Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 730
Filtrar
1.
PLoS One ; 19(8): e0309166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39172905

RESUMO

Chronic obstructive pulmonary disease is a common chronic lung disease with an ever-increasing incidence. Despite years of drug research and approvals, we are still not able to halt progress or restore normal lung function. Our previous studies have demonstrated that liver growth factor-LGF has an effect on the repair of the affected tissue in a mouse model of cigarette smoke exposure, but by what pathways it achieves this is unknown. The present study aimed to identify differentially expressed genes between emphysematous mice treated with LGF to identify potential therapeutic targets for the treatment of pulmonary emphysema. The emphysema mouse model was induced by prolonged exposure to cigarette smoke. To determine the gene expression profile of the lung in smokers treated or not with LGF, lung messenger RNA gene expression was assessed with the Agilent Array platform. We carried out differentially expressed gene analysis, functional enrichment and validated in treated mouse lung samples. The treated group significantly improved lung function (~35%) and emphysema level (~20%), consistent with our previous published studies. Microarray analysis demonstrated 290 differentially expressed genes in total (2.0-fold over or lower expressed). Injury repair-associated genes and pathways were further enhanced in the lung of LGF treated mice. The expression trends of two genes (Zscan2 and Bag6) were different in emphysematous lungs treated with LGF compared to untreated lungs. Therefore, Zscan2 and Bag6 genes could play a role in regulating inflammation and the immune response in the lung that undergoes partial lung regeneration. However, further studies are necessary to demonstrate this causal relationship.


Assuntos
Modelos Animais de Doenças , Pulmão , Doença Pulmonar Obstrutiva Crônica , Fatores de Transcrição , Animais , Masculino , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Sci Adv ; 10(34): eado8549, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39167644

RESUMO

Reduced skeletal muscle mass and oxidative capacity coexist in patients with pulmonary emphysema and are independently associated with higher mortality. If reduced cellular respiration contributes to muscle atrophy in that setting remains unknown. Using a mouse with genetically induced pulmonary emphysema that recapitulates muscle dysfunction, we found that reduced activity of succinate dehydrogenase (SDH) is a hallmark of its myopathic changes. We generated an inducible, muscle-specific SDH knockout mouse that demonstrates lower mitochondrial oxygen consumption, myofiber contractility, and exercise endurance. Respirometry analyses show that in vitro complex I respiration is unaffected by loss of SDH subunit C in muscle mitochondria, which is consistent with the pulmonary emphysema animal data. SDH knockout initially causes succinate accumulation associated with a down-regulated transcriptome but modest proteome effects. Muscle mass, myofiber type composition, and overall body mass constituents remain unaltered in the transgenic mice. Thus, while SDH regulates myofiber respiration in experimental pulmonary emphysema, it does not control muscle mass or other body constituents.


Assuntos
Respiração Celular , Camundongos Knockout , Contração Muscular , Músculo Esquelético , Enfisema Pulmonar , Succinato Desidrogenase , Animais , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Enfisema Pulmonar/etiologia , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/genética , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Complexo II de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/genética , Modelos Animais de Doenças , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Consumo de Oxigênio
3.
Bull Exp Biol Med ; 177(3): 368-373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39134813

RESUMO

The antitumor and antimetastatic activity of dopamine D2 receptor antagonists spiperone was studied in C57BL/6 mice in a model of combined pathology (emphysema and lung cancer). Emphysema was induced by administration of LPS and cigarette smoke extract. Lung cancer was induced by injection of Lewis lung carcinoma cells into the lung. It has been shown that under conditions of combined lung pathology, spiperone prevents inflammatory infiltration and emphysematous expansion of the lungs and reduces the size of the primary tumor node, the number of metastases, and the area of the lungs affected by metastases. Spiperone reduces the number of cancer stem cells (CSCs) in the lungs and blood of mice with combined pathology. CSCs isolated from the lungs and blood of mice with combined pathology treated with spiperone had a significantly lower potential to form a tumorosphere in vitro than CSCs from untreated mice with emphysema and lung carcinoma. Thus, blockade of dopamine D2 receptors is a promising approach for correcting combined lung pathology and can be used in the development of a method for treating lung cancer in patients with emphysema.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas , Enfisema Pulmonar , Espiperona , Animais , Espiperona/farmacologia , Espiperona/uso terapêutico , Camundongos , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/patologia , Enfisema Pulmonar/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Antineoplásicos/farmacologia , Masculino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Antagonistas dos Receptores de Dopamina D2/farmacologia , Antagonistas dos Receptores de Dopamina D2/uso terapêutico , Receptores de Dopamina D2/metabolismo , Lipopolissacarídeos/toxicidade
4.
PLoS One ; 19(7): e0305911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052574

RESUMO

Chronic obstructive pulmonary disease (COPD), an inflammatory lung disease, causes approximately 3 million deaths each year; however, its pathological mechanisms are not fully understood. In this study, we examined whether HX110B, a mixture of Taraxacum officinale, Dioscorea batatas, and Schizonepeta tenuifolia extracts, could suppress porcine pancreatic elastase (PPE)-induced emphysema in mice and its mechanism of action. The therapeutic efficacy of HX110B was tested using a PPE-induced emphysema mouse model and human bronchial epithelial cell line BEAS-2B. In vivo data showed that the alveolar wall and air space expansion damaged by PPE were improved by HX110B administration. HX110B also effectively suppresses the expression levels of pro-inflammatory mediators including IL-6, IL-1ß, MIP-2, and iNOS, while stimulating the expression of lung protective factors such as IL-10, CC16, SP-D, and sRAGE. Moreover, HX110B improved the impaired OXPHOS subunit gene expression. In vitro analysis revealed that HX110B exerted its effects by activating the PPAR-RXR signaling pathways. Overall, our data demonstrated that HX110B could be a promising therapeutic option for COPD treatment.


Assuntos
Elastase Pancreática , Extratos Vegetais , Transdução de Sinais , Animais , Transdução de Sinais/efeitos dos fármacos , Camundongos , Elastase Pancreática/metabolismo , Humanos , Extratos Vegetais/farmacologia , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/patologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Modelos Animais de Doenças , Linhagem Celular , Masculino , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Camundongos Endogâmicos C57BL , Suínos
5.
Aging (Albany NY) ; 16(13): 10670-10693, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38954512

RESUMO

Senescent cells contribute to tissue aging and underlie the pathology of chronic diseases. The benefits of eliminating senescent cells have been demonstrated in several disease models, and the efficacy of senolytic drugs is currently being tested in humans. Exercise training has been shown to reduce cellular senescence in several tissues; however, the mechanisms responsible remain unclear. We found that myocyte-derived factors significantly extended the replicative lifespan of fibroblasts, suggesting that myokines mediate the anti-senescence effects of exercise. A number of proteins within myocyte-derived factors were identified by mass spectrometry. Among these, pigment epithelium-derived factor (PEDF) exerted inhibitory effects on cellular senescence. Eight weeks of voluntary running increased Pedf levels in skeletal muscles and suppressed senescence markers in the lungs. The administration of PEDF reduced senescence markers in multiple tissues and attenuated the decline in respiratory function in the pulmonary emphysema mouse model. We also showed that blood levels of PEDF inversely correlated with the severity of COPD in patients. Collectively, these results strongly suggest that PEDF contributes to the beneficial effects of exercise, potentially suppressing cellular senescence and its associated pathologies.


Assuntos
Senescência Celular , Proteínas do Olho , Pulmão , Fatores de Crescimento Neural , Condicionamento Físico Animal , Serpinas , Serpinas/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Proteínas do Olho/metabolismo , Camundongos , Pulmão/metabolismo , Pulmão/patologia , Humanos , Condicionamento Físico Animal/fisiologia , Masculino , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Fibroblastos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Feminino , Músculo Esquelético/metabolismo , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia
6.
Int Immunopharmacol ; 139: 112680, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39018689

RESUMO

Chronic obstructive pulmonary disease (COPD) is a common disease with high global morbidity and mortality. Macrophages release IL-1ß and orchestrate airway inflammation in COPD. Previously, we explored the role of a new lncRNA, LincR-PPP2R5C, in regulating Th2 cells in asthma. Here, we established a murine model of COPD and explored the roles and mechanisms by which LincR-PPP2R5C regulates IL-1ß in macrophages. LincR-PPP2R5C was highly expressed in pulmonary macrophages from COPD-like mice. LincR-PPP2R5C deficiency ameliorated emphysema and pulmonary inflammation, as characterized by reduced IL-1ß in macrophages. Unexpectedly, in both lung tissues and macrophages, LincR-PPP2R5C deficiency decreased the expression of the IL-1ß protein but not the IL-1ß mRNA. Furthermore, we found that LincR-PPP2R5C deficiency increased the level of ubiquitinated IL-1ß in macrophages, which was mediated by PP2A activity. Targeting PP2A with FTY720 decreased IL-1ß and improved COPD. In conclusion, LincR-PPP2R5C regulates IL-1ß ubiquitination by affecting PP2A activity in macrophages, contributing to the airway inflammation and emphysema in a murine model of COPD. PP2A and IL-1ß ubiquitination in macrophages might be new therapeutic avenues for COPD therapy.


Assuntos
Modelos Animais de Doenças , Interleucina-1beta , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Ubiquitinação , Animais , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Interleucina-1beta/metabolismo , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Fosfatase 2/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Masculino , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/imunologia , Enfisema Pulmonar/patologia , Enfisema Pulmonar/genética , Pulmão/patologia , Pulmão/imunologia , Camundongos Knockout
7.
Environ Int ; 190: 108832, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936066

RESUMO

Cigarette smoke (CS), an indoor environmental pollutant, is a prominent risk factor for emphysema, which is a pathological feature of chronic obstructive pulmonary disease (COPD). Emerging function of circRNAs in immune responses and disease progression shed new light to explore the pathogenesis of emphysema. In this research, we demonstrated, by single-cell RNA sequencing (scRNAseq), that the ratio of M2 macrophages were increased in lung tissues of humans and mice with smoking-related emphysema. Further, our data showed that circADAMTS6 was associated with cigarette smoke extract (CSE)-induced M2 macrophage polarization. Mechanistically, in macrophages, circADAMTS6 stabilized CAMK2A mRNA via forming a circADAMTS6/IGF2BP2/CAMK2A RNA-protein ternary complex to activate CREB, which drives M2 macrophage polarization and leads to emphysema. In addition, in macrophages of mouse lung tissues, downregulation of circADAMTS6 reversed M2 macrophage polarization, the proteinase/anti-proteinase imbalance, and the elastin degradation, which protecting against CS-induced emphysema. Moreover, for macrophages and in a model with co-cultured lung organoids, the target of circADAMTS6 restored the growth of lung organoids compared to CSE-treated macrophages. Our results also demonstrated that, for smokers and COPD smokers, elevation of circADAMTS6 negatively correlated with lung function. Overall, this study reveals a novel mechanism for circADAMTS6-driven M2 macrophage polarization in smoking-related emphysema and postulates that circADAMTS6 could serve as a diagnostic and therapeutic marker for smoking-related emphysema.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Macrófagos , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Enfisema , Pulmão/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar/patologia , Enfisema Pulmonar/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Fumar/efeitos adversos
8.
J Immunol ; 213(1): 75-85, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758115

RESUMO

In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.


Assuntos
Elastina , Neutrófilos , Proteína-Arginina Desiminase do Tipo 2 , Proteína-Arginina Desiminase do Tipo 4 , Proteólise , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Neutrófilos/imunologia , Elastina/metabolismo , Feminino , Masculino , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Pessoa de Meia-Idade , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/imunologia , Idoso , Proteína-Arginina Desiminase do Tipo 2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Citrulinação , Desiminases de Arginina em Proteínas/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/imunologia , Pulmão/patologia
9.
Elife ; 132024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722677

RESUMO

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Assuntos
Diferenciação Celular , Regulação para Baixo , MicroRNAs , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Enfisema Pulmonar , Células Th17 , Animais , Feminino , Humanos , Masculino , Camundongos , Interleucina-17/metabolismo , Interleucina-17/genética , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Células Th17/imunologia , Células Th17/metabolismo
10.
Med Biol Eng Comput ; 62(8): 2557-2570, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38644448

RESUMO

Combined pulmonary fibrosis and emphysema (CPFE) presents a unique challenge in respiratory disorders, merging features of interstitial lung disease (ILD) and chronic obstructive pulmonary disease (COPD). Using the random forest algorithm, our study thoroughly examines the molecular details of CPFE. Analyzing gene expression datasets from GSE47460 (ILD: 254, COPD: 220, control: 108), we identify key genes namely ADRB2, CDH3, IRS2, MATN3, CD38, PDIA4, VEGFC, and among twenty others, crucial in airway regulation, lung function, and apoptosis, shaping the complex pathogenesis of CPFE. Additionally, miRNAs (hsa-mir-101-3p, hsa-mir-1343-3p, hsa-mir-27a-3p, and miR-16-5p) showcase regulatory impacts on CPFE-related molecular pathways. Our machine learning model unveils these intricate interactions, offering a comprehensive insight into CPFE's molecular mechanisms. This research not only pinpoints potential therapeutic targets and biomarkers but also opens avenues for innovative approaches in managing CPFE, linking ILD and COPD within this complex respiratory condition.


Assuntos
Inteligência Artificial , Pulmão , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , RNA/genética , RNA/metabolismo , Perfilação da Expressão Gênica , Aprendizado de Máquina
11.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 339-345, 2024 Apr 12.
Artigo em Chinês | MEDLINE | ID: mdl-38599809

RESUMO

Objective: To construct and characterize conditional Src homology region 2 protein tyrosine phosphatase 1 (SHP-1) knockout mice in airway epithelial cells and to observe the effect of defective SHP-1 expression in airway epithelial cells on the emphysema phenotype in chronic obstructive pulmonary disease (COPD). Methods: To detect the expression of SHP-1 in the airway epithelium of COPD patients. CRISPR/Cas9 technology was used to construct SHP-1flox/flox transgenic mice, which were mated with airway epithelial Clara protein 10-cyclase recombinase and estrogen receptor fusion transgenic mice (CC10-CreER+/+), and after intraperitoneal injection of tamoxifen, airway epithelial SHP-1 knockout mice were obtained (SHP-1flox/floxCC10-CreER+/-, SHP-1Δ/Δ). Mouse tail and lung tissue DNA was extracted and PCR amplified to discriminate the genotype of the mice; the knockout effect of SHP-1 gene in airway epithelial cells was verified by qRT-PCR, Western blotting, and immunofluorescence. In addition, an emphysema mouse model was constructed using elastase to assess the severity of emphysema in each group of mice. Results: Airway epithelial SHP-1 was significantly downregulated in COPD patients. Genotyping confirmed that SHP-1Δ/Δ mice expressed CC10-CreER and SHP-1-flox. After tamoxifen induction, we demonstrated the absence of SHP-1 protein expression in airway epithelial cells of SHP-1Δ/Δ mice at the DNA, RNA, and protein levels, indicating that airway epithelial cell-specific SHP-1 knockout mice had been successfully constructed. In the emphysema animal model, SHP-1Δ/Δ mice had a more severe emphysema phenotype compared with the control group, which was manifested by disorganization of alveolar structure in lung tissue and rupture and fusion of alveolar walls to form pulmonary alveoli. Conclusions: The present study successfully established and characterized the SHP-1 knockout mouse model of airway epithelial cells, which provides a new experimental tool for the in-depth elucidation of the role of SHP-1 in the emphysema process of COPD and its mechanism.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Epiteliais/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Fenótipo , DNA , Tamoxifeno
12.
Immun Inflamm Dis ; 12(4): e1252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652015

RESUMO

We developed pulmonary emphysema and a type 2 airway inflammation overlap mouse model. The bronchoalveolar lavage (BAL) interleukin 13 (IL-13), IL-4, and IL-5 levels in the overlap model were higher than in the pulmonary emphysema model and lower than in the type 2 airway inflammation model, but IL-33 level in the lung was higher than in other models. IL-33 and interferon-γ (IFNγ) in lungs may control the severity of a type 2 airway inflammation in lung.


Assuntos
Modelos Animais de Doenças , Interleucina-33 , Enfisema Pulmonar , Animais , Interleucina-33/metabolismo , Camundongos , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos Endogâmicos C57BL
13.
Environ Pollut ; 349: 123913, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582189

RESUMO

Cigarette smoke (CS), the main source of indoor air pollution and the primary risk factor for respiratory diseases, contains chemicals that can perturb microbiota through antibiotic effects. Although smoking induces a disturbance of microbiota in the lower respiratory tract, whether and how it contributes to initiation or promotion of emphysema are not well clarified. Here, we demonstrated an aberrant microbiome in lung tissue of patients with smoking-related COPD. We found that Stenotrophomonas maltophilia (S. maltophilia) was expanded in lung tissue of patients with smoking-related COPD. We revealed that S. maltophilia drives PANoptosis in alveolar epithelial cells and represses formation of alveolar organoids through IRF1 (interferon regulatory factor 1). Mechanistically, IRF1 accelerated transcription of ZBP1 (Z-DNA Binding Protein 1) in S. maltophilia-infected alveolar epithelial cells. Elevated ZBP1 served as a component of the PANoptosome, which triggered PANoptosis in these cells. By using of alveolar organoids infected by S. maltophilia, we found that targeting of IRF1 mitigated S. maltophilia-induced injury of these organoids. Moreover, the expansion of S. maltophilia and the expression of IRF1 negatively correlated with the progression of emphysema. Thus, the present study provides insights into the mechanism of lung dysbiosis in smoking-related COPD, and presents a potential target for mitigation of COPD progression.


Assuntos
Células Epiteliais Alveolares , Fator Regulador 1 de Interferon , Enfisema Pulmonar , Fumar , Stenotrophomonas maltophilia , Animais , Humanos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/microbiologia , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Pulmão/microbiologia , Microbiota , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/microbiologia , Fumar/efeitos adversos
14.
Am J Respir Cell Mol Biol ; 70(6): 482-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377392

RESUMO

Cigarette smoking is known to be the leading cause of chronic obstructive pulmonary disease (COPD). However, the detailed mechanisms have not been elucidated. PAF (platelet-activating factor), a potent inflammatory mediator, is involved in the pathogenesis of various respiratory diseases such as bronchial asthma and COPD. We focused on LPLAT9 (lysophospholipid acyltransferase 9), a biosynthetic enzyme of PAF, in the pathogenesis of COPD. LPLAT9 gene expression was observed in excised COPD lungs and single-cell RNA sequencing data of alveolar macrophages (AMs). LPLAT9 was predominant and upregulated in AMs, particularly monocyte-derived AMs, in patients with COPD. To identify the function of LPLAT9/PAF in AMs in the pathogenesis of COPD, we exposed systemic LPLAT9-knockout (LPALT9-/-) mice to cigarette smoke (CS). CS increased the number of AMs, especially the monocyte-derived fraction, which secreted MMP12 (matrix metalloprotease 12). Also, CS augmented LPLAT9 phosphorylation/activation on macrophages and, subsequently, PAF synthesis in the lung. The LPLAT9-/- mouse lung showed reduced PAF production after CS exposure. Intratracheal PAF administration accumulated AMs by increasing MCP1 (monocyte chemoattractant protein-1). After CS exposure, AM accumulation and subsequent pulmonary emphysema, a primary pathologic change of COPD, were reduced in LPALT9-/- mice compared with LPLAT9+/+ mice. Notably, these phenotypes were again worsened by LPLAT9+/+ bone marrow transplantation in LPALT9-/- mice. Thus, CS-induced LPLAT9 activation in monocyte-derived AMs aggravated pulmonary emphysema via PAF-induced further accumulation of AMs. These results suggest that PAF synthesized by LPLAT9 has an important role in the pathogenesis of COPD.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Macrófagos Alveolares , Camundongos Knockout , Fator de Ativação de Plaquetas , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/genética , Fator de Ativação de Plaquetas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Pulmão/metabolismo , Pulmão/patologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Feminino
15.
Histol Histopathol ; 39(7): 805-816, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38226432

RESUMO

The aim of this review is to update and synthesize the molecular mechanisms that lead to the heterogeneous effect on tissue remodeling observed in the two most important clinical phenotypes of chronic obstructive pulmonary disease (COPD), pulmonary emphysema (PE) and chronic bronchitis (CB). Clinical and experimental evidence suggests that this heterogeneous response to promote PE, CB, or both, is related to differentiated genetic, epigenetic, and molecular conditions. Specifically, a tendency toward PE could be related to a variant in the DSP gene, SIRT1 downregulation, macrophage polarization to M1, as well as the involvement of the noncanonical Wnt5A signaling pathway, among other alterations. Additionally, in advanced stages of COPD, PE development is potentiated by dysregulations in autophagy, which promotes senescence and subsequently cell apoptosis, through exacerbated inflammasome activation and release of caspases. On the other hand, CB or the pro-fibrotic phenotype could be potentiated by the downregulated activity of HDAC2, the activation of the TGF-ß/Smad or Wnt/ß-catenin signaling pathways, macrophage polarization to M2, upregulation of TIMP-1, and/or the presence of the epithelial-mesenchymal transition (EMT) mechanism. Interestingly, the upregulated activity of MMPs, especially MMP-9, is widely involved in the development of both phenotypes. Furthermore, MMP-9 and MMP-12 enhance the severity, perpetuation, and exacerbation of COPD, as well as the development of autoimmunity in this disease.


Assuntos
Bronquite Crônica , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Bronquite Crônica/metabolismo , Bronquite Crônica/patologia , Bronquite Crônica/genética , Animais , Transdução de Sinais
16.
Inflammation ; 47(3): 958-974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38227123

RESUMO

Pulmonary emphysema is a primary component of chronic obstructive pulmonary disease (COPD), a life-threatening disorder characterized by lung inflammation and restricted airflow, primarily resulting from the destruction of small airways and alveolar walls. Cumulative evidence suggests that nicotinic receptors, especially the α7 subtype (α7nAChR), is required for anti-inflammatory cholinergic responses. We postulated that the stimulation of α7nAChR could offer therapeutic benefits in the context of pulmonary emphysema. To investigate this, we assessed the potential protective effects of PNU-282987, a selective α7nAChR agonist, using an experimental emphysema model. Male mice (C57BL/6) were submitted to a nasal instillation of porcine pancreatic elastase (PPE) (50 µl, 0.667 IU) to induce emphysema. Treatment with PNU-282987 (2.0 mg/kg, ip) was performed pre and post-emphysema induction by measuring anti-inflammatory effects (inflammatory cells, cytokines) as well as anti-remodeling and anti-oxidant effects. Elastase-induced emphysema led to an increase in the number of α7nAChR-positive cells in the lungs. Notably, both groups treated with PNU-282987 (prior to and following emphysema induction) exhibited a significant decrease in the number of α7nAChR-positive cells. Furthermore, both groups treated with PNU-282987 demonstrated decreased levels of macrophages, IL-6, IL-1ß, collagen, and elastic fiber deposition. Additionally, both groups exhibited reduced STAT3 phosphorylation and lower levels of SOCS3. Of particular note, in the post-treated group, PNU-282987 successfully attenuated alveolar enlargement, decreased IL-17 and TNF-α levels, and reduced the recruitment of polymorphonuclear cells to the lung parenchyma. Significantly, it is worth noting that MLA, an antagonist of α7nAChR, counteracted the protective effects of PNU-282987 in relation to certain crucial inflammatory parameters. In summary, these findings unequivocally demonstrate the protective abilities of α7nAChR against elastase-induced emphysema, strongly supporting α7nAChR as a pivotal therapeutic target for ameliorating pulmonary emphysema.


Assuntos
Benzamidas , Compostos Bicíclicos com Pontes , Camundongos Endogâmicos C57BL , Agonistas Nicotínicos , Elastase Pancreática , Enfisema Pulmonar , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/prevenção & controle , Camundongos , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Masculino , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Agonistas Nicotínicos/farmacologia , Agonistas Nicotínicos/uso terapêutico , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
18.
Signal Transduct Target Ther ; 8(1): 390, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37816708

RESUMO

Patients with chronic obstructive pulmonary disease (COPD) who exhibit elevated blood eosinophil levels often experience worsened lung function and more severe emphysema. This implies the potential involvement of eosinophils in the development of emphysema. However, the precise mechanisms underlying the development of eosinophil-mediated emphysema remain unclear. In this study, we employed single-cell RNA sequencing to identify eosinophil subgroups in mouse models of asthma and emphysema, followed by functional analyses of these subgroups. Assessment of accumulated eosinophils unveiled distinct transcriptomes in the lungs of mice with elastase-induced emphysema and ovalbumin-induced asthma. Depletion of eosinophils through the use of anti-interleukin-5 antibodies ameliorated elastase-induced emphysema. A particularly noteworthy discovery is that eosinophil-derived cathepsin L contributed to the degradation of the extracellular matrix, thereby leading to emphysema in pulmonary tissue. Inhibition of cathepsin L resulted in a reduction of elastase-induced emphysema in a mouse model. Importantly, eosinophil levels correlated positively with serum cathepsin L levels, which were higher in emphysema patients than those without emphysema. Expression of cathepsin L in eosinophils demonstrated a direct association with lung emphysema in COPD patients. Collectively, these findings underscore the significant role of eosinophil-derived cathepsin L in extracellular matrix degradation and remodeling, and its relevance to emphysema in COPD patients. Consequently, targeting eosinophil-derived cathepsin L could potentially offer a therapeutic avenue for emphysema patients. Further investigations are warranted to explore therapeutic strategies targeting cathepsin L in emphysema patients.


Assuntos
Asma , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Humanos , Camundongos , Asma/genética , Catepsina L/genética , Eosinófilos/metabolismo , Pulmão/metabolismo , Elastase Pancreática , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo
19.
Exp Mol Med ; 55(10): 2260-2268, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37779147

RESUMO

The interaction between the microbial environment and the host is important for immune homeostasis. Recent research suggests that microbiota dysbiosis can be involved in respiratory diseases. Emphysema is a chronic inflammatory disease, but it is unclear whether dysbiosis caused by antibiotics can affect disease progression. Here, we tried to elucidate the effect of systemic antibiotics on smoking-exposed emphysema models. In this study, the antibiotic mixture caused more alveolar destruction and airspace expansion in the smoking group than in the smoking only or control groups. This emphysema aggravation as a result of antibiotic exposure was associated with increased levels of inflammatory cells, IL-6, IFNγ and protein concentrations in bronchoalveolar lavage fluid. Proteomics analysis indicated that autophagy could be involved in antibiotic-associated emphysema aggravation, and increased protein levels of LC3B, atg3, and atg7 were identified by Western blotting. In microbiome and metabolome analyses, the composition of the gut microbiota was different with smoking and antibiotic exposure, and the levels of short-chain fatty acids (SCFAs), including acetate and propionate, were reduced by antibiotic exposure. SCFA administration restored emphysema development with reduced inflammatory cells, IL-6, and IFNγ and decreased LC3B, atg3, and atg7 levels. In conclusion, antibiotics can aggravate emphysema, and inflammation and autophagy may be associated with this aggravation. This study provides important insight into the systemic impact of microbial dysbiosis and the therapeutic potential of utilizing the gut microbiota in emphysema.


Assuntos
Enfisema , Enfisema Pulmonar , Humanos , Antibacterianos/efeitos adversos , Disbiose , Interleucina-6/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/metabolismo , Inflamação , Autofagia
20.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L711-L725, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37814796

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.


Assuntos
Quimiocina CX3CL1 , Enfisema Pulmonar , Animais , Humanos , Camundongos , alfa 1-Antitripsina/farmacologia , Comunicação Celular , Receptor 1 de Quimiocina CX3C/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Monócitos , Enfisema Pulmonar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...