Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.149
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0040024, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38722179

RESUMO

Environmental isolates are promising candidates for new chassis of synthetic biology because of their inherent capabilities, which include efficiently converting a wide range of substrates into valuable products and resilience to environmental stresses; however, many remain genetically intractable and unamenable to established genetic tools tailored for model bacteria. Acinetobacter sp. Tol 5, an environmentally isolated Gram-negative bacterium, possesses intriguing properties for use in synthetic biology applications. Despite the previous development of genetic tools for the engineering of strain Tol 5, its genetic manipulation has been hindered by low transformation efficiency via electroporation, rendering the process laborious and time-consuming. This study demonstrated the genetic refinement of the Tol 5 strain, achieving efficient transformation via electroporation. We deleted two genes encoding type I and type III restriction enzymes. The resulting mutant strain not only exhibited marked efficiency of electrotransformation but also proved receptive to both in vitro and in vivo DNA assembly technologies, thereby facilitating the construction of recombinant DNA without reliance on intermediate Escherichia coli constructs. In addition, we successfully adapted a CRISPR-Cas9-based base-editing platform developed for other Acinetobacter species. Our findings provide genetic modification strategies that allow for the domestication of environmentally isolated bacteria, streamlining their utilization in synthetic biology applications.IMPORTANCERecent synthetic biology has sought diverse bacterial chassis from environmental sources to circumvent the limitations of laboratory Escherichia coli strains for industrial and environmental applications. One of the critical barriers in cell engineering of bacterial chassis is their inherent resistance to recombinant DNA, propagated either in vitro or within E. coli cells. Environmental bacteria have evolved defense mechanisms against foreign DNA as a response to the constant threat of phage infection. The ubiquity of phages in natural settings accounts for the genetic intractability of environmental isolates. The significance of our research is in demonstrating genetic modification strategies for the cell engineering of such genetically intractable bacteria. This research marks a pivotal step in the domestication of environmentally isolated bacteria, promising candidates for emerging synthetic biology chassis. Our work thus significantly contributes to advancing their applications across industrial, environmental, and biomedical fields.


Assuntos
Acinetobacter , Sistemas CRISPR-Cas , Eletroporação , Edição de Genes , Acinetobacter/genética , Edição de Genes/métodos , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição do DNA/genética , Transformação Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
J Pharm Biomed Anal ; 245: 116180, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703748

RESUMO

Oligonucleotides have emerged as important therapeutic options for inherited diseases. In recent years, RNA therapeutics, especially mRNA, have been pushed to the market. Analytical methods for these molecules have been published extensively in the last few years. Notably, mass spectrometry has proven as a state-of-the-art quality control method. For RNA based therapeutics, numerous methods are available, while DNA therapeutics lack of suitable MS-based methods when it comes to molecules exceeding approximately 60 nucleotides. We present a method which combines the use of common restriction enzymes and short enzyme-directing oligonucleotides to generate DNA digestion products with the advantages of high-resolution tandem mass spectrometry. The instrumentation includes ion pair reverse phase chromatography coupled to a time-of-flight mass spectrometer with a collision induced dissociation (CID) for sequence analysis. Utilizing this approach, we increased the sequence coverage from 23.3% for a direct CID-MS/MS experiment of a 100 nucleotide DNA molecule to 100% sequence coverage using the restriction enzyme mediated approach presented in this work. This approach is suitable for research and development and quality control purposes in a regulated environment, which makes it a versatile tool for drug development.


Assuntos
Enzimas de Restrição do DNA , DNA , Oligonucleotídeos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , DNA/química , DNA/genética , Enzimas de Restrição do DNA/metabolismo , Oligonucleotídeos/química , Nucleotídeos/análise , Nucleotídeos/química , Cromatografia de Fase Reversa/métodos , Controle de Qualidade , Análise de Sequência de DNA/métodos
3.
Analyst ; 149(13): 3575-3584, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38758107

RESUMO

A restriction endonuclease (RE) is an enzyme that can recognize a specific DNA sequence and cleave that DNA into fragments with double-stranded breaks. This sequence-specific cleaving ability and its ease of use have made REs commonly used tools in molecular biology since their first isolation and characterization in 1970s. While artificial REs still face many challenges in large-scale synthesis and precise activity control for practical use, searching for new REs in natural samples remains a viable route to expanding the RE pool for fundamental research and industrial applications. In this paper, we propose a new strategy to search for REs in an efficient manner. We constructed a host bacterial cell to link the genotype of REs to the phenotype of ß-galactosidase expression based on the bacterial SOS response, and used a high-throughput microfluidic platform to isolate, detect and sort the REs in microfluidic drops at a frequency of ∼800 drops per second. We employed this strategy to screen for the XbaI gene from the constructed libraries of varied sizes. In a single round of sorting, a 90-fold target enrichment was achieved within 1 h. Compared to conventional RE-screening methods, the direct screening approach that we propose excels at efficient search of desirable REs in natural samples - especially unculturable samples - and can be tailored to high-throughput screening of a wide range of genotoxic targets.


Assuntos
Enzimas de Restrição do DNA , Escherichia coli , Resposta SOS em Genética , Escherichia coli/genética , Escherichia coli/enzimologia , Enzimas de Restrição do DNA/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , beta-Galactosidase/metabolismo , beta-Galactosidase/genética
4.
Lab Chip ; 24(12): 3101-3111, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38752699

RESUMO

Extrachromosomal circular DNA (eccDNA) refers to small circular DNA molecules that are distinct from chromosomal DNA and play diverse roles in various biological processes. They are also explored as potential biomarkers for disease diagnosis and precision medicine. However, isolating eccDNA from tissues and plasma is challenging due to low abundance and the presence of interfering linear DNA, requiring time-consuming processes and expert handling. Our study addresses this by utilizing a microfluidic chip tailored for eccDNA isolation, leveraging microfluidic principles for enzymatic removal of non-circular DNA. Our approach involves integrating restriction enzymes into the microfluidic chip, enabling selective digestion of mitochondrial and linear DNA fragments while preserving eccDNA integrity. This integration is facilitated by an in situ photo-polymerized emulsion inside microchannels, creating a porous monolithic structure suitable for immobilizing restriction and exonuclease enzymes (restriction enzyme MssI and exonuclease ExoV). Evaluation using control DNA mixtures and plasma samples with artificially introduced eccDNA demonstrated that our microfluidic chips reduce linear DNA by over 99%, performing comparable to conventional off-chip methods but with substantially faster digestion times, allowing for a remarkable 76-fold acceleration in overall sample preparation time. This technological advancement holds great promise for enhancing the isolation and analysis of eccDNA from tissue and plasma and the potential for increasing the speed of other molecular methods with multiple enzymatic steps.


Assuntos
DNA Circular , Dispositivos Lab-On-A-Chip , Plasmídeos , DNA Circular/química , DNA Circular/isolamento & purificação , DNA Circular/metabolismo , Plasmídeos/isolamento & purificação , Plasmídeos/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Enzimas de Restrição do DNA/metabolismo , DNA/isolamento & purificação , DNA/química
5.
ACS Sens ; 9(4): 1877-1885, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38573977

RESUMO

The precise determination of DNA methylation at specific sites is critical for the timely detection of cancer, as DNA methylation is closely associated with the initiation and progression of cancer. Herein, a novel ratiometric fluorescence method based on the methylation-sensitive restriction enzyme (MSRE), CRISPR/Cas12a, and catalytic hairpin assembly (CHA) amplification were developed to detect site-specific methylation with high sensitivity and specificity. In detail, AciI, one of the commonly used MSREs, was employed to distinguish the methylated target from nonmethylated targets. The CRISPR/Cas12a system was utilized to recognize the site-specific target. In this process, the protospacer adjacent motif and crRNA-dependent identification, the single-base resolution of Cas12a, can effectively ensure detection specificity. The trans-cleavage ability of Cas12a can convert one target into abundant activators and can then trigger the CHA reaction, leading to the accomplishment of cascaded signal amplification. Moreover, with the structural change of the hairpin probe during CHA, two labeled dyes can be spatially separated, generating a change of the Förster resonance energy transfer signal. In general, the proposed strategy of tandem CHA after the CRISPR/Cas12a reaction not only avoids the generation of false-positive signals caused by the target-similar nucleic acid but can also improve the sensitivity. The use of ratiometric fluorescence can eradicate environmental effects by self-calibration. Consequently, the proposed approach had a detection limit of 2.02 fM. This approach could distinguish between colorectal cancer and precancerous tissue, as well as between colorectal patients and healthy people. Therefore, the developed method can serve as an excellent site-specific methylation detection tool, which is promising for biological and disease studies.


Assuntos
Sistemas CRISPR-Cas , Metilação de DNA , Sistemas CRISPR-Cas/genética , Humanos , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição do DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Técnicas Biossensoriais/métodos
6.
Mol Microbiol ; 121(5): 971-983, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38480679

RESUMO

Increasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT-DNA. PT-dependent restriction enzymes (PDREs) bind PT-DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 µM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT-DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT-DNA as the template. Our findings suggest that DNA modification-targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction-modification systems and epigenetic readers.


Assuntos
Replicação do DNA , Proteínas de Escherichia coli , Escherichia coli , Enxofre , Escherichia coli/metabolismo , Escherichia coli/genética , Enxofre/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , DNA Bacteriano/metabolismo , Enzimas de Restrição do DNA/metabolismo , Ligação Proteica , DNA/metabolismo , Sítios de Ligação
7.
Biosens Bioelectron ; 249: 116017, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262299

RESUMO

The enzymatic actions of endonucleases in vivo can be altered due to bound substrates and differences in local environments, including enzyme concentration, pH, salinity, ionic strength, and temperature. Thus, accurate estimation of enzymatic reactions in vivo using matrix-dependent methods in solution can be challenging. Here, we report a matrix-insensitive magnetic biosensing platform that enables the measurement of endonuclease activity under different conditions with varying pH, salinity, ionic strength, and temperature. Using biosensor arrays and orthogonal pairs of oligonucleotides, we quantitatively characterized the enzymatic activity of EcoRI under different buffer conditions and in the presence of inhibitors. To mimic a more physiological environment, we monitored the sequence-dependent star activity of EcoRI under unconventional conditions. Furthermore, enzymatic activity was measured in cell culture media, saliva, and serum. Last, we estimated the effective cleavage rates of Cas12a on anchored single-strand DNAs using this platform, which more closely resembles in vivo settings. This platform will facilitate precise characterization of restriction and Cas endonucleases under various conditions.


Assuntos
Técnicas Biossensoriais , Endonucleases , Desoxirribonuclease EcoRI/metabolismo , Endonucleases/metabolismo , Oligonucleotídeos , Cinética , Fenômenos Magnéticos , Enzimas de Restrição do DNA/metabolismo
8.
Int J Legal Med ; 138(2): 375-393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875742

RESUMO

Methylation-sensitive/-dependent restriction enzyme (MSRE/MDRE) PCR can be performed to detect hypomethylated or hypermethylated CpG sites. With the combined use of different tissue-specific CpG markers, MSRE/MDRE-PCR leads to tissue-specific methylation patterns (TSMPs), enabling the correlation of DNA samples to their source tissue. MSRE/MDRE assays can use the same platform as forensic STR typing and offer many advantages in the field of forensic body fluid detection. In the present study, we aimed to establish MSRE assays for the detection of blood, saliva, vaginal secretion, and semen, using markers from literature and from our own database search. We designed two different MSRE test-sets, which include two novel Y-chromosomal non-semen markers, and enable differentiation between female and male non-semen samples. Furthermore, we established an MSRE/MDRE semen approach, which includes only Y-chromosomal non-semen and semen markers. This Y-semen multiplex PCR utilizes the novel combination of the methylation-sensitive enzyme SmaI and the methylation-dependent enzyme GlaI, which enables more sensitive detection of male body fluids within male/female DNA mixtures. Our validation tests confirmed that MSRE/MDRE assays exhibit high sensitivity, similar to that of STR typing.


Assuntos
Líquidos Corporais , Metilação de DNA , Humanos , Masculino , Feminino , Saliva , Reação em Cadeia da Polimerase Multiplex , Sêmen , DNA , Enzimas de Restrição do DNA/metabolismo , Marcadores Genéticos , Cromossomos Humanos Y , Genética Forense
9.
J Biol Chem ; 299(12): 105466, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979912

RESUMO

RecN, a bacterial structural maintenance of chromosomes-like protein, plays an important role in maintaining genomic integrity by facilitating the repair of DNA double-strand breaks (DSBs). However, how RecN-dependent chromosome dynamics are integrated with DSB repair remains unclear. Here, we investigated the dynamics of RecN in response to DNA damage by inducing RecN from the PBAD promoter at different time points. We found that mitomycin C (MMC)-treated ΔrecN cells exhibited nucleoid fragmentation and reduced cell survival; however, when RecN was induced with arabinose in MMC-exposed ΔrecN cells, it increased a level of cell viability to similar extent as WT cells. Furthermore, in MMC-treated ΔrecN cells, arabinose-induced RecN colocalized with RecA in nucleoid gaps between fragmented nucleoids and restored normal nucleoid structures. These results suggest that the aberrant nucleoid structures observed in MMC-treated ΔrecN cells do not represent catastrophic chromosome disruption but rather an interruption of the RecA-mediated process. Thus, RecN can resume DSB repair by stimulating RecA-mediated homologous recombination, even when chromosome integrity is compromised. Our data demonstrate that RecA-mediated presynapsis and synapsis are spatiotemporally separable, wherein RecN is involved in facilitating both processes presumably by orchestrating the dynamics of both RecA and chromosomes, highlighting the essential role of RecN in the repair of DSBs.


Assuntos
Proteínas de Bactérias , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Enzimas de Restrição do DNA , Recombinases Rec A , Arabinose/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA , Enzimas de Restrição do DNA/metabolismo , DNA Bacteriano/metabolismo , Recombinação Homóloga , Viabilidade Microbiana/efeitos dos fármacos , Mitomicina/farmacologia , Recombinases Rec A/metabolismo
10.
Structure ; 31(11): 1463-1472.e2, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37652002

RESUMO

The type II restriction endonuclease Sau3AI cleaves the sequence 5'-GATC-3' in double-strand DNA producing two sticky ends. Sau3AI cuts both DNA strands regardless of methylation status. Here, we report the crystal structures of the active site mutant Sau3AI-E64A and the C-terminal domain Sau3AI-C with a bound GATC substrate. Interestingly, the catalytic site of the N-terminal domain (Sau3AI-N) is spatially blocked by the C-terminal domain, suggesting a potential self-inhibition of the enzyme. Interruption of Sau3AI-C binding to substrate DNA disrupts Sau3AI function, suggesting a functional linkage between the N- and C-terminal domains. We propose that Sau3AI-C behaves as an allosteric effector binding one GATC substrate, which triggers a conformational change to open the N-terminal catalytic site, resulting in the subsequent GATC recognition by Sau3AI-N and cleavage of the second GATC site. Our data indicate that Sau3AI and UbaLAI might represent a new subclass of type IIE restriction enzymes.


Assuntos
Clivagem do DNA , DNA , DNA/metabolismo , Enzimas de Restrição do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Metilação
11.
J Vis Exp ; (191)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36744801

RESUMO

Chromosome conformation capture (3C) is used to detect three-dimensional chromatin interactions. Typically, chemical crosslinking with formaldehyde (FA) is used to fix chromatin interactions. Then, chromatin digestion with a restriction enzyme and subsequent religation of fragment ends converts three-dimensional (3D) proximity into unique ligation products. Finally, after reversal of crosslinks, protein removal, and DNA isolation, DNA is sheared and prepared for high-throughput sequencing. The frequency of proximity ligation of pairs of loci is a measure of the frequency of their colocalization in three-dimensional space in a cell population. A sequenced Hi-C library provides genome-wide information on interaction frequencies between all pairs of loci. The resolution and precision of Hi-C relies on efficient crosslinking that maintains chromatin contacts and frequent and uniform fragmentation of the chromatin. This paper describes an improved in situ Hi-C protocol, Hi-C 3.0, that increases the efficiency of crosslinking by combining two crosslinkers (formaldehyde [FA] and disuccinimidyl glutarate [DSG]), followed by finer digestion using two restriction enzymes (DpnII and DdeI). Hi-C 3.0 is a single protocol for the accurate quantification of genome folding features at smaller scales such as loops and topologically associating domains (TADs), as well as features at larger nucleus-wide scales such as compartments.


Assuntos
Cromatina , Cromossomos , Cromossomos/genética , Cromossomos/metabolismo , Cromatina/genética , DNA/genética , DNA/química , Núcleo Celular/metabolismo , Enzimas de Restrição do DNA/metabolismo , Formaldeído/química , Conformação de Ácido Nucleico
12.
Nat Microbiol ; 8(3): 400-409, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36782027

RESUMO

Type VI CRISPR systems protect against phage infection using the RNA-guided nuclease Cas13 to recognize viral messenger RNA. Upon target recognition, Cas13 cleaves phage and host transcripts non-specifically, leading to cell dormancy that is incompatible with phage propagation. However, whether and how infected cells recover from dormancy is unclear. Here we show that type VI CRISPR and DNA-cleaving restriction-modification (RM) systems frequently co-occur and synergize to clear phage infections and resuscitate cells. In the natural type VI CRISPR host Listeria seeligeri, we show that RM cleaves the phage genome, thus removing the source of phage transcripts and enabling cells to recover from Cas13-induced cellular dormancy. We find that phage infections are neutralized more effectively when Cas13 and RM systems operate together. Our work reveals that type VI CRISPR immunity is cell-autonomous and non-abortive when paired with RM, and hints at other synergistic roles for the diverse host-directed immune systems in bacteria.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Sistemas CRISPR-Cas , Bactérias/genética , Enzimas de Restrição-Modificação do DNA/genética , RNA Viral/genética , DNA
13.
Microbiol Spectr ; 11(1): e0439722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602370

RESUMO

Regulation of gene expression is a vital component of cellular biology. Transcription factor proteins often bind regulatory DNA sequences upstream of transcription start sites to facilitate the activation or repression of RNA polymerase. Research laboratories have devoted many projects to understanding the transcription regulatory networks for transcription factors, as these regulated genes provide critical insight into the biology of the host organism. Various in vivo and in vitro assays have been developed to elucidate transcription regulatory networks. Several assays, including SELEX-seq and ChIP-seq, capture DNA-bound transcription factors to determine the preferred DNA-binding sequences, which can then be mapped to the host organism's genome to identify candidate regulatory genes. In this protocol, we describe an alternative in vitro, iterative selection approach to ascertaining DNA-binding sequences of a transcription factor of interest using restriction endonuclease, protection, selection, and amplification (REPSA). Contrary to traditional antibody-based capture methods, REPSA selects for transcription factor-bound DNA sequences by challenging binding reactions with a type IIS restriction endonuclease. Cleavage-resistant DNA species are amplified by PCR and then used as inputs for the next round of REPSA. This process is repeated until a protected DNA species is observed by gel electrophoresis, which is an indication of a successful REPSA experiment. Subsequent high-throughput sequencing of REPSA-selected DNAs accompanied by motif discovery and scanning analyses can be used for determining transcription factor consensus binding sequences and potential regulated genes, providing critical first steps in determining organisms' transcription regulatory networks. IMPORTANCE Transcription regulatory proteins are an essential class of proteins that help maintain cellular homeostasis by adapting the transcriptome based on environmental cues. Dysregulation of transcription factors can lead to diseases such as cancer, and many eukaryotic and prokaryotic transcription factors have become enticing therapeutic targets. Additionally, in many understudied organisms, the transcription regulatory networks for uncharacterized transcription factors remain unknown. As such, the need for experimental techniques to establish transcription regulatory networks is paramount. Here, we describe a step-by-step protocol for REPSA, an inexpensive, iterative selection technique to identify transcription factor-binding sequences without the need for antibody-based capture methods.


Assuntos
DNA , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Enzimas de Restrição do DNA/metabolismo , Sítios de Ligação , DNA/metabolismo , Reação em Cadeia da Polimerase/métodos
14.
Nucleic Acids Res ; 51(D1): D629-D630, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318248

RESUMO

REBASE is a comprehensive and extensively curated database of information about the components of restriction-modification (RM) systems. It is fully referenced and provides information about the recognition and cleavage sites for both restriction enzymes and DNA methyltransferases together with their commercial availability, methylation sensitivity, crystal and sequence data. All completely sequenced genomes and select shotgun sequences are analyzed for RM system components. When PacBio sequence data is available, the recognition sequences of many DNA methyltransferases (MTases) can be determined. This has led to an explosive growth in the number of well-characterized MTases in REBASE. The contents of REBASE may be browsed from the web rebase.neb.com and selected compilations can be downloaded by FTP (ftp.neb.com). Monthly updates are also available via email.


Assuntos
Metilação de DNA , Metilases de Modificação do DNA , Bases de Dados Factuais , Enzimas de Restrição do DNA/metabolismo , Metilases de Modificação do DNA/metabolismo , DNA/genética , Enzimas de Restrição-Modificação do DNA/genética
15.
Sensors (Basel) ; 22(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36298113

RESUMO

Restriction endonucleases are expressed in all bacteria investigated so far and play an essential role for the bacterial defense against viral infections. Besides their important biological role, restriction endonucleases are of great use for different biotechnological purposes and are indispensable for many cloning and sequencing procedures. Methods for specific detection of restriction endonuclease activities can therefore find broad use for many purposes. In the current study, we demonstrate proof-of-concept for a new principle for the detection of restriction endonuclease activities. The method is based on rolling circle amplification of circular DNA products that can only be formed upon restriction digestion of specially designed DNA substrates. By combining the activity of the target restriction endonuclease with the highly specific Cre recombinase to generate DNA circles, we demonstrate specific detection of selected restriction endonuclease activities even in crude cell extracts. This is, to our knowledge, the first example of a sensor system that allows activity measurements of restriction endonucleases in crude samples. The presented sensor system may prove valuable for future characterization of bacteria species or strains based on their expression of restriction endonucleases as well as for quantification of restriction endonuclease activities directly in extracts from recombinant cells.


Assuntos
DNA Circular , DNA , Extratos Celulares , DNA/química , Enzimas de Restrição do DNA/metabolismo , Endonucleases/química
16.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014501

RESUMO

Cleavage of DNA at noncanonical recognition sequences by restriction endonucleases (star activity) in bulk solution can be promoted by global experimental parameters, including enzyme or substrate concentration, temperature, pH, or buffer composition. To study the effect of nanoscale confinement on the noncanonical behaviour of BamHI, which cleaves a single unique sequence of 6 bp, we used AFM nanografting to generate laterally confined DNA monolayers (LCDM) at different densities, either in the form of small patches, several microns in width, or complete monolayers of thiol-modified DNA on a gold surface. We focused on two 44-bp DNAs, each containing a noncanonical BamHI site differing by 2 bp from the cognate recognition sequence. Topographic AFM imaging was used to monitor end-point reactions by measuring the decrease in the LCDM height with respect to the surrounding reference surface. At low DNA densities, BamHI efficiently cleaves only its cognate sequence while at intermediate DNA densities, noncanonical sequence cleavage occurs, and can be controlled in a stepwise (on/off) fashion by varying the DNA density and restriction site sequence. This study shows that endonuclease action on noncanonical sites in confined nanoarchitectures can be modulated by varying local physical parameters, independent of global chemical parameters.


Assuntos
Clivagem do DNA , DNA , Sequência de Bases , DNA/química , Enzimas de Restrição do DNA/metabolismo , Desoxirribonuclease BamHI/metabolismo , Especificidade por Substrato
17.
ACS Chem Biol ; 17(10): 2781-2788, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35679536

RESUMO

Five 2'-deoxyribonucleoside triphosphates (dNTPs) derived from epigenetic pyrimidines (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine, 5-hydroxymethyluracil, and 5-formyluracil) were prepared and systematically studied as substrates for nine DNA polymerases in competition with natural dNTPs by primer extension experiments. The incorporation of these substrates was evaluated by a restriction endonucleases cleavage-based assay and by a kinetic study of single nucleotide extension. All of the modified pyrimidine dNTPs were good substrates for the studied DNA polymerases that incorporated a significant percentage of the modified nucleotides into DNA even in the presence of natural nucleotides. 5-Methylcytosine dNTP was an even better substrate for most polymerases than natural dCTP. On the other hand, 5-hydroxymethyl-2'-deoxyuridine triphosphate was not the best substrate for SPO1 DNA polymerase, which naturally synthesizes 5hmU-rich genomes of the SPO1 bacteriophage. The results shed light onto the possibility of gene silencing through recycling and random incorporation of epigenetic nucleotides and into the replication of modified bacteriophage genomes.


Assuntos
5-Metilcitosina , Nucleotídeos de Pirimidina , DNA Polimerase Dirigida por DNA/metabolismo , Nucleotídeos/metabolismo , DNA/metabolismo , Enzimas de Restrição do DNA/metabolismo , Pirimidinas , Desoxirribonucleosídeos , Epigênese Genética
18.
Nucleic Acids Res ; 50(6): 3348-3361, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35286398

RESUMO

Epigenetic DNA methylation plays an important role in bacteria by influencing gene expression and allowing discrimination between self-DNA and intruders such as phages and plasmids. Restriction-modification (RM) systems use a methyltransferase (MTase) to modify a specific sequence motif, thus protecting host DNA from cleavage by a cognate restriction endonuclease (REase) while leaving invading DNA vulnerable. Other REases occur solitarily and cleave methylated DNA. REases and RM systems are frequently mobile, influencing horizontal gene transfer by altering the compatibility of the host for foreign DNA uptake. However, whether mobile defence systems affect pre-existing host defences remains obscure. Here, we reveal an epigenetic conflict between an RM system (PcaRCI) and a methylation-dependent REase (PcaRCII) in the plant pathogen Pectobacterium carotovorum RC5297. The PcaRCI RM system provides potent protection against unmethylated plasmids and phages, but its methylation motif is targeted by the methylation-dependent PcaRCII. This potentially lethal co-existence is enabled through epigenetic silencing of the PcaRCII-encoding gene via promoter methylation by the PcaRCI MTase. Comparative genome analyses suggest that the PcaRCII-encoding gene was already present and was silenced upon establishment of the PcaRCI system. These findings provide a striking example for selfishness of RM systems and intracellular competition between different defences.


Assuntos
Bacteriófagos , Enzimas de Restrição-Modificação do DNA , Bacteriófagos/genética , Bacteriófagos/metabolismo , Metilação de DNA/genética , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Endonucleases/metabolismo , Epigênese Genética , Regulação Bacteriana da Expressão Gênica
19.
Microbiol Spectr ; 9(3): e0098921, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878298

RESUMO

We provide a novel single restriction enzyme (RE; BsaHI) digestion approach for detecting distinct pathotypes of Newcastle disease virus (NDV). After scanning 4,000 F gene nucleotide sequences in the NCBI database, we discovered a single RE (BsaHI) digestion site in the cleavage site. APMV-I "F gene" class II-specific primer-based reverse transcriptase PCR was utilized to amplify a 535-bp fragment, which was then digested with the RE (BsaHI) for pathotyping avian NDV field isolates and pigeon paramyxovirus-1 isolates. The avirulent (lentogenic and mesogenic strains) produced 189- and 346-bp fragments, respectively, but the result in velogenic strains remained undigested with 535-bp fragments. In addition, 45 field NDV isolates and 8 vaccine strains were used to confirm the approach. The sequence-based analysis also agrees with the data obtained utilizing the single RE (BsaHI) digestion approach. The proposed technique has the potential to distinguish between avirulent and virulent strains in a short time span, making it valuable in NDV surveillance and monitoring research. IMPORTANCE The extensive use of the NDV vaccine strain and the existence of avirulent NDV strains in wild birds makes it difficult to diagnose Newcastle Disease virus (NDV). The intracerebral pathogenicity index (ICPI) and/or sequencing-based identification, which are required to determine virulent NDV, are time-consuming, costly, difficult, and cruel techniques. We evaluated 4,000 F gene nucleotide sequences and discovered a restriction enzyme (RE; BsaHI) digestion technique for detecting NDV and vaccine pathotypes in a short time span, which is cost-effective and useful for field cases as well as for large-scale NDV monitoring and surveillance. The data acquired using the single RE BsaHI digestion technique agree with the sequence-based analysis.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/genética , Proteínas Virais de Fusão/genética , Virulência/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas/virologia , Doença de Newcastle/patologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/patogenicidade , Técnicas de Amplificação de Ácido Nucleico , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/virologia , RNA Viral/metabolismo , Análise de Sequência de RNA , Vacinas Virais/genética
20.
Bioengineered ; 12(2): 11018-11029, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34839793

RESUMO

The effects of transfection of N-terminal fragment of chromogranin A Vasostatin-1 (VS-1) nanocarriers on formation of abdominal aortic aneurysm (AAA) were discussed, and its mechanism was analyzed. Nanoparticles containing VS-1 genes were prepared by emulsion solvent evaporation method, and property of nanoparticles was examined. A total of 30 male SD rats were divided randomly into sham group (normal saline), AAA group (Type I porcine pancreatic elastase), and VS-1 group (Type I porcine pancreatic elastase+VS-1 suspension liquid). The diameter dilation of rats was measured, abdominal aortic morphology was observed by HE staining, and levels of AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) were examined by immunohistochemistry and Western blot. Correlation between AMPK as well as mTOR and diameter dilation was analyzed by Pearson correlation. VS-1 genes in VS-1 nanoparticles were 4.51% and coating efficiency of genes was 88%. Compared with rats in sham group, diameter dilation of rats in AAA group increased, damage of abdominal aorta in rats was obvious, p-AMPK decreased, and p-mTOR increased in AAA group. Compared with AAA group, diameter dilation of rats in VS-1 group decreased, abdominal aorta of rats was improved, p-AMPK increased, and p-mTOR decreased. The comparison of all above indicators had statistical meaning (P < 0.05). p-AMPK and p-mTOR were negatively (r = -0.9150 and P = 0.006) and positively correlated with the diameter dilation (r = -0.9206 and P = 0.001). VS-1 nanoparticles could inhibit the formation of AAA, which might be related to the activation of AMPK/mTOR signal path.


Assuntos
Aneurisma da Aorta Abdominal/terapia , Cromogranina A/química , Portadores de Fármacos/química , Nanopartículas/química , Fragmentos de Peptídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Aorta Abdominal/patologia , Sequência de Bases , Cromogranina A/farmacologia , DNA/genética , Enzimas de Restrição do DNA/metabolismo , Liberação Controlada de Fármacos , Masculino , Nanopartículas/ultraestrutura , Elastase Pancreática , Tamanho da Partícula , Plasmídeos/genética , Ratos , Suínos , Serina-Treonina Quinases TOR/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...