Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.458
Filtrar
1.
Geobiology ; 22(5): e12617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295594

RESUMO

The increased difference in the sulfur isotopic compositions of sedimentary sulfate (carbonate-associated sulfate: CAS) and sulfide (chromium-reducible sulfur: CRS) during the Ediacaran Shuram excursion is attributed to increased oceanic sulfate concentration in association with the oxidation of the global ocean and atmosphere. However, recent studies on the isotopic composition of pyrites have revealed that CRS in sediments has diverse origins of pyrites. These pyrites are formed either in the water column/shallow sediments, where the system is open with respect to sulfate, or in deep sediments, where the system is closed with respect to sulfate. The δ34S value of sulfate in the open system is equal to that of seawater; on the contrary, the δ34S value of sulfate in the closed system is higher than that of seawater. Therefore, obtaining the isotopic composition of pyrites formed in an open system, which most likely retain microbial sulfur isotope fractionation, is essential to reconstruct the paleo-oceanic sulfur cycle. In this study, we carried out multiple sulfur isotope analyses of CRS and mechanically separated pyrite grains (>100 µm) using a fluorination method, in addition to secondary ion mass spectrometry (SIMS) analyses of in situ δ34S values of pyrite grains in drill core samples of Member 3 of the Ediacaran Doushantuo Formation in the Three Gorges area, South China. The isotope fractionation of microbial sulfate reduction (MSR) in the limestone layers of the upper part of Member 3 was calculated to be 34ε = 55.7‰ and 33λ = 0.5129 from the δ34S and Δ33S' values of medium-sized pyrite grains ranging from 100 to 300 µm and the average δ34S and Δ33S' values of CAS. Model calculations revealed that the influence of sulfur disproportionation on the δ34S values of these medium-sized pyrite grains was insignificant. In contrast, within the dolostone layers of the middle part of Member 3, isotope fractionation was determined to be 34ε = 47.5‰. The 34ε value in the middle part of Member 3 was calculated from the average δ34S values of the rim of medium-sized pyrite grains and the average δ34S values of CAS. This observation revealed an increase in microbial sulfur isotope fractionation during the Shuram excursion at the drill core site. Furthermore, our investigation revealed correlations between δ34SCRS values and CRS concentrations and between CRS and TOC concentrations, implying that organic matter load to sediments controlled the δ34SCRS values rather than oceanic sulfate concentrations. However, these CRS and TOC concentrations are local parameters that can change only at the kilometer scale with local redox conditions and the intensity of primary production. Therefore, the decreasing δ34SCRS values likely resulted from local redox conditions and not from a global increase in the oceanic sulfate concentration.


Assuntos
Sedimentos Geológicos , Isótopos de Enxofre , Enxofre , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , China , Isótopos de Enxofre/análise , Enxofre/análise , Enxofre/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Sulfetos/análise , Sulfetos/metabolismo , Sulfatos/análise , Sulfatos/metabolismo , Oceanos e Mares , Ferro
2.
J Environ Manage ; 368: 122281, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39191053

RESUMO

The groundwater quality in the vicinity of the Makum coalfield, renowned for its high-sulfur coal deposits, was investigated. The oxidation of sulfur in the coal generates acid mine drainage (AMD), a global environmental challenge that contaminates natural resources. The region's high sulfur coal content intensifies AMD formation, necessitating a comprehensive assessment of its impact on human health and the environment. This study analyzes the water quality parameters such as pH, EC, TDS, Na+, Ca+2, Mg+2, K+, HCO3-, SO4-2, F-, Cl -, and NO3- in groundwater, findings concerning low pH levels (5.8) and fluoride concentration (0.15 mg/L) compared to standards. Groundwater chemistry was analyzed to identify the sources controlling water composition through Gibbs diagrams, Piper diagrams, and saturation indices. The Gibbs diagram shows that rock weathering is the crucial factor controlling groundwater chemistry, while the Piper diagram indicates Ca-Cl as the Principal water type. Additionally, an in-depth analysis of groundwater chemistry reveals that carbonate dissolution primarily occurs due to minerals like calcite, dolomite, and gypsum, findings supported by saturation indices. The present study yielded an average water quality index of 40.19, indicating excellent to good water quality in 51 out of 52 samples analyzed. The average hazard index values for adults and children were 0.60 and 0.58, respectively, indicating that 49 of 52 samples pose negative non-carcinogenic risks associated with nitrate and fluoride contamination. The irrigation indices, graphical representations such as the Wilcox and Doneen classification, and the USSL diagram elucidate the suitability for irrigation purposes. Moreover, the Principal Component Analysis identified the sources of ions as originating from geogenic processes and mining activities. The study stresses environmental assessments, health risk management, and sustainable practices for groundwater in high-sulfur coal mining areas.


Assuntos
Minas de Carvão , Água Subterrânea , Enxofre , Qualidade da Água , Água Subterrânea/química , Índia , Medição de Risco , Enxofre/análise , Humanos , Poluentes Químicos da Água/análise , Carvão Mineral , Monitoramento Ambiental
3.
Sci Total Environ ; 950: 175273, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111416

RESUMO

Northern peatlands are important carbon pools; however, differences in the structure and function of microbiomes inhabiting contrasting geochemical zones within these peatlands have rarely been emphasized. Using 16S rRNA gene sequencing, metagenomic profiling, and detailed geochemical analyses, we investigated the taxonomic composition and genetic potential across various geochemical zones of a typical northern peatland profile in the Changbai Mountains region (Northeastern China). Specifically, we focused on elucidating the turnover of organic carbon, sulfur (S), nitrogen (N), and methane (CH4). Three geochemical zones were identified and characterized according to porewater and solid-phase analyses: the redox interface (<10 cm), shallow peat (10-100 cm), and deep peat (>100 cm). The redox interface and upper shallow peat demonstrated a high availability of labile carbon, which decreased toward deeper peat. In deep peat, anaerobic respiration and methanogenesis were likely constrained by thermodynamics, rather than solely driven by available carbon, as the acetate concentrations reached 90 µmol·L-1. Both the microbial community composition and metabolic potentials were significantly different (p < 0.05) among the redox interface, shallow peat, and deep peat. The redox interface demonstrated a close interaction between N, S, and CH4 cycling, mainly driven by Thermodesulfovibrionia, Bradyrhizobium, and Syntrophorhabdia metagenome-assembled genomes (MAGs). The archaeal Bathyarchaeia were indicated to play a significant role in the organic carbon, N, and S cycling in shallow peat. Although constrained by anaerobic respiration and methanogenesis, deep peat exhibited a higher metabolic potential for organic carbon degradation, primarily mediated by Acidobacteriota. In terms of CH4 turnover, subsurface peat (10-20 cm) was a CH4 production hotspot, with a net turnover rate of ∼2.9 nmol·cm-3·d-1, while the acetoclastic, hydrogenotrophic, and methylotrophic methanogenic pathways all potentially contributed to CH4 production. The results of this study improve our understanding of biogeochemical cycles and CH4 turnover along peatland profiles.


Assuntos
Metano , Microbiota , Microbiologia do Solo , China , Metano/metabolismo , Metano/análise , RNA Ribossômico 16S , Solo/química , Áreas Alagadas , Carbono/análise , Nitrogênio/análise , Bactérias/classificação , Enxofre/metabolismo , Enxofre/análise , Archaea/classificação
4.
Environ Sci Process Impacts ; 26(9): 1503-1515, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39101370

RESUMO

Reductions in sulfur (S) atmospheric deposition in recent decades have been attributed to S deficiencies in crops. Similarly, global soil selenium (Se) concentrations were predicted to drop, particularly in Europe, due to increases in leaching attributed to increases in aridity. Given its international importance in agriculture, reductions of essential elements, including S and Se, in European soils could have important impacts on nutrition and human health. Our objectives were to model current soil S and Se levels in Europe and predict concentration changes for the 21st century. We interrogated four machine-learning (ML) techniques, but after critical evaluation, only outputs for linear support vector regression (Lin-SVR) models for S and Se and the multilayer perceptron model (MLP) for Se were consistent with known mechanisms reported in literature. Other models exhibited overfitting even when differences in training and testing performance were low or non-existent. Furthermore, our results highlight that similarly performing models based on RMSE or R2 can lead to drastically different predictions and conclusions, thus highlighting the need to interrogate machine learning models and to ensure they are consistent with known mechanisms reported in the literature. Both elements exhibited similar spatial patterns with predicted gains in Scandinavia versus losses in the central and Mediterranean regions of Europe, respectively, by the end of the 21st century for an extreme climate scenario. The median change was -5.5% for S (Lin-SVR) and -3.5% (MLP) and -4.0% (Lin-SVR) for Se. For both elements, modeled losses were driven by decreases in soil organic carbon, S and Se atmospheric deposition, and gains were driven by increases in evapotranspiration.


Assuntos
Monitoramento Ambiental , Aprendizado de Máquina , Selênio , Solo , Enxofre , Selênio/análise , Europa (Continente) , Solo/química , Enxofre/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Modelos Químicos
5.
Environ Geochem Health ; 46(10): 406, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212763

RESUMO

The Qinghai-Tibet Plateau is particularly vulnerable to the effects of climate change and disturbances caused by human activity. To better understand the interactions between soil nitrogen and sulfur cycles and human activities on the plateau, the distribution characteristics of soil nitrogen and sulfur density and their influencing factors for three soil layers in Machin County at depths of 0-20 cm, 0-100 cm, and 0-180 cm are discussed in this paper. The results indicated that at depths of 0-180 cm, soil nitrogen density in Machin County varied between 1.36 and 16.85 kg/m2, while sulfur density ranged from 0.37 to 4.61 kg/m2. The effects of three factors-geological background, land use status, and soil type-on soil nitrogen and sulfur density were all highly significant (p < 0.01). Specifically, natural factors such as soil type and geological background, along with anthropogenic factors including land use practices and grazing intensity, were identified as decisive in causing spatial variations in soil nitrogen and sulfur density. Machin County on the Tibetan Plateau exhibits natural nitrogen and sulfur sinks; However, it is crucial to monitor the emissions of N2O and SO2 into the atmosphere from areas with high external nitrogen and sulfur inputs and low fertility retention capacities, such as bare land. On this basis, changes in the spatial and temporal scales of the nitrogen and sulfur cycles in soils and their source-sink relationships remain the focus of future research.


Assuntos
Gases de Efeito Estufa , Nitrogênio , Solo , Enxofre , Solo/química , Nitrogênio/análise , Gases de Efeito Estufa/análise , Enxofre/análise , Tibet , Monitoramento Ambiental , Mudança Climática
6.
Environ Res ; 260: 119609, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002626

RESUMO

Sulphur Emission Control Areas (SECAs), mandated by the International Maritime Organization (IMO), regulate fuel sulphur content (FSC) to mitigate the environmental and health impact of shipping emissions in coastal areas. Currently, FSC is limited to 0.1% (w/w) within and 0.5% (w/w) outside SECAs, with exceptions for ships employing wet sulphur scrubbers. These scrubbers enable vessels using non-compliant fuels such as high-sulphur heavy fuel oils (HFOs) to enter SECAs. However, while sulphur reduction via scrubbers is effective, their efficiency in capturing other potentially harmful gases remains uncertain. Moreover, emerging compliant fuels like highly aromatic fuels or low-sulphur blends lack characterisation and may pose risks. Over three years, we assessed emissions from an experimental marine engine at 25% and 75% load, representative of manoeuvring and cruising, respectively. First, characterizing emissions from five different compliant and non-compliant fuels (marine gas oil MGO, hydro-treated vegetable oil HVO, high-, low- and ultra-low sulphur HFOs), we calculated emission factors (EF). Then, the wet scrubber gas-phase capture efficiency was measured using compliant and non-compliant HFOs. NOx EF varied among fuels (5200-19700 mg/kWh), with limited scrubber reduction. CO (EF 750-13700 mg/kWh) and hydrocarbons (HC; EF 122-1851 mg/kWh) showed also insufficient abatement. Carcinogenic benzene was notably higher at 25% load and about an order of magnitude higher with HFOs compared to MGO and HVO, with no observed scrubber reduction. In contrast, carbonyls such as carcinogenic formaldehyde and acetaldehyde, acting as ozone precursors, were effectively scrubbed due to their polarity and water solubility. The ozone formation potential (OFP) of all fuels was examined. Significant EF differences between fuels and engine loads were observed, with the wet scrubber providing limited or no reduction of gaseous emissions. We suggest enhanced regulations and emission abatements in the marine sector to mitigate gaseous pollutants harmful to human health and the environment.


Assuntos
Poluentes Atmosféricos , Ozônio , Navios , Emissões de Veículos , Poluentes Atmosféricos/análise , Ozônio/análise , Emissões de Veículos/análise , Óleos Combustíveis/análise , Enxofre/análise
7.
Talanta ; 279: 126515, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024854

RESUMO

The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.


Assuntos
Corantes Fluorescentes , Enxofre , Corantes Fluorescentes/química , Enxofre/química , Enxofre/análise , Humanos , Animais
8.
J Hazard Mater ; 474: 134832, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852245

RESUMO

Acid mine drainage and sediments (AMD-Sed) contamination pose serious ecological and environmental problems. This study investigated the geochemical parameters and bacterial communities in the sediment layer (A) and buried soil layer (B) of desert grassland contaminated with AMD-Sed and compared them to an uncontaminated control soil layer (CK). The results showed that soil pH was significantly lower and iron, sulfur, and electroconductivity levels were significantly higher in the B layer compared to CK. A and B were dominated by Proteobacteria and Actinobacteriota, while CK was dominated by Firmicutes and Bacteroidota. The pH, Fe, S, and potentially toxic elements (PTEs) gradients were key influences on bacterial community variability, with AMD contamination characterization factors (pH, Fe, and S) explaining 48.6 % of bacterial community variation. A bacterial co-occurrence network analysis showed that AMD-Sed contamination significantly affected topological properties, reduced network complexity and stability, and increased the vulnerability of desert grassland soil ecosystems. In addition, AMD-Sed contamination reduced C/N-cycle functioning in B, but increased S-cycle functioning. The results highlight the effects of AMD-Sed contamination on soil bacterial communities and ecological functions in desert grassland and provide a reference basis for the management and restoration of desert grassland ecosystems in their later stages.


Assuntos
Bactérias , Clima Desértico , Sedimentos Geológicos , Pradaria , Mineração , Microbiologia do Solo , Poluentes do Solo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Concentração de Íons de Hidrogênio , Solo/química , Enxofre/análise , Ferro/análise , Ácidos/análise , Microbiota
9.
Environ Pollut ; 356: 124301, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830526

RESUMO

Oil sands activities in the Athabasca Oil Sands Region in Alberta, Canada, are large sources of atmospheric NOx and SO2. This study investigated the impact of oil sands emissions on the atmospheric deposition of nitrogen and sulfur species at a downwind site, about 350 km from the oil sands facilities. Measurement data are from the Canadian Air and Precipitation Monitoring Network (CAPMoN) from 2015 to 2019, including ambient concentrations of HNO3, pNO3-, NO2, pNH4+, NH3, SO2, pSO42- and base cations, as well as concentrations of NO3-, SO42-, NH4+, and base cations in precipitation. Sector analysis of air mass back trajectories was conducted to distinguish measurements with different air mass origins. Median atmospheric concentrations and dry deposition fluxes of HNO3, pNO3-, NO2, pNH4+, pSO42-, and SO2 on days when the air masses came from the oil sands sector were significantly greater than those with the "Clean" sector by 34-67%, whereas the difference in NH3 concentration was not significant. Contributions of the oil sands emissions to dry deposition fluxes of these species ranged from 3.8 to 13.1%. The precipitation-weighted mean concentrations of NO3-, SO42-, and NH4+ in samples with the oil sands sector were 76 %, 65 % and 81 % greater than those with the "Clean" sector, respectively. Contributions of the oil sands emissions to wet deposition of NO3-, SO42-, and NH4+ were 12.5 ± 8.9 %, 8.7 ± 4.4 %, and 6.0 ± 3.3 %, respectively. The annual total deposition of nitrogen and sulfur were 1.9 kg-N ha-1 and 0.74 kg-S ha-1, respectively, of which 8.0 ± 3.5 % and 8.7 ± 3.6 % were from oil sands emissions. The total deposition of sulfur and nitrogen did not exceed the critical loads (CL) of acidity, but nitrogen deposition exceeded the CLs of nutrient nitrogen in the region.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Nitrogênio , Campos de Petróleo e Gás , Enxofre , Poluentes Atmosféricos/análise , Alberta , Nitrogênio/análise , Enxofre/análise , Atmosfera/química , Poluição do Ar/estatística & dados numéricos
10.
J Agric Food Chem ; 72(37): 20603-20614, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38828918

RESUMO

The present study investigated the effect of nitrogen fertilization (NF) at the levels of 0, 45, and 90 kg·ha-1 combined with selected sulfur complex fertilization (SCF) levels of 0 and 45 kg·ha-1 on the nutritional and technological characteristics of buckwheat flour from five varieties. The results showed that the genotype was a critical factor affecting the chemical composition and physicochemical properties of buckwheat flour. NF significantly increased protein, total starch, and amylose content as well as mineral composition but decreased particle size, color value, and water hydration properties. However, SCF enhanced the ash content and decreased the protein content but had no significant effect on the pasting temperature. In addition, the combination of NF and SCF significantly reduced granule size, water solubility, viscosity, and rheological properties with increasing fertilization levels. This study can guide the cultivation of buckwheat with the desired physicochemical properties and provide information for buckwheat-based products in the food industry.


Assuntos
Fagopyrum , Fertilizantes , Farinha , Genótipo , Nitrogênio , Valor Nutritivo , Enxofre , Fagopyrum/química , Fagopyrum/genética , Fagopyrum/metabolismo , Enxofre/metabolismo , Enxofre/análise , Fertilizantes/análise , Farinha/análise , Nitrogênio/metabolismo , Nitrogênio/análise , Viscosidade , Amilose/metabolismo , Amilose/análise , Amido/química , Amido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Solubilidade
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124514, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805991

RESUMO

Mercury ions (Hg2+) and sulfur ions (S2-), have caused serious harm to the ecological environment and human health as two kinds of highly toxic pollutants widely used. Therefore, the visual quantitative determination of Hg2+ and S2- is of great significance in the field of environmental monitoring and medical therapy. In this study, a novel fluorescent "on-off-on" peptide-based probe DNC was designed and synthesized using dipeptide (Asn-Cys-NH2) as the raw material via solid phase peptide synthesis (SPPS) technology with Fmoc chemistry. DNC displayed high selectivity in the recognition of Hg2+, and formed non-fluorescence complex (DNC-Hg2+) through 2:1 binding mode. Notably, DNC-Hg2+ complex generated in situ was used as relay response probe for highly selective sequential detection of S2- through reversible formation-separation. DNC achieved highly sensitive detection of Hg2+ and S2- with the detection limits (LODs) of 8.4 nM and 5.5 nM, respectively. Meanwhile, DNC demonstrated feasibility for Hg2+ and S2- detections in two water samples, and the considerable recovery rate was obtained. More importantly, DNC showed excellent water solubility and low toxicity, and was successfully used for consecutive discerning Hg2+ and S2- in test strips, living cells and zebrafish larvae. As an effective visual analysis method in the field, smartphone RGB Color Picker APP realized semi-quantitative detections of Hg2+ and S2- without the need for complicated device.


Assuntos
Corantes Fluorescentes , Mercúrio , Peptídeos , Peixe-Zebra , Mercúrio/análise , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Peptídeos/química , Peptídeos/análise , Espectrometria de Fluorescência , Limite de Detecção , Enxofre/química , Enxofre/análise , Poluentes Químicos da Água/análise , Imagem Óptica , Células HeLa , Íons/análise
12.
Environ Res ; 252(Pt 4): 119121, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38734291

RESUMO

Extensive utilization of pesticides and herbicides to boost agricultural production increased the environmental health risks, which can be mitigate with the aid of highly sensitive detection systems. In this study, an electrochemical sensor for monitoring the carcinogenic pesticides in the environmental samples has been developed based on sulfur-doped graphitic-carbon nitride-gold nanoparticles (SCN-AuNPs) nanohybrid. Thermal polycondensation of melamine with thiourea followed by solvent exfoliation via ultrasonication leads to SCN formation and electroless deposition of AuNPs on SCN leads to SCN-AuNPs nanohybrid synthesis. The chemical composition, S-doping, and the morphology of the nanohybrid were confirmed by various microscopic and spectroscopic tools. The as-synthesized nanohybrid was fabricated with glassy carbon (GC) electrode for determining the carcinogenic hydrazine (HZ) and atrazine (ATZ) in field water samples. The present sensor exhibited superior electrocatalytic activity than GC/SCN and GC/AuNPs electrodes due to the synergism between SCN and AuNPs and the amperometric studies showed the good linear range of detection of 20 nM-0.5 mM and 500 nM-0.5 mM with the limit of detection of 0.22 and 69 nM (S/N = 3) and excellent sensitivity of 1173.5 and 13.96 µA mM-1 cm-2 towards HZ and ATZ, respectively. Ultimately, the present sensor is exploited in environmental samples for monitoring HZ and ATZ and the obtained results are validated with high-performance liquid chromatography (HPLC) technique. The excellent recovery percentage and close agreement with the results of HPLC analysis proved the practicability of the present sensor. In addition, the as-prepared materials were utilized for the photocatalytic degradation of ATZ and the SCN-AuNPs nanohybrid exhibited higher photocatalytic activity with the removal efficiency of 93.6% at 90 min. Finally, the degradation mechanism was investigated and discussed.


Assuntos
Carcinógenos , Ouro , Grafite , Nanopartículas Metálicas , Poluentes Químicos da Água , Ouro/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Nanopartículas Metálicas/química , Grafite/química , Carcinógenos/análise , Atrazina/análise , Atrazina/química , Enxofre/química , Enxofre/análise , Técnicas Eletroquímicas/métodos , Hidrazinas/análise , Hidrazinas/química , Compostos de Nitrogênio/química , Compostos de Nitrogênio/análise , Nitrilas/química , Nitrilas/análise , Monitoramento Ambiental/métodos
13.
Sci Rep ; 14(1): 9758, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684820

RESUMO

Our investigation revealed that alterations in sulphur (S) pools are predominantly governed by soil organic carbon (SOC), soil nitrogen (N), microbial biomass, and soil enzyme activities in sandy clay loam (Vertic Ustropept) soil. We employed ten sets of nutrient management techniques, ranging from suboptimal (50% RDF) to super-optimal doses (150% RDF), including NPK + Zn, NP, N alone, S-free NPK fertilizers, NPK + FYM, and control treatments, to examine the interrelation of S with SOC characteristics. Fourier-transform infrared (FT-IR) spectroscopy was utilized to analyze the functional groups present in SOC characterization across four treatments: 100% NPK, 150% NPK, NPK + FYM, and absolute control plots. Principal component analysis (PCA) was then applied to assess 29 minimal datasets, aiming to pinpoint specific soil characteristics influencing S transformation. In an Inceptisol, the application of fertilizers (100% RDF) in conjunction with 10 t ha-1 of FYM resulted in an increase of S pools from the surface to the subsurface stratum (OS > HSS > SO42--S > WSS), along with an increase in soil N and SOC. FT-IR spectroscopy identified cellulose and thiocyanate functional groups in all four plots, with a pronounced presence of carbohydrate-protein polyphenol, sulfoxide (S=O), and nitrate groups specifically observed in the INM plot. The PCA findings indicated that the primary factors influencing soil quality and crop productivity (r2 of 0.69) are SOC, SMBC, SMBN, SMBS, and the enzyme activity of URE, DHA, and AS. According to the study, the combined application of fertilizer and FYM (10 t ha-1) together exert a positive impact on sulphur transformation, SOC accumulation, and maize yield in sandy clay loam soil.


Assuntos
Carbono , Fertilizantes , Nitrogênio , Solo , Enxofre , Zea mays , Fertilizantes/análise , Enxofre/metabolismo , Enxofre/análise , Solo/química , Carbono/metabolismo , Carbono/análise , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Nitrogênio/metabolismo , Nitrogênio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Milhetes/metabolismo , Biomassa , Agricultura/métodos , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo
14.
Talanta ; 274: 126004, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564824

RESUMO

Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.


Assuntos
Corantes Fluorescentes , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Rodaminas , Corantes Fluorescentes/química , Rodaminas/química , Espécies Reativas de Nitrogênio/análise , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Imagem Óptica , Animais , Enxofre/química , Enxofre/análise
15.
Environ Res ; 249: 118329, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325781

RESUMO

Pollutant emissions from chemical plants are a major concern in the context of environmental safety. A reliable emission forecasting model can provide important information for optimizing the process and improving the environmental performance. In this work, forecasting models are developed for the prediction of SO2 emission from a Sulfur Recovery Unit (SRU). Since SRUs incorporate complex chemical reactions, first-principle models are not suitable to predict emission levels based on a given feed condition. Accordingly, artificial intelligence-based models such as standard machine learning (ML) algorithms, multi-layer perceptron (MLP), long short-term memory (LSTM), one-dimensional convolution (1D-CNN), and CNN-LSTM models were tested, and their performance was evaluated. The input features and hyperparameters of the models were optimized to achieve maximum performance. The performance was evaluated in terms of mean squared error (MSE) and mean absolute percentage Error (MAPE) for 1 h, 3 h and 5 h ahead of forecasting. The reported results show that the CNN-LSTM encoder-decoder model outperforms other tested models, with its superiority becoming more pronounced as the forecasting horizon increased from 1 h to 5 h. For the 5-h ahead forecasting, the proposed model showed a MAPE advantage of 17.23%, 4.41%, and 2.83%, respectively over the 1D-CNN, Deep LSTM, and single-layer LSTM models in the larger dataset.


Assuntos
Poluentes Atmosféricos , Inteligência Artificial , Previsões , Incineração , Dióxido de Enxofre , Dióxido de Enxofre/análise , Previsões/métodos , Poluentes Atmosféricos/análise , Enxofre/análise , Modelos Teóricos , Monitoramento Ambiental/métodos , Redes Neurais de Computação , Aprendizado de Máquina
16.
Sci Total Environ ; 917: 170489, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301785

RESUMO

Estuaries receive substantial amounts of terrestrial dissolved organic nitrogen (tDON), which will be transported from the freshwater to the oceanic terminus through vigorous exchange processes. However, the intricate migration and transformation dynamics of tDON during this transportation, particularly at a molecular level, remain constrained. To address this knowledge gap, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used for the analysis of DON molecular composition in the Pearl River Estuary (PRE), a river-dominated estuarine system influenced by intensified anthropogenic activities in southern China. The results showed a pronounced spatial-temporal variation in DON concentration in the study area. At the molecular level, tDON exhibited reduced unsaturation and aromaticity, coupled with an elevated abundance of DON compounds containing one­nitrogen atom (1 N-DON, 53.17 %) and compounds containing carbon, hydrogen, oxygen, nitrogen, and sulfur (CHONS) (27.46 %). It was evident that lignin was depleted while more oxygenated tannin compounds were generated in the freshwater-seawater mixing zone. This transformation is attributed to heightened biological activities, likely influenced by the priming effect of terrestrial nutrient inputs. In summer, the prevailing plume combined with biological activities in the strong mixing area and outer estuary increased the abundance of 3 N-DON molecules and a concurrent rise in the abundance of DON compounds containing only carbon, hydrogen, oxygen, and nitrogen (CHON), DON compounds containing carbon, hydrogen, oxygen, nitrogen, sulfur, and phosphorus (CHONSP), and CHONS. This trend also underscores the expanding role of marine plankton and microbes in the utilization of DON compounds containing carbon, hydrogen, oxygen, nitrogen, and phosphorus (CHONP). These findings provide details of tDON transformation processes at the molecular level in a river-dominated estuary and underline the estuarine hydrodynamics involved in transporting and altering DON within the estuary.


Assuntos
Matéria Orgânica Dissolvida , Hidrodinâmica , Nitrogênio/análise , Rios , Estuários , Carbono/análise , Oxigênio/análise , Enxofre/análise , Hidrogênio/análise , Fósforo/análise
17.
J Agric Food Chem ; 72(4): 2300-2308, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235666

RESUMO

During the last years, a strong increase in the sales volume and consumption of plant-based drinks was observed, which were partly used as an alternative to cow's milk. As milk is a relevant protein source in many countries, we have investigated the protein bioaccessibility and digestibility of soy, almond, and oat drinks in comparison to milk using the tiny-TIMsg gastrointestinal model. The relative protein digestibility of all products was between 81% (soy drink) and 90% (milk). The digestible indispensable amino acid score (DIAAS) in vitro method was used to estimate the protein nutritional quality. The highest DIAAS values were obtained for milk in tryptophan (117%) and soy drink in sulfur containing amino acids (100%). Oat drink was limited in lysine (73%), almond drink in lysine (34%) and the sulfur containing amino acids (56%). Additionally, the antioxidant activity of the bioaccessible fractions was analyzed using Trolox equivalent antioxidative capacity and oxygen radical absorbance capacity assays, revealing a higher antioxidative potential of milk and soy drink compared to oat and almond drink.


Assuntos
Antioxidantes , Leite , Animais , Bovinos , Feminino , Leite/química , Antioxidantes/análise , Lisina/análise , Aminoácidos/metabolismo , Enxofre/análise
18.
Anal Chem ; 96(8): 3276-3283, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38294348

RESUMO

We report an analytical methodology for the quantification of sulfur in biological molecules via a species-unspecific postcolumn isotope dilution (online ID) approach using capillary electrophoresis (CE) coupled online with inductively coupled plasma-mass spectrometry (online ID CE/ICP-MS). The method was optimized using a mixture of standard compounds including sulfate, methionine, cysteine, cystine, and albumin, yielding compound recoveries between 98 and 105%. The quantity of sulfur is further converted to the quantity of the compounds owing to the prior knowledge of the sulfur content in the molecules. The limit of detection and limit of quantification of sulfur in the compounds were 1.3-2.6 and 4.1-8.4 mg L-1, respectively, with a correlation coefficient of 0.99 within the concentration range of sulfur of 5-100 mg L-1. The capability of the method was extended to quantify albumin in its native matrix (i.e., in serum) using experimentally prepared serum spiked with a pure albumin standard for validation. The relative expanded uncertainty of the method for the quantification of albumin was 6.7% (k = 2). Finally, we tested the applicability of the method on real samples by the analysis of albumin in bovine and human sera. For automated data assessment, a software application (IsoCor)─which was developed by us in a previous work─was developed further for handling of online ID data. The method has several improvements compared to previously published setups: (i) reduced adsorption of proteins onto the capillary wall owing to a special capillary-coating procedure, (ii) baseline separation of the compounds in less than 30 min via CE, (iii) quantification of several sulfur species within one run by means of the online setup, (iv) SI traceability of the quantification results through online ID, and (v) facilitated data processing of the transient signals using the IsoCor application. Our method can be used as an accurate approach for quantification of proteins and other biological molecules via sulfur analysis in complex matrices for various fields, such as environmental, biological, and pharmaceutical studies as well as clinical diagnosis.


Assuntos
Proteínas , Enxofre , Animais , Bovinos , Humanos , Espectrometria de Massas/métodos , Enxofre/análise , Proteínas/análise , Isótopos , Albuminas , Eletroforese Capilar
19.
J Pharmacol Sci ; 154(1): 9-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081683

RESUMO

Taurine has many pharmacological roles on various tissues. The maintenance of abundant taurine content in the mammalian body through endogenous synthesis, in addition to exogenous intake, is the essential factor for morphological and functional maintenances in most tissues. The synthesis of taurine from sulfur-containing amino acids is influenced by various factors. Previous literature findings indicate the influence of the intake of proteins and sulfur-containing amino acids on the activity of the rate-limiting enzymes cysteine dioxygenase and cysteine sulfinate decarboxylase. In addition, the regulation of the activity and expression of taurine-synthesis enzymes by hormones, bile acids, and inflammatory cytokines through nuclear receptors have been reported in liver and reproductive tissues. Furthermore, flavin-containing monooxygenase subtype 1 was recently identified as the taurine-synthesis enzyme that converts hypotaurine to taurine. This review introduces the novel taurine synthesis enzyme and the nuclear receptor-associated regulation of key enzymes in taurine synthesis.


Assuntos
Cisteína Dioxigenase , Mamíferos , Animais , Cisteína Dioxigenase/análise , Cisteína Dioxigenase/metabolismo , Mamíferos/metabolismo , Fígado/metabolismo , Taurina/metabolismo , Taurina/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Enxofre/análise , Enxofre/metabolismo
20.
Environ Sci Pollut Res Int ; 30(56): 119243-119259, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924402

RESUMO

The study was performed in natural forests preserved within the Boreal zone city, Irkutsk, Russia. Test sites were selected in the forests in different districts of the city, where samples of Scots pine (Pinus sylvestris L.) and Siberian larch (Larix sibirica Ledeb.) needles were taken to study the adsorption on their surface of aerosol particles of different sizes, in microns: PM0.3, PM0.5, PM1, PM2.5, PM5, PM10. Scanning electron microscopy was used to obtain high-resolution photographs (magnification 800- × 2000, × 16,000) and aerosol particles (particulate matter-PM) were shown to be intensively adsorbed by the surface of needles, with both size and shape of the particles characterized by a wide variety. Pine needles can be covered with particles of solid aerosol by 50-75%, stomata are often completely blocked. Larch needles often show areas, which are completely covered with aerosol particles, there are often found stomata deformed by the penetration of PMx. X-ray spectral microanalysis showed differences in the chemical composition of adsorbed PMx, the particles can be metallic if metals predominate in their composition, carbonaceous-in case of carbon predominance-or polyelemental if the composition is complex and includes significant quantities of other elements besides metals and carbon (calcium, magnesium, potassium, sodium, sulfur, chlorine, fluorine). Since the particles contain a large proportion of technogenic pollutants, accumulation by the needles of some widespread pollutants was investigated. A direct correlation of a highly significant level between the concentration of PMx in the air and the accumulation of many heavy metals in pine and larch needles, as well as sulfur, fluorine, and chlorine, has been revealed, which indicates a high cleaning capacity of urban forests. At the same time, the negative impact of PMx particles on the vital status of trees is great, which shows in intense disturbance of the parameters of photosynthesis and transpiration, leading to a significant decrease in the growth characteristics of trees and reduction in the photosynthetic volume of the crowns. We consider that the results obtained are instrumental in developing an approach to improvement of urban forests status and creating a comfortable urban environment for the population.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Larix , Pinus sylvestris , Pinus , Árvores/química , Flúor/análise , Cloro/análise , Federação Russa , Poluentes Ambientais/análise , Pinus sylvestris/química , Aerossóis/análise , Carbono/análise , Enxofre/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...