Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1399761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359939

RESUMO

Introduction: Cytomegaloviruses (CMVs) extensively reorganize the membrane system of the cell and establish a new structure as large as the cell nucleus called the assembly compartment (AC). Our previous studies on murine CMV (MCMV)-infected fibroblasts indicated that the inner part of the AC contains rearranged early endosomes, recycling endosomes, endosomal recycling compartments and trans-Golgi membrane structures that are extensively tubulated, including the expansion and retention of tubular Rab10 elements. An essential process that initiates Rab10-associated tubulation is cargo sorting and retrieval mediated by SNX27, Retromer, and ESCPE-1 (endosomal SNX-BAR sorting complex for promoting exit 1) complexes. Objective: The aim of this study was to investigate the role of SNX27:Retromer:ESCPE-1 complexes in the biogenesis of pre-AC in MCMV-infected cells and subsequently their role in secondary envelopment and release of infectious virions. Results: Here we show that SNX27:Retromer:ESCPE1-mediated tubulation is essential for the establishment of a Rab10-decorated subset of membranes within the pre-AC, a function that requires an intact F3 subdomain of the SNX27 FERM domain. Suppression of SNX27-mediated functions resulted in an almost tenfold decrease in the release of infectious virions. However, these effects cannot be directly linked to the contribution of SNX27:Retromer:ESCPE-1-dependent tubulation to the secondary envelopment, as suppression of these components, including the F3-FERM domain, led to a decrease in MCMV protein expression and inhibited the progression of the replication cycle. Conclusion: This study demonstrates a novel and important function of membrane tubulation within the pre-AC associated with the control of viral protein expression.


Assuntos
Endossomos , Nexinas de Classificação , Replicação Viral , Endossomos/metabolismo , Endossomos/virologia , Animais , Camundongos , Humanos , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Fibroblastos/virologia , Fibroblastos/metabolismo , Muromegalovirus/fisiologia , Muromegalovirus/genética , Linhagem Celular , Montagem de Vírus , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Citomegalovirus/fisiologia , Citomegalovirus/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
2.
Nat Commun ; 15(1): 8479, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353909

RESUMO

The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.


Assuntos
Endossomos , Canais de Cátion TRPM , Internalização do Vírus , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Endossomos/metabolismo , Endossomos/virologia , Concentração de Íons de Hidrogênio , Humanos , Animais , Células HEK293 , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ebolavirus/fisiologia , Ebolavirus/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Chlorocebus aethiops , Envelope Viral/metabolismo , Vírus Lassa/metabolismo , Vírus Lassa/fisiologia
3.
Biomolecules ; 14(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39334915

RESUMO

Secondary envelopment of the human cytomegalovirus (HCMV) is a critical but not well-understood process that takes place at the cytoplasmic viral assembly complex (cVAC) where nucleocapsids acquire their envelope by budding into cellular membranes containing viral glycoproteins. Previous studies presented controversial results regarding the composition of the viral envelope, suggesting trans-Golgi and endosomal origins, as well as intersections with the exosomal and endocytic pathways. Here, we investigated the role of endocytic membranes for the secondary envelopment of HCMV by using wheat germ agglutinin (WGA) pulse labeling to label glycoproteins at the plasma membrane and to follow their trafficking during HCMV infection by light microscopy and transmission electron microscopy (TEM). WGA labeled different membrane compartments within the cVAC, including early endosomes, multivesicular bodies, trans-Golgi, and recycling endosomes. Furthermore, TEM analysis showed that almost 90% of capsids undergoing secondary envelopment and 50% of enveloped capsids were WGA-positive within 90 min. Our data reveal extensive remodeling of the endocytic compartment in the late stage of HCMV infection, where the endocytic compartment provides an optimized environment for virion morphogenesis and serves as the primary membrane source for secondary envelopment. Furthermore, we show that secondary envelopment is a rapid process in which endocytosed membranes are transported from the plasma membrane to the cVAC within minutes to be utilized by capsids for envelopment.


Assuntos
Membrana Celular , Citomegalovirus , Endocitose , Montagem de Vírus , Humanos , Citomegalovirus/fisiologia , Citomegalovirus/metabolismo , Membrana Celular/metabolismo , Membrana Celular/virologia , Envelope Viral/metabolismo , Endossomos/virologia , Endossomos/metabolismo , Aglutininas do Germe de Trigo/metabolismo , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/metabolismo
4.
Cells ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39120285

RESUMO

Human parvovirus B19 (B19V), like most parvoviruses, possesses phospholipase A2 (PLA2) activity, which is thought to mediate endosomal escape by membrane disruption. Here, we challenge this model and find evidence for a mechanism of B19V entry mediated by the glycosphingolipid globoside without endosome disruption and retrograde transport to the Golgi. We show that B19V PLA2 activity requires specific calcium levels and pH conditions that are not optimal in endosomes. Accordingly, endosomal membrane integrity was maintained during B19V entry. Furthermore, endosomes remained intact when loaded with MS2 bacteriophage particles pseudotyped with multiple B19V PLA2 subunits, providing superior enzymatic potential compared to native B19V. In globoside knockout cells, incoming viruses are arrested in the endosomal compartment and the infection is blocked. Infection can be rescued by promoting endosomal leakage with polyethyleneimine (PEI), demonstrating the essential role of globoside in facilitating endosomal escape. Incoming virus colocalizes with Golgi markers and interfering with Golgi function blocks infection, suggesting that globoside-mediated entry involves the Golgi compartment, which provides conditions favorable for the lipolytic PLA2. Our study challenges the current model of B19V entry and identifies globoside as an essential intracellular receptor required for endosomal escape.


Assuntos
Endossomos , Globosídeos , Complexo de Golgi , Parvovirus B19 Humano , Internalização do Vírus , Endossomos/metabolismo , Endossomos/virologia , Humanos , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Parvovirus B19 Humano/metabolismo , Parvovirus B19 Humano/fisiologia , Parvovirus B19 Humano/genética , Globosídeos/metabolismo , Fosfolipases A2/metabolismo , Cálcio/metabolismo
5.
Anal Chem ; 96(32): 13033-13041, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39086018

RESUMO

Fusion of enveloped viruses with endosomal membranes and subsequent release of the viral genome into the cytoplasm are crucial to the viral infection cycle. It is often modeled by performing fusion between virus particles and target lipid vesicles. We utilized fluorescence microscopy to characterize the kinetic aspects of the transfer of influenza viral ribonucleoprotein (vRNP) complexes to target vesicles and their spatial distribution within the fused volumes to gain deeper insight into the mechanistic aspects of endosomal escape. The fluorogenic RNA-binding dye QuantiFluor (Promega) was found to be well-suited for direct and sensitive microscopic observation of vRNPs which facilitated background-free detection and kinetic analysis of fusion events on a single particle level. To determine the extent to which the viral contents are transferred to the target vesicles through the fusion pore, we carried out virus-vesicle fusion in a side-by-side fashion. Measurement of the Euclidean distances between the centroids of superlocalized membrane and content dye signals within the fused volumes allowed determination of any symmetry (or the lack thereof) between them as expected in the event of transfer (or the lack thereof) of vRNPs, respectively. We found that, in the case of fusion between viruses and 100 nm target vesicles, ∼39% of the events led to transfer of viral contents to the target vesicles. This methodology provides a rapid, generic, and cell-free way to assess the inhibitory effects of antiviral drugs and therapeutics on the endosomal escape behavior of enveloped viruses.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Microscopia de Fluorescência/métodos , Endossomos/metabolismo , Endossomos/virologia , Animais , Ribonucleoproteínas/metabolismo , Orthomyxoviridae/isolamento & purificação , Células Madin Darby de Rim Canino , Cinética
6.
Viruses ; 16(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39205232

RESUMO

Bufaviruses (BuV) are members of the Parvoviridae of the Protoparvovirus genus. They are non-enveloped, T = 1 icosahedral ssDNA viruses isolated from patients exhibiting acute diarrhea. The lack of treatment options and a limited understanding of their disease mechanisms require studying these viruses on a molecular and structural level. In the present study, we utilize glycan arrays and cell binding assays to demonstrate that BuV1 capsid binds terminal sialic acid (SIA) glycans. Furthermore, using cryo-electron microscopy (cryo-EM), SIA is shown to bind on the 2/5-fold wall of the capsid surface. Interestingly, the capsid residues stabilizing SIA binding are conserved in all human BuVs identified to date. Additionally, biophysical assays illustrate BuV1 capsid stabilization during endo-lysosomal (pH 7.4-pH 4) trafficking and capsid destabilization at pH 3 and less, which correspond to the pH of the stomach. Hence, we determined the cryo-EM structures of BuV1 capsids at pH 7.4, 4.0, and 2.6 to 2.8 Å, 3.2 Å, and 2.7 Å, respectively. These structures reveal capsid structural rearrangements during endo-lysosomal escape and provide a potential mechanism for this process. The structural insights gained from this study will add to the general knowledge of human pathogenic parvoviruses. Furthermore, the identification of the conserved SIA receptor binding site among BuVs provides a possible targetable surface-accessible pocket for the design of small molecules to be developed as anti-virals for these viruses.


Assuntos
Proteínas do Capsídeo , Capsídeo , Microscopia Crioeletrônica , Endossomos , Humanos , Concentração de Íons de Hidrogênio , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Capsídeo/química , Endossomos/virologia , Endossomos/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/metabolismo , Ligação Proteica , Polissacarídeos/metabolismo , Polissacarídeos/química , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/química , Receptores Virais/metabolismo , Modelos Moleculares
7.
Viruses ; 16(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39205315

RESUMO

The efficiency of virus internalization into target cells is a major determinant of infectivity. SARS-CoV-2 internalization occurs via S-protein-mediated cell binding followed either by direct fusion with the plasma membrane or endocytosis and subsequent fusion with the endosomal membrane. Despite the crucial role of virus internalization, the precise kinetics of the processes involved remains elusive. We developed a pipeline, which combines live-cell microscopy and advanced image analysis, for measuring the rates of multiple internalization-associated molecular events of single SARS-CoV-2-virus-like particles (VLPs), including endosome ingression and pH change. Our live-cell imaging experiments demonstrate that only a few minutes after binding to the plasma membrane, VLPs ingress into RAP5-negative endosomes via dynamin-dependent scission. Less than two minutes later, VLP speed increases in parallel with a pH drop below 5, yet these two events are not interrelated. By co-imaging fluorescently labeled nucleocapsid proteins, we show that nucleocapsid release occurs with similar kinetics to VLP acidification. Neither Omicron mutations nor abrogation of the S protein polybasic cleavage site affected the rate of VLP internalization, indicating that they do not confer any significant advantages or disadvantages during this process. Finally, we observe that VLP internalization occurs two to three times faster in VeroE6 than in A549 cells, which may contribute to the greater susceptibility of the former cell line to SARS-CoV-2 infection. Taken together, our precise measurements of the kinetics of VLP internalization-associated processes shed light on their contribution to the effectiveness of SARS-CoV-2 propagation in cells.


Assuntos
COVID-19 , Endossomos , SARS-CoV-2 , Internalização do Vírus , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , Humanos , Cinética , COVID-19/virologia , COVID-19/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Endocitose , Animais , Concentração de Íons de Hidrogênio , Chlorocebus aethiops , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Membrana Celular/metabolismo , Membrana Celular/virologia , Vírion/metabolismo
8.
mSphere ; 9(9): e0033824, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39191389

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant exhibits high transmissibility with a strong immune escape ability and causes frequent large-scale global infections by producing predominant subvariants. Here, using human upper/lower airway and intestinal cells, we examined the previously dominant BA.1-BA.5 and BA.2.75 subvariants, together with the recently emerged XBB/BQ lineages, in comparison to the former Delta variant. We observed a tendency for each virus to demonstrate higher growth capability than the previously dominant subvariants. Unlike human bronchial and intestinal cells, nasal epithelial cells accommodated the efficient entry of certain Omicron subvariants, similar to the Delta variant. In contrast to the Delta's reliance on cell-surface transmembrane protease serine 2, all tested Omicron variants depended on endosomal cathepsin L. Moreover, S1/S2 cleavage of early Omicron spikes was less efficient, whereas recent viruses exhibit improved cleavage efficacy. Our results show that the Omicron variant progressively adapts to human cells through continuous endosome-mediated host cell entry.IMPORTANCESARS-CoV-2, the causative agent of coronavirus disease 2019, has evolved into a number of variants/subvariants, which have generated multiple global waves of infection. In order to monitor/predict virological features of emerging variants and determine appropriate strategies for anti-viral development, understanding conserved or altered features of evolving SARS-CoV-2 is important. In this study, we addressed previously or recently predominant Omicron subvariants and demonstrated the gradual adaptation to human cells. The host cell entry route, which was altered from the former Delta variant, was conserved among all tested Omicron subvariants. Collectively, this study revealed both changing and maintained features of SARS-CoV-2 during the Omicron variant evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Catepsina L/genética , Catepsina L/metabolismo , Linhagem Celular , Células Epiteliais/virologia , Endossomos/virologia , Serina Endopeptidases
9.
PLoS Pathog ; 20(7): e1012256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024394

RESUMO

African swine fever (ASF) is a highly contagious, fatal disease of pigs caused by African swine fever virus (ASFV). The complexity of ASFV and our limited understanding of its interactions with the host have constrained the development of ASFV vaccines and antiviral strategies. To identify host factors required for ASFV replication, we developed a genome-wide CRISPR knockout (GeCKO) screen that contains 186,510 specific single guide RNAs (sgRNAs) targeting 20,580 pig genes and used genotype II ASFV to perform the GeCKO screen in wild boar lung (WSL) cells. We found that knockout of transmembrane protein 239 (TMEM239) significantly reduced ASFV replication. Further studies showed that TMEM239 interacted with the early endosomal marker Rab5A, and that TMEM239 deletion affected the co-localization of viral capsid p72 and Rab5A shortly after viral infection. An ex vivo study showed that ASFV replication was significantly reduced in TMEM239-/- peripheral blood mononuclear cells from TMEM239 knockout piglets. Our study identifies a novel host factor required for ASFV replication by facilitating ASFV entry into early endosomes and provides insights for the development of ASF-resistant breeding.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Sistemas CRISPR-Cas , Endossomos , Proteínas de Membrana , Internalização do Vírus , Replicação Viral , Animais , Suínos , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Febre Suína Africana/metabolismo , Febre Suína Africana/genética , Endossomos/metabolismo , Endossomos/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Técnicas de Inativação de Genes
10.
J Virol ; 98(8): e0032724, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39082785

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly infectious disease afflicting domestic pigs and wild boars. It exhibits an alarming acute infection fatality rate of up to 100%. Regrettably, no commercial vaccines or specific drugs for combating this disease are currently available. This study evaluated the anti-ASFV activities in porcine alveolar macrophages, 3D4/21 cells, and PK-15 cells of four bis-benzylisoquinoline alkaloids (BBAs): cepharanthine (CEP), tetrandrine, fangchinoline, and iso-tetrandrine. Furthermore, we demonstrated that CEP, which exhibited the highest selectivity index (SI = 81.31), alkalized late endosomes/lysosomes, hindered ASFV endosomal transport, disrupted virus uncoating signals, and thereby inhibited ASFV internalization. Additionally, CEP disrupted ASFV DNA synthesis, leading to the inhibition of viral replication. Moreover, berbamine was labeled with NBD to synthesize a fluorescent probe to study the cellular location of these BBAs. By co-staining with Lyso-Tracker and lysosome-associated membrane protein 1, we demonstrated that BBAs target the endolysosomal compartments for the first time. Our data together indicated that BBAs are a class of natural products with significant inhibitory effects against ASFV infection. These findings suggest their potential efficacy as agents for the prevention and control of ASF, offering valuable references for the identification of potential drug targets.IMPORTANCEThe urgency and severity of African swine fever (ASF) underscore the critical need for effective interventions against this highly infectious disease, which poses a grave threat to domestic pigs and wild boars. Our study reveals the potent anti-African swine fever virus (ASFV) efficacy of bis-benzylisoquinoline alkaloids (BBAs), particularly evident in the absence of progeny virus production under a 5 µM concentration treatment. The structural similarity among cepharanthine, tetrandrine, fangchinoline, and iso-tetrandrine, coupled with their analogous inhibitory stages and comparable selectivity indexes, strongly suggests a shared antiviral mechanism within this drug category. Further investigation revealed that BBAs localize to lysosomes and inhibit the internalization and replication of ASFV by disrupting the endosomal/lysosomal function. These collective results have profound implications for ASF prevention and control, suggesting the potential of the investigated agents as prophylactic and therapeutic measures. Furthermore, our study offers crucial insights into identifying drug targets and laying the groundwork for innovative interventions.


Assuntos
Vírus da Febre Suína Africana , Antivirais , Benzilisoquinolinas , Endossomos , Lisossomos , Internalização do Vírus , Replicação Viral , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Internalização do Vírus/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Replicação Viral/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/virologia , Suínos , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/virologia , Antivirais/farmacologia , Linhagem Celular , Febre Suína Africana/virologia , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/metabolismo , Guanina/análogos & derivados , Guanina/farmacologia , Alcaloides/farmacologia , Macrófagos Alveolares/virologia , Macrófagos Alveolares/efeitos dos fármacos , Benzodioxóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...