glial cells, astrocytes have a central role in coordinating inflammatory processes by responding to cytokines and chemokines released by Th17 cells. In this study, we examined the impact of pathogenic Th17 cells on astrocytes in vitro and in vivo. We identified that Th17 cells reprogram astrocytes by driving transcriptomic changes partly through a Janus Kinase (JAK)1-dependent mechanism, which included increased chemokines, interferon-inducible genes, and cytokine receptors. In vivo, we observed a region-specific heterogeneity in the expression of cell surface cytokine receptors on astrocytes, including those for IFN-γ, IL-1, TNF-α, IL-17, TGFß, and IL-10. Additionally, these receptors were dynamically regulated during EAE induced by adoptive transfer of myelin-reactive Th17 cells. This study overall provides evidence of Th17 cell reprogramming of astrocytes, which may drive changes in the astrocytic responsiveness to cytokines during autoimmune neuroinflammation.


Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Janus Quinase 1 , Glicoproteína Mielina-Oligodendrócito , Receptores de Citocinas , Células Th17 , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Animais , Astrócitos/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Camundongos , Receptores de Citocinas/metabolismo , Receptores de Citocinas/genética , Janus Quinase 1/metabolismo , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Reprogramação Celular , Feminino , Células Cultivadas
10.
J Extracell Vesicles ; 13(6): e12446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844736

RESUMO

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.


Assuntos
Líquido Amniótico , Células Dendríticas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Vesículas Extracelulares , Esclerose Múltipla , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos , Líquido Amniótico/citologia , Líquido Amniótico/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Esclerose Múltipla/terapia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Feminino , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Endogâmicos C57BL
11.
Biochemistry (Mosc) ; 89(5): 904-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38880650

RESUMO

Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system (CNS) characterized by the myelin sheath destruction and compromised nerve signal transmission. Understanding molecular mechanisms driving MS development is critical due to its early onset, chronic course, and therapeutic approaches based only on symptomatic treatment. Cytokines are known to play a pivotal role in the MS pathogenesis with interleukin-6 (IL-6) being one of the key mediators. This study investigates contribution of IL-6 produced by microglia and dendritic cells to the development of experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of MS. Mice with conditional inactivation of IL-6 in the CX3CR1+ cells, including microglia, or CD11c+ dendritic cells, displayed less severe symptoms as compared to their wild-type counterparts. Mice with microglial IL-6 deletion exhibited an elevated proportion of regulatory T cells and reduced percentage of pathogenic IFNγ-producing CD4+ T cells, accompanied by the decrease in pro-inflammatory monocytes in the CNS at the peak of EAE. At the same time, deletion of IL-6 from microglia resulted in the increase of CCR6+ T cells and GM-CSF-producing T cells. Conversely, mice with IL-6 deficiency in the dendritic cells showed not only the previously described increase in the proportion of regulatory T cells and decrease in the proportion of TH17 cells, but also reduction in the production of GM-CSF and IFNγ in the secondary lymphoid organs. In summary, IL-6 functions during EAE depend on both the source and localization of immune response: the microglial IL-6 exerts both pathogenic and protective functions specifically in the CNS, whereas the dendritic cell-derived IL-6, in addition to being critically involved in the balance of regulatory T cells and TH17 cells, may stimulate production of cytokines associated with pathogenic functions of T cells.


Assuntos
Células Dendríticas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Interleucina-6 , Microglia , Esclerose Múltipla , Animais , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Camundongos , Interleucina-6/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Microglia/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Camundongos Endogâmicos C57BL , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Receptores CCR6/metabolismo , Receptores CCR6/genética , Feminino
12.
Microbiome ; 12(1): 114, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915127

RESUMO

BACKGROUND: Mediterranean diet rich in polyphenolic compounds holds great promise to prevent and alleviate multiple sclerosis (MS), a central nervous system autoimmune disease associated with gut microbiome dysbiosis. Health-promoting effects of natural polyphenols with low bioavailability could be attributed to gut microbiota reconstruction. However, its underlying mechanism of action remains elusive, resulting in rare therapies have proposed for polyphenol-targeted modulation of gut microbiota for the treatment of MS. RESULTS: We found that oral ellagic acid (EA), a natural polyphenol rich in the Mediterranean diet, effectively halted the progression of experimental autoimmune encephalomyelitis (EAE), the animal model of MS, via regulating a microbiota-metabolites-immunity axis. EA remodeled the gut microbiome composition and particularly increased the relative abundances of short-chain fatty acids -producing bacteria like Alloprevotella. Propionate (C3) was most significantly up-regulated by EA, and integrative modeling revealed a strong negative correlation between Alloprevotella or C3 and the pathological symptoms of EAE. Gut microbiota depletion negated the alleviating effects of EA on EAE, whereas oral administration of Alloprevotella rava mimicked the beneficial effects of EA on EAE. Moreover, EA directly promoted Alloprevotella rava (DSM 22548) growth and C3 production in vitro. The cell-free supernatants of Alloprevotella rava co-culture with EA suppressed Th17 differentiation by modulating acetylation in cell models. C3 can alleviate EAE development, and the mechanism may be through inhibiting HDAC activity and up-regulating acetylation thereby reducing inflammatory cytokines secreted by pathogenic Th17 cells. CONCLUSIONS: Our study identifies EA as a novel and potentially effective prebiotic for improving MS and other autoimmune diseases via the microbiota-metabolites-immunity axis. Video Abstract.


Assuntos
Ácido Elágico , Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Esclerose Múltipla , Propionatos , Ácido Elágico/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/microbiologia , Propionatos/metabolismo , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/microbiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Feminino , Autoimunidade/efeitos dos fármacos , Disbiose/microbiologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Humanos , Administração Oral
13.
Cells ; 13(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38920670

RESUMO

Proinflammatory T-lymphocytes recruited into the brain and spinal cord mediate multiple sclerosis (MS) and currently there is no cure for MS. IFN-γ-producing Th1 cells induce ascending paralysis in the spinal cord while IL-17-producing Th17 cells mediate cerebellar ataxia. STAT1 and STAT3 are required for Th1 and Th17 development, respectively, and the simultaneous targeting of STAT1 and STAT3 pathways is therefore a potential therapeutic strategy for suppressing disease in the spinal cord and brain. However, the pharmacological targeting of STAT1 and STAT3 presents significant challenges because of their intracellular localization. We have developed a STAT-specific single-domain nanobody (SBT-100) derived from camelids that targets conserved residues in Src homolog 2 (SH2) domains of STAT1 and STAT3. This study investigated whether SBT-100 could suppress experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We show that SBT-100 ameliorates encephalomyelitis through suppressing the expansion of Th17 and Th1 cells in the brain and spinal cord. Adoptive transfer experiments revealed that lymphocytes from SBT-100-treated EAE mice have reduced capacity to induce EAE, indicating that the immunosuppressive effects derived from the direct suppression of encephalitogenic T-cells. The small size of SBT-100 makes this STAT-specific nanobody a promising immunotherapy for CNS autoimmune diseases, including multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Anticorpos de Domínio Único , Células Th17 , Animais , Feminino , Camundongos , Camelídeos Americanos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/tratamento farmacológico , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/uso terapêutico , Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Células Th17/imunologia , Células Th17/efeitos dos fármacos
14.
Transpl Immunol ; 85: 102067, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839021

RESUMO

INTRODUCTION: Multiple sclerosis (MS), as a destructive pathology of myelin in central nervous system (CNS), causes physical and mental complications. Experimental autoimmune encephalomyelitis (EAE) is laboratory model of MS widely used for CNS-associated inflammatory researches. Cell therapy using macrophage M2 (MPM2) is a cell type with anti-inflammatory characteristics for all inflammatory-based neuropathies. This experimental study investigated the probable therapeutic anti-inflammatory effects of intraperitoneal (IP) injection of MPM2 on alleviation of motor defect in EAE-affected animals. MATERIALS AND METHODS: 24 C57/BL6 female mice were divided into four groups of EAE, EAE + Dexa, EAE + PBS, and EAE + MP2. EAE was induced through deep cervical injection of spinal homogenate of guinea pigs. MPM2 cells were harvested from bone marrow and injected (106cells/ml) in three days of 10, 13 and 16 post-immunizations (p.i). Clinical score (CS), anti-inflammatory cytokines (IL-4, IL-10), pro-inflammatory gene expression (TNF-α, IL-1ß) and histopathological investigations (HE, Nissl and Luxol Fast Blue) were considered. Data were analyzed using SPSS software (v.19) and p < 0.05 was considered significant level. RESULTS: During EAE induction, the mean animal weight was decreased (p < 0.05); besides, following MPM2 injection, the weight gain was applied (p < 0.05) in EAE + MPM2 groups than control. Increased (p < 0.05) levels of CS was found during EAE induction in days 17-28 in EAE animals; besides, CS was decreased (p < 0.05) in EAE + MPM2 group than EAE animals. Also, in days 25-28 of experiment, the CS was decreased (p < 0.05) in EAE + MPM2 than EAE + Dexa. Histopathological assessments revealed low density of cell nuclei in corpus callosum, microscopically. LFB staining also showed considerable decrease in white matter density of corpus callosum in EAE group. Acceleration of white matter density was found in EAE + MPM2 group following cell therapy procedure. Genes expression of TNF-α, IL-1ß along with IL-4 and IL-10 were decreased (p < 0.05) in EAE + MPM2 group. CONCLUSION: IP injection of MPM2 to EAE-affected female mice can potentially reduce the CNS inflammation, neuronal death and myelin destruction. MPM2 cell therapy can improve animal motor defects.


Assuntos
Encefalomielite Autoimune Experimental , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Camundongos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/metabolismo , Injeções Intraperitoneais , Monócitos/imunologia , Cobaias , Citocinas/metabolismo , Células Cultivadas , Transplante de Células-Tronco Mesenquimais , Esclerose Múltipla/terapia , Esclerose Múltipla/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Animais de Doenças , Humanos
15.
Nat Commun ; 15(1): 5404, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926356

RESUMO

B cells and T cells collaborate in multiple sclerosis (MS) pathogenesis. IgH[MOG] mice possess a B cell repertoire skewed to recognize myelin oligodendrocyte glycoprotein (MOG). Here, we show that upon immunization with the T cell-obligate autoantigen, MOG[35-55], IgH[MOG] mice develop rapid and exacerbated experimental autoimmune encephalomyelitis (EAE) relative to wildtype (WT) counterparts, characterized by aggregation of T and B cells in the IgH[MOG] meninges and by CD4+ T helper 17 (Th17) cells in the CNS. Production of the Th17 maintenance factor IL-23 is observed from IgH[MOG] CNS-infiltrating and meningeal B cells, and in vivo blockade of IL-23p19 attenuates disease severity in IgH[MOG] mice. In the CNS parenchyma and dura mater of IgH[MOG] mice, we observe an increased frequency of CD4+PD-1+CXCR5- T cells that share numerous characteristics with the recently described T peripheral helper (Tph) cell subset. Further, CNS-infiltrating B and Tph cells from IgH[MOG] mice show increased reactive oxygen species (ROS) production. Meningeal inflammation, Tph-like cell accumulation in the CNS and B/Tph cell production of ROS were all reduced upon p19 blockade. Altogether, MOG-specific B cells promote autoimmune inflammation of the CNS parenchyma and meninges in an IL-23-dependent manner.


Assuntos
Autoimunidade , Linfócitos B , Linfócitos T CD4-Positivos , Encefalomielite Autoimune Experimental , Interleucina-23 , Glicoproteína Mielina-Oligodendrócito , Animais , Feminino , Camundongos , Autoimunidade/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Interleucina-23/imunologia , Interleucina-23/metabolismo , Meninges/imunologia , Meninges/patologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Bainha de Mielina/imunologia , Bainha de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/imunologia , Células Th17/imunologia
16.
J Autoimmun ; 147: 103262, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833897

RESUMO

Th17 cells mediated immune response is the basis of a variety of autoimmune diseases, including multiple sclerosis and its mouse model of immune aspects, experimental autoimmune encephalomyelitis (EAE). The gene network that drives both the development of Th17 and the expression of its effector program is dependent on the transcription factor RORγt. In this report, we showed that Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1) formed a complex with RORγt, and enhanced its transactivation activity, thus sustained the expression of the effector genes as well as RORγt in the EAE-pathogenic Th17 cells. We first found out that PIN1 was highly expressed in the samples from patients of multiple sclerosis, and the expression of Pin1 by the infiltrating lymphocytes in the central nerve system of EAE mice was elevated as well. An array of experiments with transgenic mouse models, cellular and molecular assays was included in the study to elucidate the role of Pin1 in the pathology of EAE. It turned out that Pin1 promoted the activation and maintained the effector program of EAE-pathogenic Th17 cells in the inflammation foci, but had little effect on the priming of Th17 cells in the draining lymph nodes. Mechanistically, Pin1 stabilized the phosphorylation of STAT3 induced by proinflammatory stimuli, and interacted with STAT3 in the nucleus of Th17 cells, which resulted in the increased expression of Rorc. Moreover, Pin1 formed a complex with RORγt, and enhanced the transactivation of RORγt to the +11 kb enhancer of Rorc, which enforced and maintained the expression of both Rorc and the effector program of pathogenic Th17 cells in EAE. Finally, the inhibition of Pin1, by genetic knockdown or by small molecule inhibitor, deceased the population of Th17 cells and the neuroinflammation, and alleviated the symptoms of EAE. These findings suggest that Pin1 is a potential therapeutic target for MS and other autoimmune inflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Peptidilprolil Isomerase de Interação com NIMA , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Células Th17 , Células Th17/imunologia , Células Th17/metabolismo , Animais , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Humanos , Esclerose Múltipla/imunologia , Fator de Transcrição STAT3/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Feminino
17.
Elife ; 122024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900149

RESUMO

Autoimmune diseases of the central nervous system (CNS) such as multiple sclerosis (MS) are only partially represented in current experimental models and the development of humanized immune mice is crucial for better understanding of immunopathogenesis and testing of therapeutics. We describe a humanized mouse model with several key features of MS. Severely immunodeficient B2m-NOG mice were transplanted with peripheral blood mononuclear cells (PBMCs) from HLA-DRB1-typed MS and healthy (HI) donors and showed rapid engraftment by human T and B lymphocytes. Mice receiving cells from MS patients with recent/ongoing Epstein-Barr virus reactivation showed high B cell engraftment capacity. Both HLA-DRB1*15 (DR15) MS and DR15 HI mice, not HLA-DRB1*13 MS mice, developed human T cell infiltration of CNS borders and parenchyma. DR15 MS mice uniquely developed inflammatory lesions in brain and spinal cord gray matter, with spontaneous, hCD8 T cell lesions, and mixed hCD8/hCD4 T cell lesions in EAE immunized mice, with variation in localization and severity between different patient donors. Main limitations of this model for further development are poor monocyte engraftment and lack of demyelination, lymph node organization, and IgG responses. These results show that PBMC humanized mice represent promising research tools for investigating MS immunopathology in a patient-specific approach.


Assuntos
Encéfalo , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Cadeias HLA-DRB1 , Esclerose Múltipla , Medula Espinal , Animais , Humanos , Esclerose Múltipla/imunologia , Esclerose Múltipla/genética , Camundongos , Cadeias HLA-DRB1/genética , Linfócitos T CD8-Positivos/imunologia , Medula Espinal/imunologia , Medula Espinal/patologia , Encéfalo/patologia , Encéfalo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Linfócitos T CD4-Positivos/imunologia , Feminino
18.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928437

RESUMO

Multiple sclerosis (MS) onset at an advanced age is associated with a higher risk of developing progressive forms and a greater accumulation of disability for which there are currently no effective disease-modifying treatments. Immunosenescence is associated with the production of the senescence-associated secretory phenotype (SASP), with IL-6 being one of the most prominent cytokines. IL-6 is a determinant for the development of autoimmunity and neuroinflammation and is involved in the pathogenesis of MS. Herein, we aimed to preclinically test the therapeutic inhibition of IL-6 signaling in experimental autoimmune encephalomyelitis (EAE) as a potential age-specific treatment for elderly MS patients. Young and aged mice were immunized with myelin oligodendrocyte protein (MOG)35-55 and examined daily for neurological signs. Mice were randomized and treated with anti-IL-6 antibody. Inflammatory infiltration was evaluated in the spinal cord and the peripheral immune response was studied. The blockade of IL-6 signaling did not improve the clinical course of EAE in an aging context. However, IL-6 inhibition was associated with an increase in the peripheral immunosuppressive response as follows: a higher frequency of CD4 T cells producing IL-10, and increased frequency of inhibitory immune check points PD-1 and Tim-3 on CD4+ T cells and Lag-3 and Tim-3 on CD8+ T cells. Our results open the window to further studies aimed to adjust the anti-IL-6 treatment conditions to tailor an effective age-specific therapy for elderly MS patients.


Assuntos
Encefalomielite Autoimune Experimental , Interleucina-6 , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Animais , Camundongos , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Feminino , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Envelhecimento/imunologia , Interleucina-10/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Medula Espinal/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/efeitos dos fármacos
19.
ACS Appl Mater Interfaces ; 16(26): 33106-33120, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38906850

RESUMO

The scavenging ability of cerium oxide nanoparticles (CeNPs) for reactive oxygen species has been intensively studied in the field of catalysis. However, the immunological impact of these particles has not yet been thoroughly investigated, despite intensive research indicating that modulation of the reactive oxygen species could potentially regulate cell fate and adaptive immune responses. In this study, we examined the intrinsic capability of CeNPs to induce tolerogenic dendritic cells via their reactive oxygen species-scavenging effect when the autoantigenic peptides were simply mixed with CeNPs. CeNPs effectively reduced the intracellular reactive oxygen species levels in dendritic cells in vitro, leading to the suppression of costimulatory molecules as well as NLRP3 inflammasome activation, even in the presence of pro-inflammatory stimuli. Subcutaneously administrated PEGylated CeNPs were predominantly taken up by antigen-presenting cells in lymph nodes and to suppress cell maturation in vivo. The administration of a mixture of PEGylated CeNPs and myelin oligodendrocyte glycoprotein peptides, a well-identified autoantigen associated with antimyelin autoimmunity, resulted in the generation of antigen-specific Foxp3+ regulatory T cells in mouse spleens. The induced peripheral regulatory T cells actively inhibited the infiltration of autoreactive T cells and antigen-presenting cells into the central nervous system, ultimately protecting animals from experimental autoimmune encephalomyelitis when tested using a mouse model mimicking human multiple sclerosis. Overall, our findings reveal the potential of CeNPs for generating antigen-specific immune tolerance to prevent multiple sclerosis, opening an avenue to restore immune tolerance against specific antigens by simply mixing the well-identified autoantigens with the immunosuppressive CeNPs.


Assuntos
Cério , Células Dendríticas , Encefalomielite Autoimune Experimental , Tolerância Imunológica , Nanopartículas , Peptídeos , Espécies Reativas de Oxigênio , Cério/química , Cério/farmacologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Nanopartículas/química , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Tolerância Imunológica/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/imunologia , Camundongos Endogâmicos C57BL , Autoantígenos/imunologia , Autoantígenos/química , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Feminino , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia
20.
Toxicol Appl Pharmacol ; 488: 116980, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823456

RESUMO

Multiple sclerosis (MS) is a class of autoimmune diseases mainly caused by the immune system attacking the myelin sheath of the axons in the nervous system. Although the pathogenesis of MS is complex, studies have shown that dendritic cells (DCs) play a vital role in the pathogenesis of MS. Quercetin (QU) has a unique advantage in clinical application, especially for treating autoimmune diseases. However, the mechanism of QU in the treatment of experimental autoimmune encephalomyelitis (EAE) remains unclear. In this study, we explore the potential role of QU in EAE. Finally, we find that QU has anti-inflammatory activities and neural protective effects in EAE. The experimental results suggest that the cellular basis for QU's function is to inhibit the activation of DCs while modulating the Th17 cell differentiation in the co-culture system. Further, QU may target STAT4 to inhibit its activation in DCs. This work will be of great significance for the future development and utilization of QU.


Assuntos
Células Dendríticas , Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Quercetina , Fator de Transcrição STAT4 , Células Th17 , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Animais , Quercetina/farmacologia , Fator de Transcrição STAT4/metabolismo , Feminino , Camundongos , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...