Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.799
Filtrar
1.
Zhonghua Er Ke Za Zhi ; 62(7): 643-648, 2024 Jul 02.
Artigo em Chinês | MEDLINE | ID: mdl-38955682

RESUMO

Objective: To investigate the association between intestinal colonization of segmented filamentous bacteria (SFB) and the risk of rotavirus infection, and the possible mechanisms by which SFB resist rotavirus infection. Methods: This case-control study enrolled 50 children aged 0 to 5 years who present to the outpatient Department of Children's Hospital, Zhejiang University School of Medicine with diarrhea and positive stool tests for rotavirus. The children were divided into rotavirus enteritis group and control group consisting of 55 children with non-gastrointestinal and non-infectious surgical diseases.The age and sex composition of the two groups was matched. The DNA of the fecal flora was extracted and SFB was detected by real-time fluorescence quantitative PCR analysis. The children in the rotavirus enteritis group and the control group were subgrouped by age and sex to analyze the differences in SFB positivity rates between different groups, and further compare and analyze the differences in SFB positivity rates between these two groups of children in the ≤2 years old subgroup and the >2-5 years old subgroup. Neutralization test was performed with p3340 protein and rotavirus to determine the relationship between rotavirus infection rate and p3340 concentration in Vero cells. χ2 test or Fisher's exact probability method was used for comparison between the two groups. Results: There were 50 children in the rotavirus enteritis group with an age of (1.7±0.9) years, and 55 children in the control group with an age of (1.8±1.1) years. The positive rate of SFB in children with rotavirus enteritis showed a declining trend across ages groups, with the highest rate of 10/14 in the ≤1 year old group, followed by 67% (14/21) in the >1-2 years old group, 9/15 in the >2-5 years old group, and there was no statistically significant difference (P=0.867). The positive rate of SFB in the control group was 12/15 in the ≤1 year old group, 95% (19/20) in the >1-2 years old group, 50% (10/20) in the >2-5 years old group, with statistical significance (P=0.004). The positive rate of SFB in children with rotavirus enteritis was 74% (20/27) in males and 56% (13/23) in females (χ2=1.71, P=0.192). In the control group, it was 79% (22/28) in males and 70% (19/27) in females (χ2=0.49, P=0.485). The positive rate of SFB was 66% (33/50) in the rotavirus enteritis group and 75% (41/55) in the control group, with no statistically significant (χ2=0.56, P=0.454). In the children ≤2 years old, the SFB positivity rate was 69% (24/35) in the rotavirus enteritis group and 89% (31/35) in the control group, with a statistically significant difference (χ2=4.16, P=0.041). However, in the children >2-5 years old, no statistically significant difference was observed, with the positive rate of SFB being 9/15 in the rotavirus enteritis group and 50% (10/20) in the control group (P=0.734). Pearson correlation analysis revealed a negative correlation between rotavirus infection and SFB positivity (r=-0.87,P<0.001). As the concentration of the p3340 specific protein increased, the luminescence intensity of the luciferase in the Vero cells, which were suitable for cultivating rotavirus, exhibited a decreasing trend (F=4.17, P=0.001). Conclusions: SFB colonization in infants less than 2 years old is associated with a reduced risk of rotavirus infection. Cloning of specific SFB functional protein p3340 neutralizes rotavirus infection of Vero cells, and this mechanism of targeting rotavirus infection differs from the common antiviral mechanism.


Assuntos
Fezes , Infecções por Rotavirus , Rotavirus , Humanos , Lactente , Masculino , Feminino , Estudos de Casos e Controles , Pré-Escolar , Fezes/virologia , Fezes/microbiologia , Diarreia/virologia , Diarreia/microbiologia , Enterite/virologia , Enterite/microbiologia , Recém-Nascido , Intestinos/virologia , Intestinos/microbiologia , Animais
2.
Fish Shellfish Immunol ; 150: 109616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734118

RESUMO

Enteritis posed a significant health challenge to golden pompano (Trachinotus ovatus) populations. In this research, a comprehensive multi-omics strategy was implemented to elucidate the pathogenesis of enteritis by comparing both healthy and affected golden pompano. Histologically, enteritis was characterized by villi adhesion and increased clustering after inflammation. Analysis of the intestinal microbiota revealed a significant increase (P < 0.05) in the abundance of specific bacterial strains, including Photobacterium and Salinivibrio, in diseased fish compared to the healthy group. Metabolomic analysis identified 5479 altered metabolites, with significant impacts on terpenoid and polyketide metabolism, as well as lipid metabolism (P < 0.05). Additionally, the concentrations of several compounds such as calcitetrol, vitamin D2, arachidonic acid, and linoleic acid were significantly reduced in the intestines of diseased fish post-enteritis (P < 0.05), with the detection of harmful substances such as Efonidipine. In transcriptomic profiling, enteritis induced 68 upregulated and 73 downregulated genes, predominantly affecting steroid hormone receptor activity (P < 0.05). KEGG pathway enrichment analysis highlighted upregulation of SQLE and CYP51 in steroidogenesis, while the HSV-1 associated MHC1 gene exhibited significant downregulation. Integration of multi-omics results suggested a potential pathogenic mechanism: enteritis may have resulted from concurrent infection of harmful bacteria, specifically Photobacterium and Salinivibrio, along with HSV-1. Efonidipine production within the intestinal tract may have blocked certain calcium ion channels, leading to downregulation of MHC1 gene expression and reduced extracellular immune recognition. Upregulation of SQLE and CYP51 genes stimulated steroid hormone synthesis within cells, which, upon binding to G protein-coupled receptors, influenced calcium ion transport, inhibited immune activation reactions, and further reduced intracellular synthesis of anti-inflammatory substances like arachidonic acid. Ultimately, this cascade led to inflammation progression, weakened intestinal peristalsis, and villi adhesion. This study utilized multi-level omics detection to investigate the pathological symptoms of enteritis and proposed a plausible pathogenic mechanism, providing innovative insights into enteritis verification and treatment in offshore cage culture of golden pompano.


Assuntos
Enterite , Doenças dos Peixes , Microbioma Gastrointestinal , Animais , Enterite/veterinária , Enterite/imunologia , Enterite/microbiologia , Doenças dos Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Perciformes/imunologia , Perciformes/genética , Transcriptoma , Metabolômica , Multiômica
3.
Fish Shellfish Immunol ; 150: 109644, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777252

RESUMO

Enteritis poses a significant threat to fish farming, characterized by symptoms of intestinal and hepatic inflammation, physiological dysfunction, and dysbiosis. Focused on the leopard coral grouper (Plectropomus leopardus) with an enteritis outbreak on a South China Sea farm, our prior scrutiny did not find any abnormalities in feeding or conventional water quality factors, nor were any specific pathogen infections related to enteritis identified. This study further elucidates their intestinal flora alterations, host responses, and their interactions to uncover the underlying pathogenetic mechanisms and facilitate effective prevention and management strategies. Enteritis-affected fish exhibited substantial differences in intestinal flora compared to control fish (P = 0.001). Notably, norank_f_Alcaligenaceae, which has a negative impact on fish health, predominated in enteritis-affected fish (91.76 %), while the probiotic genus Lactococcus dominated in controls (93.90 %). Additionally, certain genera with pathogenesis potentials like Achromobacter, Sphingomonas, and Streptococcus were more abundant in diseased fish, whereas Enterococcus and Clostridium_sensu_stricto with probiotic potentials were enriched in control fish. At the transcriptomic level, strong inflammatory responses, accompanied by impaired metabolic functions, tissue damage, and iron death signaling activation were observed in the intestines and liver during enteritis. Furthermore, correlation analysis highlighted that potential pathogen groups were positively associated with inflammation and tissue damage genes while presenting negatively correlated with metabolic function-related genes. In conclusion, dysbiosis in the intestinal microbiome, particularly an aberrantly high abundance of Alcaligenaceae with pathogenic potential may be the main trigger for this enteritis outbreak. Alcaligenaceae alongside Achromobacter, Sphingomonas, and Streptococcus emerged as biomarkers for enteritis, whereas some species of Lactococcus, Clostridium_sensu_stricto, and Enterococcus showed promise as probiotics to alleviate enteritis symptoms. These findings enhance our understanding of enteritis pathogenesis, highlight intestinal microbiota shifts in leopard coral grouper, and propose biomarkers for monitoring, probiotic selection, and enteritis management.


Assuntos
Enterite , Doenças dos Peixes , Microbioma Gastrointestinal , Animais , Enterite/veterinária , Enterite/imunologia , Enterite/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Perciformes/imunologia , China , Expressão Gênica
4.
Microb Pathog ; 192: 106691, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759933

RESUMO

Necrotic enteritis (NE) is a potentially fatal poultry disease that causes enormous economic losses in the poultry industry worldwide. The study aimed to evaluate the effects of dietary organic yeast-derived selenium (Se) on immune protection against experimental necrotic enteritis (NE) in commercial broilers. Chickens were fed basal diets supplemented with different Se levels (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, Clostridium perfringens (C. perfringens) was orally administered at 14 days of age post hatch. The results showed that birds fed 0.25 Se mg/kg exhibited significantly increased body weight gain compared with the non-supplemented/infected birds. There were no significant differences in gut lesions between the Se-supplemented groups and the non-supplemented group. The antibody levels against α-toxin and NetB toxin increased with the increase between 0.25 Se mg/kg and 0.50 Se mg/kg. In the jejunal scrapings and spleen, the Se-supplementation groups up-regulated the transcripts for pro-inflammatory cytokines IL-1ß, IL-6, IL-8, iNOS, and LITAF and avian ß-defensin 6, 8, and 13 (AvBD6, 8 and 13). In conclusion, supplementation with organic yeast-derived Se alleviates the negative consequences and provides beneficial protection against experimental NE.


Assuntos
Ração Animal , Galinhas , Infecções por Clostridium , Clostridium perfringens , Citocinas , Suplementos Nutricionais , Enterite , Doenças das Aves Domésticas , Selênio , Animais , Enterite/prevenção & controle , Enterite/veterinária , Enterite/imunologia , Enterite/microbiologia , Selênio/farmacologia , Selênio/administração & dosagem , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Clostridium perfringens/imunologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Citocinas/metabolismo , Toxinas Bacterianas/imunologia , Necrose , beta-Defensinas/metabolismo , Jejuno/efeitos dos fármacos , Jejuno/imunologia , Jejuno/microbiologia , Jejuno/patologia , Baço/imunologia , Leveduras , Óxido Nítrico Sintase Tipo II/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Interleucina-1beta/metabolismo , Anticorpos Antibacterianos/sangue
5.
Fish Shellfish Immunol ; 149: 109618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729251

RESUMO

An eight-week feeding trial was designed to assess which component of commensal Bacillus siamensis LF4 can mitigate SBM-induced enteritis and microbiota dysbiosis in spotted seabass (Lateolabrax maculatus) based on TLRs-MAPKs/NF-кB signaling pathways. Fish continuously fed low SBM (containing 16 % SBM) and high SBM (containing 40 % SBM) diets were used as positive (FM group) and negative (SBM group) control, respectively. After feeding high SBM diet for 28 days, fish were supplemented with B. siamensis LF4-derived whole cell wall (CW), cell wall protein (CWP), lipoteichoic acid (LTA) or peptidoglycan (PGN) until 56 days. The results showed that a high inclusion of SBM in the diet caused enteritis, characterized with significantly (P < 0.05) decreased muscular thickness, villus height, villus width, atrophied and loosely arranged microvillus. Moreover, high SBM inclusion induced an up-regulation of pro-inflammatory cytokines and a down-regulation of occludin, E-cadherin, anti-inflammatory cytokines, apoptosis related genes and antimicrobial peptides. However, dietary supplementation with CW, LTA, and PGN of B. siamensis LF4 could effectively alleviate enteritis caused by a high level of dietary SBM. Additionally, CWP and PGN administration increased beneficial Cetobacterium and decreased pathogenic Plesiomonas and Brevinema, while dietary LTA decreased Plesiomonas and Brevinema, suggesting that CWP, LTA and PGN positively modulated intestinal microbiota in spotted seabass. Furthermore, CW, LTA, and PGN application significantly stimulated TLR2, TLR5 and MyD88 expressions, and inhibited the downstream p38 and NF-κB signaling. Taken together, these results suggest that LTA and PGN from B. siamensis LF4 could alleviate soybean meal-induced enteritis and microbiota dysbiosis in L. maculatus, and p38 MAPK/NF-κB pathways might be involved in those processes.


Assuntos
Ração Animal , Bacillus , Dieta , Disbiose , Enterite , Doenças dos Peixes , Microbioma Gastrointestinal , Glycine max , Lipopolissacarídeos , Peptidoglicano , Ácidos Teicoicos , Animais , Doenças dos Peixes/imunologia , Ração Animal/análise , Enterite/veterinária , Enterite/imunologia , Enterite/microbiologia , Disbiose/veterinária , Disbiose/imunologia , Bacillus/fisiologia , Bacillus/química , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta/veterinária , Glycine max/química , Lipopolissacarídeos/farmacologia , Ácidos Teicoicos/farmacologia , Peptidoglicano/farmacologia , Peptidoglicano/administração & dosagem , Bass/imunologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Suplementos Nutricionais/análise , Distribuição Aleatória
6.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710998

RESUMO

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Enterite , Variação Genética , Mastite Bovina , Leite , Filogenia , Animais , Clostridium perfringens/genética , Clostridium perfringens/isolamento & purificação , Clostridium perfringens/classificação , Clostridium perfringens/patogenicidade , Bovinos , Egito , Feminino , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Leite/microbiologia , Enterite/microbiologia , Enterite/veterinária , Mastite Bovina/microbiologia , Doenças dos Bovinos/microbiologia , Fezes/microbiologia , Fosfolipases Tipo C/genética , Indústria de Laticínios , Fazendas , Toxinas Bacterianas/genética
7.
World J Gastroenterol ; 30(19): 2603-2611, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38817661

RESUMO

BACKGROUND: The gut microbiota is strongly associated with radiation-induced gut damage. This study aimed to assess the effectiveness and safety of intestinal microecological transplantation for treating patients with chronic radiation enteritis. CASE SUMMARY: A 64-year-old female with cervical cancer developed abdominal pain, diarrhea, and blood in the stool 1 year after radiotherapy. An electronic colonoscopy was performed to diagnose chronic radiation enteritis. Two courses of intestinal microecological transplantation and full-length 16S rRNA microbiological analysis were performed. The patient experienced short- and long-term relief from symptoms without adverse effects. Whole 16S rRNA sequencing revealed significant differences in the intestinal flora's composition between patient and healthy donors. Pathogenic bacteria, such as Escherichia fergusonii and Romboutsia timonensis, were more in the patient. Beneficial bacteria such as Faecalibacterium prausnitzii, Fusicatenibacter saccharivorans, Ruminococcus bromii, and Bifidobacterium longum were more in the healthy donors. Intestinal microbiota transplantation resulted in a significant change in the patient's intestinal flora composition. The composition converged with the donor's flora, with an increase in core beneficial intestinal bacteria, such as Eubacterium rectale, and a decrease in pathogenic bacteria. Changes in the intestinal flora corresponded with the patients' alleviating clinical symptoms. CONCLUSION: Intestinal microecological transplantation is an effective treatment for relieving the clinical symptoms of chronic radiation enteritis by altering the composition of the intestinal flora. This study provides a new approach for treating patients with chronic radiation enteritis.


Assuntos
Enterite , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Lesões por Radiação , Neoplasias do Colo do Útero , Humanos , Feminino , Pessoa de Meia-Idade , Enterite/microbiologia , Enterite/diagnóstico , Enterite/etiologia , Enterite/terapia , Lesões por Radiação/diagnóstico , Lesões por Radiação/microbiologia , Lesões por Radiação/etiologia , Lesões por Radiação/cirurgia , Microbioma Gastrointestinal/efeitos da radiação , Transplante de Microbiota Fecal/métodos , Neoplasias do Colo do Útero/radioterapia , RNA Ribossômico 16S/genética , Resultado do Tratamento , Doença Crônica , Colonoscopia , Intestinos/microbiologia , Intestinos/efeitos da radiação , Fezes/microbiologia , Radioterapia/efeitos adversos
8.
Radiat Res ; 201(6): 572-585, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555945

RESUMO

Radiation enteritis is a common complication of abdominal and pelvic radiotherapy. Several previous studies showed that fecal microbiota transplantation (FMT) could alleviate radiation enteritis. In this study, we investigated the efficacy of FMT in alleviating radiation enteritis and explored the mechanisms by multi-omics approaches. Briefly, C57BL/6J mice were subjected to 9 Gy irradiation to the localized abdominal field, and randomized received FMT from healthy donor mice or saline. H&E staining of harvested small intestine showed FMT decreased epithelial injury. Radiation-induced microbiota dysbiosis, characterized by a decrease in beneficial bacteria Lactobacillaceae and Lachnospiraceae, while these bacteria were restored by FMT. Fecal metabolomics analysis revealed that FMT modulated metabolic dysregulation. Two tryptophan pathway metabolites, indole-3-acetaldehyde and N-Acetyl-5-hydroxytryptamine were decreased after irradiation, whereas these metabolites showed a pronounced recovery in mice receiving FMT. Proteomics analysis of small intestine indicated that radiation enteritis triggered immune-inflammatory responses, which were potentially mitigated by FMT. In 21 patients receiving pelvic radiotherapy for cervical cancer, those who developed enteritis (n = 15) had higher abundance in Lachnospiraceae. Moreover, Indole-3-acetaldehyde was reduced after irradiation. These findings provide insights into the therapeutic effects of FMT in radiation enteritis and highlight Lachnospiraceae and the tryptophan metabolite, Indole-3-acetaldehyde may protect against radiation enteritis.


Assuntos
Enterite , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Triptofano , Animais , Triptofano/metabolismo , Enterite/terapia , Enterite/metabolismo , Enterite/microbiologia , Enterite/etiologia , Microbioma Gastrointestinal/efeitos da radiação , Camundongos , Feminino , Humanos , Lesões por Radiação/terapia , Lesões por Radiação/metabolismo , Lesões por Radiação/microbiologia , Masculino
9.
Res Vet Sci ; 172: 105241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555776

RESUMO

Necrotic enteritis caused by Clostridium perfringens (CP), is a common enteric disease of poultry that has been previously controlled by in-feed antibiotics. However, due to the rapid emergence of antimicrobial resistance, alternatives to antibiotics such as probiotics have received considerable attention because of their immunomodulatory and intestinal health benefits. The present study investigated the effects of probiotic lactobacilli on gut histomorphology and intestinal innate responses in chickens. Day-old male broiler chickens were treated with 1 × 107 or 1 × 108 colony-forming units (CFU) of a lactobacilli cocktail on days 1, 7, 14, and 20 post-hatch, while control groups were not treated with lactobacilli. On day 21, birds in all groups (except the negative control) were challenged with 3 × 108 CFU of CP for 3 days. Intestinal tissue samples were collected before and after the CP challenge to assess gene expression and for histomorphological analysis. Lactobacilli treatment at a dose of 1 × 108 CFU conferred partial protection against NE by lowering lesion scores, increasing villus height in the ileum and reducing crypt depth in the jejunum. In addition, 1 × 108 CFU of lactobacilli enhanced the expression of Toll-like receptor (TLR) 2, interferon-gamma (IFN-γ), interleukin (IL)-10, IL-12, and IL-13 in both the jejunum and ileum at different timepoints and subsequently decreased the expression of transforming growth factor beta (TGF-ß) and IL-1ß post-CP challenge. In conclusion, the results indicate that treatment with lactobacilli mitigated NE in a dose-dependent manner via improvement of intestinal morphology and modulation of innate immune response in chickens.


Assuntos
Galinhas , Infecções por Clostridium , Clostridium perfringens , Imunidade Inata , Lactobacillus , Doenças das Aves Domésticas , Probióticos , Animais , Galinhas/imunologia , Galinhas/microbiologia , Clostridium perfringens/fisiologia , Masculino , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Infecções por Clostridium/terapia , Infecções por Clostridium/microbiologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/imunologia , Probióticos/administração & dosagem , Probióticos/farmacologia , Intestinos/microbiologia , Enterite/veterinária , Enterite/microbiologia , Enterite/imunologia
10.
Poult Sci ; 103(5): 103599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479098

RESUMO

Chickens have undergone genetic improvements in the past few decades to maximize growth efficiency. However, necrotic enteritis (NE), an enteric disease primarily caused by C. perfringens, remains a significant problem in poultry production. A study investigated the differences in intestinal health between the nonselected meat-type chicken Athens Canadian Random Bred (ACRB) and the modern meat-type Cobb 500 broilers (Cobb) when challenged with experimental NE. The study utilized a 2 × 3 factorial arrangement, consisting of two main effects of chicken strain and NE challenge model (nonchallenged control, NC; NE challenge with 2,500/12,500 Eimeria maxima oocysts + 1 × 109C. perfringens, NE2.5/NE12.5). A total of 432 fourteen-day-old male ACRB and Cobb were used until 22 d (8 d postinoculation with E. maxima on d 14, dpi), and the chickens were euthanized on 6 and 8 dpi for the analysis. All data were statistically analyzed using a two-way ANOVA, and Student's t-test or Tukey's HSD test was applied when P < 0.05. The NE12.5 group showed significant decreases in growth performance and relative growth performance from d 14 to 20, regardless of chicken strain (P < 0.01). The ACRB group exhibited significant decreases in relative body weight and relative body weight gain compared to the Cobb group from d 14 to 22 (P < 0.01). On 6 and 8 dpi, both NE challenge groups showed significant decreases in intestinal villus height to crypt depth ratio, jejunal goblet cell count, and jejunal MUC2 and LEAP2 expression (P < 0.01). Additionally, the NE12.5 group had significantly higher intestinal NE lesion score, intestinal permeability, fecal E. maxima oocyst count, intestinal C. perfringens count, and jejunal IFNγ and CCL4 expression compared to the NC group (P < 0.05). In conclusion, NE negatively impacts growth performance and intestinal health in broilers, parameters regardless of the strain.


Assuntos
Galinhas , Coccidiose , Eimeria , Enterite , Doenças das Aves Domésticas , Animais , Galinhas/crescimento & desenvolvimento , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/microbiologia , Enterite/veterinária , Enterite/parasitologia , Enterite/microbiologia , Masculino , Coccidiose/veterinária , Coccidiose/parasitologia , Eimeria/fisiologia , Clostridium perfringens/fisiologia , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Necrose/veterinária , Intestinos
11.
Poult Sci ; 103(5): 103661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547540

RESUMO

This study investigated the effects of Bacillus subtilis HW2 on the growth performance, immune response, endoplasmic reticulum (ER) stress, and intestinal health in broilers with necrotic enteritis. Three hundred 1-day-old male Cobb 500 broilers (33.88 ± 2.34 g) were randomly allocated to 5 groups including non-infected control (NC group), basal diet + necrotic enteritis challenge (NE group), basal diet + 1 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (L-Pro group), basal diet + 5 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (M-Pro group), and basal diet + 1 × 107 CFU/g B. subtilis HW2 + necrotic enteritis challenge (H-Pro group), with 6 replicates per group. All broilers except NC group were orally given with sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. Results showed that L-Pro and M-Pro groups improved growth performance and intestinal morphology in necrotic enteritis-challenged broilers, and L-Pro, M-Pro, and H-Pro groups improved intestinal barrier function and immune response and decreased ER stress in necrotic enteritis-challenged broilers. Analysis of the gut microbiota revealed that L-Pro group increased the abundances of Alistipes, Coprobacter, Barnesiella, and Limosilactobacillus, decreased Erysipelatoclostridium abundance on day 42 in necrotic enteritis-challenged broilers. M-Pro group increased Turicibacter abundance on day 28 and the abundances of Alistipes, Barnesiella, and Limosilactobacillus on day 42 in necrotic enteritis-challenged broilers. H-Pro group decreased Romboutsia abundance on day 28 and unidentified_Clostridia abundance on day 42 in necrotic enteritis-challenged broilers. Analysis of short-chain fatty acids (SCFAs) revealed higher isobutyric acid and isovaleric acid levels in L-Pro and M-Pro groups than NE group. Correlation analysis revealed the correlations between the biochemical parameters and gut microbiota as well as SCFAs, especially Romboutsia, Barnesiella, Coprobacter, isobutyric acid, and isovaleric acid. Overall, our results indicated that B. subtilis HW2 supplementation could ameliorate necrotic enteritis infection-induced gut injury. The optimal dietary supplementation dosage of Bacillus subtilis HW2 was 5 × 106 CFU/g.


Assuntos
Ração Animal , Bacillus subtilis , Galinhas , Infecções por Clostridium , Estresse do Retículo Endoplasmático , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Probióticos , Animais , Galinhas/crescimento & desenvolvimento , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças das Aves Domésticas/microbiologia , Bacillus subtilis/química , Bacillus subtilis/fisiologia , Enterite/veterinária , Enterite/microbiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Probióticos/administração & dosagem , Probióticos/farmacologia , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Ração Animal/análise , Distribuição Aleatória , Clostridium perfringens/fisiologia , Dieta/veterinária , Necrose/veterinária
13.
Am J Pathol ; 194(6): 975-988, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423356

RESUMO

Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.


Assuntos
Enterite , Microbioma Gastrointestinal , Células Caliciformes , Homeostase , Camundongos Knockout , Animais , Enterite/microbiologia , Enterite/metabolismo , Enterite/patologia , Camundongos , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Humanos , Proteínas Associadas a Pancreatite/metabolismo , Mucina-2/metabolismo , Disbiose/microbiologia , Disbiose/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fator Trefoil-3/metabolismo , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Lesões por Radiação/microbiologia , Lesões por Radiação/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/microbiologia
14.
J Transl Med ; 22(1): 80, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243294

RESUMO

BACKGROUND: Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS: This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS: Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION: Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.


Assuntos
Infecções por Clostridium , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Humanos , Animais , Clostridium perfringens/genética , Galinhas/genética , RNA Ribossômico 16S/genética , Disbiose , Jejuno/química , Jejuno/patologia , Enterite/microbiologia , Enterite/patologia , Enterite/veterinária , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia
15.
Am J Clin Oncol ; 47(5): 246-252, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193365

RESUMO

Chronic diarrhea and abdominal pain after radiotherapy continue to be a problem in cancer survivors. Gut microbiomes are essential for preventing intestinal inflammation, maintaining intestinal integrity, maintaining enterohepatic circulation, regulating bile acid metabolism, and absorption of nutrients, including fat-soluble vitamins. Gut microbiome dysbiosis is expected to cause inflammation, bile acid malabsorption, malnutrition, and associated symptoms. Postradiotherapy, Firmicutes and Bacteroidetes phylum are significantly decreased while Fusobacteria and other unclassified bacteria are increased. Available evidence suggests harmful bacteria Veillonella, Erysipelotrichaceae, and Ruminococcus are sensitive to Metronidazole or Ciprofloxacin. Beneficial bacteria lactobacillus and Bifidobacterium are relatively resistant to metronidazole. We hypothesize and provide an evidence-based review that short-course targeted antibiotics followed by specific probiotics may lead to alleviation of radiation enteritis.


Assuntos
Antibacterianos , Enterite , Microbioma Gastrointestinal , Probióticos , Humanos , Probióticos/uso terapêutico , Enterite/microbiologia , Enterite/etiologia , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Lesões por Radiação/microbiologia , Lesões por Radiação/etiologia , Doença Crônica , Radioterapia/efeitos adversos , Disbiose/microbiologia
16.
Front Immunol ; 14: 1301980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022592

RESUMO

Necrotic enteritis is an important enteric disease of poultry that can be controlled with in-feed antibiotics. However, with the concerns over antimicrobial resistance, there is an increased interest in the use of alternatives. Probiotics are one of the alternatives that have gained considerable attention due to their antimicrobial and immunomodulatory activities. Therefore, in the present study, we evaluated the effects of two different Lactobacillus species alone or as a cocktail on prevention of necrotic enteritis. Day-old male broiler chickens were divided into five groups and on days 1, 8, 15, and 22, birds in groups 2 and 3 received 1×108 colony forming units (CFU) of L. johnsonii and L. reuteri, respectively. Group 4 received probiotic cocktails containing both bacteria (108 CFU/bird) and the negative and positive control groups did not receive any lactobacilli. Starting on day 23 post-hatch, birds in all groups (except the negative control group) were orally challenged twice per day with 3×108 CFU of a pathogenic C. perfringens strain for 3 days. Tissue and cecal samples were collected before and after challenge to assess gene expression, lymphocyte subsets determination, and microbiome analysis. On day 26 of age, lesion scoring was performed. The results demonstrated that the group that received the lactobacilli cocktail had significantly reduced lesion scores compared to the positive control group. In addition, the expression of interleukin (IL)-12 in the jejunum and CXC motif chemokine ligand 8 (CXCL8), IL-13, and IL-17 in the ileum were downregulated in the group that received the lactobacilli cocktail when compared to the positive control. Treating chickens with the lactobacilli cocktail prior to challenge enhanced the percentage of CD3-CD8+ cells and Bu-1+IgY+ B cells in the ileum and increased the frequency of monocyte/macrophages, CD3-CD8+ cells, Bu-1+IgM+, and Bu-1+IgY+ B cells in the jejunum. Treatment with the lactobacilli cocktail reduced the relative expression of Gamma-Protobacteria and Firmicutes compared to the positive control group. In conclusion, the results presented here suggest that treatment with the lactobacilli cocktail containing L. johnsonii and L. reuteri reduced necrotic enteritis lesions in the small intestine of chickens, possibly through the modulation of immune responses.


Assuntos
Infecções por Clostridium , Enterite , Animais , Masculino , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Enterite/prevenção & controle , Enterite/veterinária , Enterite/microbiologia , Galinhas/microbiologia , Lactobacillus , Clostridium perfringens/fisiologia , Antibacterianos
17.
Poult Sci ; 102(10): 102978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598553

RESUMO

Due to the removal of antibiotics from animal feed, alternatives have been sought to control necrotic enteritis (NE) in broilers. The current study investigated the effects of buffered formic acid (Amasil NA) and monoglycerides of short- and medium-chain fatty acids (Balangut LS P) on the performance and gut health of broilers challenged with NE. A total of 816 as-hatched 1-d-old chicks (Cobb 500) were randomly assigned to 6 treatments with 8 replicates. Treatments were: T1) nonchallenged control; T2) NE challenged control; T3) Amasil NA (challenge plus Amasil NA, 0.3% throughout all phases); T4) Balangut LS P (challenge plus Balangut LS P, 0.5%, 0.3%, and 0.2% in the starter, grower and finisher phases, respectively; T5) Combined (challenge plus combination of T3 and T4); T6) Antibiotic (challenge plus Zn bacitracin, 0.05 % throughout all phases). Birds were orally gavaged with live Eimeria vaccine species (d 9) and with Clostridium perfringens (d 14 and 15). On d 16, birds were sampled to evaluate gut permeability, microbiota, and mRNA abundance in the jejunum. The data were analyzed in JMP software using one-way ANOVA with Tukey's test to separate means, and Kruskal-Wallis test was used for non-normally-distributed parameters. Results showed that Balangut LS P decreased (P<0.05) feed conversion ratio compared to nonchallenged ones at the end of the study. Balangut LS P reduced (P < 0.05) the level of cecal Bacteriods compared to nonchallenged group, whereas Amasil NA shifted the levels of ileal Bifidobacteria, Enterobacteriaceae, and Lactobacillus towards nonchallenged control (P > 0.05). NE challenge upregulated (P < 0.001) the expression of IL-21R, zeta chain of T cell receptor (ZAP70), and dual specificity phosphatase 4 (DUSP4) compared to nonchallenged birds, whereas Balangut LS P showed an intermediate (P > 0.05) expression pattern of these genes towards nonchallenged and antibiotic groups. In conclusion, combination of Balangut LS P and Amasil NA has the potential to be used as an additive to improve the performance and gut health of broiler chickens, especially under challenging conditions such as NE infections.


Assuntos
Infecções por Clostridium , Coccidiose , Eimeria , Enterite , Doenças das Aves Domésticas , Animais , Galinhas , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Coccidiose/prevenção & controle , Coccidiose/veterinária , Enterite/microbiologia , Enterite/veterinária , Monoglicerídeos , Doenças das Aves Domésticas/microbiologia , Clostridium perfringens , Formiatos , Expressão Gênica , Ração Animal/análise
18.
Avian Dis ; 67(2): 197-201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37556299

RESUMO

The carcass of a 4-mo-old, female, mixed-breed backyard chicken was submitted for postmortem evaluation and diagnostic workup. The bird was previously presented to a veterinary clinic because of chronic weight loss and loose stool, and was euthanized before submission to the California Animal Health and Food Safety, Turlock lab. On gross examination, the proventriculus, gizzard, and duodenum were markedly distended and impacted with a mixture of fibrous plant material, cereal grain, and litter material. The koilin layer of the gizzard was eroded. There were multifocal to coalescing, 0.2-1-cm diameter white nodules on the serosal surface of the duodenal loop and lesions extended into the distal jejunum. The duodenum had multifocal, transmural, umbilicated, and ulcerated mucosal lesions, which were covered with a white pseudomembrane. Microscopically, there was segmental, transmural necrosis of the intestinal wall with diffuse sloughing of villi epithelium and accumulation of fibrino-hemorrhagic exudate with numerous bacterial colonies in the lumen. The gross and microscopic findings were indicative of gastrointestinal impaction and necrotic enteritis. Proliferation of Clostridium perfringens within the intestine was demonstrated by anaerobic bacterial culture, intestinal gram stains, and immunohistochemistry. The C. perfringens isolate was type F (encoding the gene for alpha toxin -cpa- and for enterotoxin -cpe) by PCR toxinotyping. Overgrowth of C. perfringens was likely exacerbated by the rough fibrous forage and highly fermentable grain diet. To our knowledge, gastrointestinal impaction concurrent with necrotic enteritis has not been described in backyard chickens. In addition, to our knowledge, C. perfringens type F has not been associated with necrotic enteritis in chickens.


Reporte de caso- Impactación gastrointestinal y enteritis necrótica en un pollo de traspatio. Para realizar una evaluación post mortem y estudios de diagnóstico, se recibió un pollo de traspatio muerto, hembra, de raza mixta y de cuatro meses de edad. El ave fue presentada previamente a una clínica veterinaria debido a la pérdida de peso crónica y heces acuosas y fue sacrificada antes de ser enviada al Laboratorio de Salud Animal y Seguridad Alimentaria de California con sede en Turlock. En el examen macroscópico, el proventrículo, la molleja y el duodeno estaban marcadamente distendidos e impactados con una mezcla de material vegetal fibroso, granos de cereal y material de hojarasca. La capa de koilin de la molleja estaba erosionada. Había nódulos blancos de 0.2 a 1 cm de diámetro, multifocales a coalescentes, en la superficie serosa del asa duodenal y las lesiones se extendían hacia el yeyuno distal. El duodeno presentaba lesiones mucosas multifocales, transmurales, umbilicadas y ulceradas, las cuales estaban cubiertas por una pseudomembrana blanca. Microscópicamente, había necrosis transmural segmentaria de la pared intestinal con desprendimiento difuso del epitelio de las vellosidades y acumulación de exudado fibrino-hemorrágico con numerosas colonias bacterianas en el lumen. Los hallazgos macroscópicos y microscópicos fueron indicativos de impactación gastrointestinal y enteritis necrótica. La proliferación de Clostridium perfringens dentro del intestino se demostró mediante cultivo de bacterias anaerobias, tinciones de Gram intestinales e inmunohistoquímica. El aislado de C. perfringens fue tipo F (que codifica el gene de la toxina alfa ­cpa- y de la enterotoxina ­cpe) por tipificación de toxina mediante PCR. El crecimiento excesivo de C. perfringens probablemente fue exacerbado por el forraje áspero y fibroso y la dieta de granos altamente fermentables. Hasta donde se conoce, la impactación gastrointestinal concurrente con enteritis necrótica no se ha descrito en pollos de traspatio. Además, hasta donde se sabe, C. perfringens tipo F no se ha asociado con enteritis necrótica en pollos.


Assuntos
Infecções por Clostridium , Enterite , Doenças das Aves Domésticas , Animais , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Galinhas , Enterite/microbiologia , Enterite/veterinária , Doenças das Aves Domésticas/microbiologia , Clostridium perfringens , Necrose/veterinária , Necrose/patologia
19.
Avian Pathol ; 52(5): 309-322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37485826

RESUMO

The poultry industry has been facing the impact of necrotic enteritis (NE), a disease caused by the bacterium Clostridium perfringens producing the haemolytic toxin NetB. NE severity may vary from mild clinical to prominent enteric signs causing reduced growth rates and affecting feed conversion ratio. NetB production is controlled by the Agr-like quorum-sensing (QS) system, which coordinates virulence gene expression in response to bacterial cell density. In this study, the peptide-containing cell-free spent media (CFSM) from Enterococcus faecium was tested in NE challenged broilers in two battery cage and one floor pen studies. Results showed a significant reduction of NE mortality. Metagenomic sequencing of the jejunum microbiome revealed no impact of the CFSM on the microbial community, and growth of C. perfringens was unaffected by CFSM in vitro. The expression of QS-controlled virulence genes netB, plc and pfoA was found to be significantly repressed by CFSM during the mid-logarithmic stage of C. perfringens growth and this corresponded with a significant decrease in haemolytic activity. Purified fractions of CFSM containing bioactive peptides were found to cause reduced haemolysis. These results showed that bioactive peptides reduce NE mortality in broilers by interfering with the QS system of C. perfringens and reducing bacterial virulence. Furthermore, the microbiome of C. perfringens-challenged broilers is not affected by quorum sensing inhibitor containing CFSM.


Assuntos
Toxinas Bacterianas , Infecções por Clostridium , Enterite , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Animais , Toxinas Bacterianas/metabolismo , Enterotoxinas/metabolismo , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Galinhas/microbiologia , Enterite/veterinária , Enterite/microbiologia , Clostridium perfringens/genética , Água/metabolismo , Doenças das Aves Domésticas/microbiologia
20.
J Sci Food Agric ; 103(14): 6958-6965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37309567

RESUMO

BACKGROUND: Bacillus licheniformis is a gram-positive bacterium that has strong environmental adaptability and can improve the growth performance, immunity, and antioxidant function of broilers. The current study aimed to elucidate the protective capability of B. licheniformis against inflammatory responses and intestinal barrier damage in broilers with necrotic enteritis (NE) induced by Clostridium perfringens (CP). RESULTS: The results showed that B. licheniformis enhanced the final body weight in broilers compared with that of broilers in the CP group after the stress of infection (P < 0.05). Bacillus licheniformis reversed the decreased levels of serum and jejunum mucosa immunoglobulins and anti-inflammatory cytokines, reduced the values of villus height and the ratio of villus height to crypt depth, and mitigated the increased levels of serum d-lactic acid and diamine oxidase in CP-challenged broilers (P < 0.05). Moreover, B. licheniformis modulated the expression levels of genes involved in the TLR4/NF-κB signalling pathway, the NLRP3 inflammasome activation pathway, and the sirt 1/Parkin signalling pathway in CP-challenged broilers. Compared with the CP challenge group, the B. licheniformis-treated group exhibited reduced abundance values of Shuttleworthia and Alistipes and enhanced abundance values of Parabacteroides in the caecal contents (P < 0.05). CONCLUSION: Bacillus licheniformis improved the final body weight and alleviated the inflammatory response and intestinal barrier function damage in birds with NE induced by CP by maintaining intestinal physiological function, enhancing immunity, regulating inflammatory cytokine secretion, modulating the mitophagy response, and increasing the abundance of beneficial intestinal flora. © 2023 Society of Chemical Industry.


Assuntos
Bacillus licheniformis , Infecções por Clostridium , Enterite , Doenças das Aves Domésticas , Animais , Clostridium perfringens/fisiologia , Galinhas , Bacillus licheniformis/genética , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Enterite/prevenção & controle , Enterite/veterinária , Enterite/microbiologia , Peso Corporal , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...