Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.081
Filtrar
1.
J Chem Inf Model ; 64(10): 4263-4276, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38728062

RESUMO

In this work, we present PharmaCore: a new, completely automatic workflow aimed at generating three-dimensional (3D) structure-based pharmacophore models toward any target of interest. The proposed approach relies on using cocrystallized ligands to create the input files for generating the pharmacophore hypotheses, integrating not only the three-dimensional structural information on the ligand but also data concerning the binding mode of these molecules put in the protein cavity. We developed a Python library that, starting from the specific UniProt ID of the protein under investigation as the only element that requires user intervention, subsequently collects and aligns the corresponding structures bearing a known ligand in a fully automated fashion, bringing them all into the same coordinate system. The protocol includes a final phase in which the aligned small molecules are used to produce the pharmacophore hypotheses directly onto the protein structure using a specific software, e.g., Phase (Schrödinger LLC). To validate the entire procedure and highlight the possible applications in the field of drug discovery and repositioning, we first generated pharmacophores for soluble epoxide hydrolase (sEH) and compared with already-published ones. Then, we reproduced the binding profile of a reported selective binder of ATAD2 bromodomain (AM879), testing it against a panel of 1741 pharmacophores related to 16 epigenetic proteins and automatically generated with PharmaCore, finally disclosing putative unprecedented off-targets. The computational predictions were successfully validated with AlphaScreen assays, highlighting the applicability of the proposed workflow in drug discovery and repositioning. Finally, the process was also validated on tankyrase 2 and SARS-CoV-2 MPro, confirming the robustness of PharmaCore.


Assuntos
Modelos Moleculares , Ligantes , Descoberta de Drogas/métodos , Proteínas/química , Proteínas/metabolismo , Conformação Proteica , Humanos , Ligação Proteica , Epóxido Hidrolases/química , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , SARS-CoV-2/efeitos dos fármacos , Simulação de Acoplamento Molecular , Automação , Software , Farmacóforo
2.
FASEB J ; 38(10): e23692, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38786655

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves an initial viral infection phase followed by a host-response phase that includes an eicosanoid and cytokine storm, lung inflammation and respiratory failure. While vaccination and early anti-viral therapies are effective in preventing or limiting the pathogenic host response, this latter phase is poorly understood with no highly effective treatment options. Inhibitors of soluble epoxide hydrolase (sEH) increase levels of anti-inflammatory molecules called epoxyeicosatrienoic acids (EETs). This study aimed to investigate the impact of sEH inhibition on the host response to SARS-CoV-2 infection in a mouse model with human angiotensin-converting enzyme 2 (ACE2) expression. Mice were infected with SARS-CoV-2 and treated with either vehicle or the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU). At day 5 post-infection, SARS-CoV-2 induced weight loss, clinical signs, a cytokine storm, an eicosanoid storm, and severe lung inflammation with ~50% mortality on days 6-8 post-infection. SARS-CoV-2 infection induced lung expression of phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) pathway genes, while suppressing expression of most cytochrome P450 genes. Treatment with the sEH inhibitor TPPU delayed weight loss but did not alter clinical signs, lung cytokine expression or overall survival of infected mice. Interestingly, TPPU treatment significantly reversed the eicosanoid storm and attenuated viral-induced elevation of 39 fatty acids and oxylipins from COX, LOX and P450 pathways, which suggests the effects at the level of PLA2 activation. The suppression of the eicosanoid storm by TPPU without corresponding changes in lung cytokines, lung inflammation or mortality reveals a surprising dissociation between systemic oxylipin and cytokine signaling pathways during SARS-CoV-2 infection and suggests that the cytokine storm is primarily responsible for morbidity and mortality in this animal model.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Síndrome da Liberação de Citocina , Eicosanoides , Epóxido Hidrolases , SARS-CoV-2 , Animais , Camundongos , Eicosanoides/metabolismo , COVID-19/imunologia , COVID-19/virologia , COVID-19/metabolismo , SARS-CoV-2/efeitos dos fármacos , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Síndrome da Liberação de Citocina/tratamento farmacológico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Citocinas/metabolismo , Humanos , Pulmão/virologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Modelos Animais de Doenças , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Feminino
3.
Eur J Med Chem ; 272: 116459, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704942

RESUMO

Activation of the aminopeptidase (AP) activity of leukotriene A4 hydrolase (LTA4H) presents a potential therapeutic strategy for resolving chronic inflammation. Previously, ARM1 and derivatives were found to activate the AP activity using the alanine-p-nitroanilide (Ala-pNA) as a reporter group in an enzyme kinetics assay. As an extension of this previous work, novel ARM1 derivatives were synthesized using a palladium-catalyzed Ullmann coupling reaction and screened using the same assay. Analogue 5, an aminopyrazole (AMP) analogue of ARM1, was found to be a potent AP activator with an AC50 of 0.12 µM. An X-ray crystal structure of LTA4H in complex with AMP was refined at 2.7 Å. Despite its AP activity with Ala-pNA substrate, AMP did not affect hydrolysis of the previously proposed natural ligand of LTA4H, Pro-Gly-Pro (PGP). This result highlights a discrepancy between the hydrolysis of more conveniently monitored chromogenic synthetic peptides typically employed in assays and endogenous peptides. The epoxide hydrolase (EH) activity of AMP was measured in vivo and the compound significantly reduced leukotriene B4 (LTB4) levels in a murine bacterial pneumonia model. However, AMP did not enhance survival in the murine pneumonia model over a 14-day period. A liver microsome stability assay showed metabolic stability of AMP. The results suggested that accelerated Ala-pNA cleavage is not sufficient for predicting therapeutic potential, even when the full mechanism of activation is known.


Assuntos
Epóxido Hidrolases , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Animais , Camundongos , Relação Estrutura-Atividade , Humanos , Estrutura Molecular , Aminopeptidases/metabolismo , Aminopeptidases/antagonistas & inibidores , Éteres/farmacologia , Éteres/química , Éteres/síntese química , Relação Dose-Resposta a Droga , Modelos Moleculares , Cristalografia por Raios X
4.
Drug Metab Dispos ; 52(7): 681-689, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38719743

RESUMO

This study aimed to characterize the effects of arsenic exposure on the expression of microsomal epoxide hydrolase (mEH or EPHX1) and soluble epoxide hydrolase (sEH or EPHX2) in the liver and small intestine. C57BL/6 mice were exposed to sodium arsenite in drinking water at various doses for up to 28 days. Intestinal, but not hepatic, mEH mRNA and protein expression was induced by arsenic at 25 ppm, in both males and females, whereas hepatic mEH expression was induced by arsenic at 50 or 100 ppm. The induction of mEH was gene specific, as the arsenic exposure did not induce sEH expression in either tissue. Within the small intestine, mEH expression was induced only in the proximal, but not the distal segments. The induction of intestinal mEH was accompanied by increases in microsomal enzymatic activities toward a model mEH substrate, cis-stilbene oxide, and an epoxide-containing drug, oprozomib, in vitro, and by increases in the levels of PR-176, the main hydrolysis metabolite of oprozomib, in the proximal small intestine of oprozomib-treated mice. These findings suggest that intestinal mEH, playing a major role in converting xenobiotic epoxides to less reactive diols, but not sEH, preferring endogenous epoxides as substrates, is relevant to the adverse effects of arsenic exposure, and that further studies of the interactions between drinking water arsenic exposure and the disposition or possible adverse effects of epoxide-containing drugs and other xenobiotic compounds in the intestine are warranted. SIGNIFICANCE STATEMENT: Consumption of arsenic-contaminated water has been associated with increased risks of various adverse health effects, such as diabetes, in humans. The small intestinal epithelial cells are the main site of absorption of ingested arsenic, but they are not well characterized for arsenic exposure-related changes. This study identified gene expression changes in the small intestine that may be mechanistically linked to the adverse effects of arsenic exposure and possible interactions between arsenic ingestion and the pharmacokinetics of epoxide-containing drugs in vivo.


Assuntos
Água Potável , Epóxido Hidrolases , Intestino Delgado , Camundongos Endogâmicos C57BL , Animais , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/genética , Camundongos , Masculino , Feminino , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/enzimologia , Arsênio/toxicidade , Arsênio/metabolismo , Arsenitos/toxicidade , Arsenitos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Microssomos/enzimologia , Compostos de Sódio/toxicidade
5.
Prostaglandins Other Lipid Mediat ; 173: 106850, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38735559

RESUMO

Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Epóxido Hidrolases , Inflamação , Síndrome Metabólica , Animais , Masculino , Camundongos , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Circulação Cerebrovascular/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/complicações , Síndrome Metabólica/patologia , Camundongos Endogâmicos C57BL
6.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673942

RESUMO

Soluble epoxide hydrolase (sEH) is an enzyme targeted for the treatment of inflammation and cardiovascular diseases. Activated inflammatory cells produce nitric oxide (NO), which induces oxidative stress and exacerbates inflammation. We identify an inhibitor able to suppress sEH and thus NO production. Five flavonoids 1-5 isolated from Inula britannica flowers were evaluated for their abilities to inhibit sEH with IC50 values of 12.1 ± 0.1 to 62.8 ± 1.8 µM and for their effects on enzyme kinetics. A simulation study using computational chemistry was conducted as well. Furthermore, five inhibitors (1-5) were confirmed to suppress NO levels at 10 µM. The results showed that flavonoids 1-5 exhibited inhibitory activity in all tests, with compound 3 exhibiting the most significant efficacy. Thus, in the development of anti-inflammatory inhibitors, compound 3 is a promising natural candidate.


Assuntos
Epóxido Hidrolases , Flavonoides , Inula , Óxido Nítrico , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Animais , Óxido Nítrico/metabolismo , Camundongos , Células RAW 264.7 , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Inula/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Cinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Flores/química
7.
J Agric Food Chem ; 72(18): 10428-10438, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38660720

RESUMO

Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.


Assuntos
Biocatálise , Epóxido Hidrolases , Proteínas Fúngicas , Fungicidas Industriais , Rhodotorula , Triazóis , Rhodotorula/enzimologia , Rhodotorula/química , Rhodotorula/metabolismo , Triazóis/química , Triazóis/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Fungicidas Industriais/síntese química , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/química , Estereoisomerismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Escherichia coli/enzimologia , Escherichia coli/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 326(6): H1366-H1385, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578240

RESUMO

Deterioration of physiological systems, like the cardiovascular system, occurs progressively with age impacting an individual's health and increasing susceptibility to injury and disease. Cellular senescence has an underlying role in age-related alterations and can be triggered by natural aging or prematurely by stressors such as the bacterial toxin lipopolysaccharide (LPS). The metabolism of polyunsaturated fatty acids by CYP450 enzymes produces numerous bioactive lipid mediators that can be further metabolized by soluble epoxide hydrolase (sEH) into diol metabolites, often with reduced biological effects. In our study, we observed age-related cardiac differences in female mice, where young mice demonstrated resistance to LPS injury, and genetic deletion or pharmacological inhibition of sEH using trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid attenuated LPS-induced cardiac dysfunction in aged female mice. Bulk RNA-sequencing analyses revealed transcriptomics differences in aged female hearts. The confirmatory analysis demonstrated changes to inflammatory and senescence gene markers such as Il-6, Mcp1, Il-1ß, Nlrp3, p21, p16, SA-ß-gal, and Gdf15 were attenuated in the hearts of aged female mice where sEH was deleted or inhibited. Collectively, these findings highlight the role of sEH in modulating the aging process of the heart, whereby targeting sEH is cardioprotective.NEW & NOTEWORTHY Soluble epoxide hydrolase (sEH) is an essential enzyme for converting epoxy fatty acids to their less bioactive diols. Our study suggests deletion or inhibition of sEH impacts the aging process in the hearts of female mice resulting in cardioprotection. Data indicate targeting sEH limits inflammation, preserves mitochondria, and alters cellular senescence in the aged female heart.


Assuntos
Envelhecimento , Epóxido Hidrolases , Lipopolissacarídeos , Animais , Feminino , Camundongos , Fatores Etários , Envelhecimento/metabolismo , Senescência Celular/efeitos dos fármacos , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/genética , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores Sexuais
9.
J Pharm Biomed Anal ; 244: 116116, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537542

RESUMO

EC5026 is a novel soluble epoxide hydrolase inhibitor being developed clinically to treat neuropathic pain and inflammation. In the current study, we employed the LC-ESI-Q-TOF-MS/MS technique to identify four in-vivo phase-I metabolites of EC5026 in rat model, out of which three were found to be novel. The identified metabolites include aliphatic hydroxylation, di-hydroxylation, terminal desaturation, and carboxylation. No phase-II metabolites were found. The pharmacokinetic profile of identified metabolites was established after a single oral dose of EC5026 to Wistar rats. The Tmax of the drug and metabolites were found to be in the range of 1-2 hours and 4-12 hours, respectively. The major metabolites M1 and M2 were found to have more than 2-fold (263.87% AUC) and equivalent exposure (96.33% AUC) compared to the parent drug, respectively. Further, the docking study revealed that the mono-hydroxylated and terminally desaturated metabolites possess better binding affinity than the parent drug. Therefore, these metabolites may hold sEH inhibition potential and can be followed through future research.


Assuntos
Epóxido Hidrolases , Ratos Wistar , Espectrometria de Massas em Tandem , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Animais , Ratos , Espectrometria de Massas em Tandem/métodos , Masculino , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Cromatografia Líquida/métodos , Hidroxilação , Administração Oral , Espectrometria de Massas por Ionização por Electrospray/métodos
10.
Neurobiol Dis ; 193: 106443, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395315

RESUMO

The coexistence of chronic pain and depression in clinical practice places a substantial social burden and profoundly impacts in patients. Although a clear correlation exists, the underlying mechanism of comorbidity between chronic pain and depression remains elusive. Research conducted in recent decades has uncovered that soluble epoxide hydrolase, a pivotal enzyme in the metabolism of polyunsaturated fatty acids, plays a crucial role in inflammation. Interestingly, this enzyme is intricately linked to the development of both pain and depression. With this understanding, this review aims to summarize the roles of soluble epoxide hydrolase in pain, depression, and their comorbidity. Simultaneously, we will also explore the underlying mechanisms, providing guidance for future research and drug development.


Assuntos
Dor Crônica , Epóxido Hidrolases , Humanos , Epóxido Hidrolases/metabolismo , Depressão , Comorbidade , Inflamação/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330013

RESUMO

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Assuntos
Epóxido Hidrolases , Neoplasias , Camundongos , Humanos , Animais , Epóxido Hidrolases/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Neoplasias/terapia , Imunoterapia , Microambiente Tumoral
12.
Sci China Life Sci ; 67(6): 1226-1241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38300441

RESUMO

Ovarian cancer is the most lethal and aggressive gynecological cancer with a high recurrence rate and is often diagnosed late. In ovarian cancer, multiple metabolic enzymes of lipid metabolism are abnormally expressed, resulting in metabolism disorder. As a characteristic pathway in polyunsaturated fatty acid (PUFA) metabolism, arachidonic acid (AA) metabolism is disturbed in ovarian cancer. Therefore, we established a 10-gene signature model to evaluate the prognostic risk of PUFA-related genes. This 10-gene signature has strong robustness and can play a stable predictive role in datasets of various platforms (TCGA, ICGC, and GSE17260). The high association between the risk subgroups and clinical characteristics indicated a good performance of the model. Our data further indicated that the high expression of LTA4H was positively correlated with poor prognosis in ovarian cancer. Deficiency of LTA4H enhanced sensitivity to Cisplatin and modified the characteristics of immune cell infiltration in ovarian cancer. Additionally, our results indicate that CCL5 was involved in the aberrant metabolism of the AA/LTA4H axis, which contributes to the reduction of tumor-infiltrating CD8+ T cells and immune escape in ovarian cancer. These findings provide new insights into the prognosis and potential target of LTA4H/CCL5 in treating ovarian cancer.


Assuntos
Quimiocina CCL5 , Cisplatino , Epóxido Hidrolases , Neoplasias Ovarianas , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Humanos , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Cisplatino/uso terapêutico , Cisplatino/farmacologia , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/genética , Linhagem Celular Tumoral , Prognóstico , Regulação Neoplásica da Expressão Gênica , Ácido Araquidônico/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos
13.
J Transl Med ; 22(1): 61, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229161

RESUMO

BACKGROUND: Revascularization and restoration of normal pulp-dentin complex are important for tissue-engineered pulp regeneration. Recently, a unique periodontal tip-like endothelial cells subtype (POTCs) specialized to dentinogenesis was identified. We have confirmed that TPPU, a soluble epoxide hydrolase (sEH) inhibitor targeting epoxyeicosatrienoic acids (EETs) metabolism, promotes bone growth and regeneration by angiogenesis and osteogenesis coupling. We hypothesized that TPPU could also promote revascularization and induce POTCs to contribute to pulp-dentin complex regeneration. Here, we in vitro and in vivo characterized the potential effect of TPPU on the coupling of angiogenesis and odontogenesis and investigated the relevant mechanism, providing new ideas for pulp-dentin regeneration by targeting sEH. METHODS: In vitro effects of TPPU on the proliferation, migration, and angiogenesis of dental pulp stem cells (DPSCs), human umbilical vein endothelial cells (HUVECs) and cocultured DPSCs and HUVECs were detected using cell counting kit 8 (CCK8) assay, wound healing, transwell, tube formation and RT-qPCR. In vivo, Matrigel plug assay was performed to outline the roles of TPPU in revascularization and survival of grafts. Then we characterized the VEGFR2 + POTCs around odontoblast layer in the molar of pups from C57BL/6 female mice gavaged with TPPU. Finally, the root segments with DPSCs mixed with Matrigel were implanted subcutaneously in BALB/c nude mice treated with TPPU and the root grafts were isolated for histological staining. RESULTS: In vitro, TPPU significantly promoted the migration and tube formation capability of cocultured DPSCs and HUVECs. ALP and ARS staining and RT-qPCR showed that TPPU promoted the osteogenic and odontogenic differentiation of cultured cells, treatment with an anti-TGF-ß blocking antibody abrogated this effect. Knockdown of HIF-1α in HUVECs significantly reversed the effect of TPPU on the expression of angiogenesis, osteogenesis and odontogenesis-related genes in cocultured cells. Matrigel plug assay showed that TPPU increased VEGF/VEGFR2-expressed cells in transplanted grafts. TPPU contributed to angiogenic-odontogenic coupling featured by increased VEGFR2 + POTCs and odontoblast maturation during early dentinogenesis in molar of newborn pups from C57BL/6 female mice gavaged with TPPU. TPPU induced more dental pulp-like tissue with more vessels and collagen fibers in transplanted root segment. CONCLUSIONS: TPPU promotes revascularization of dental pulp regeneration by enhancing migration and angiogenesis of HUVECs, and improves odontogenic differentiation of DPSCs by TGF-ß. TPPU boosts the angiogenic-odontogenic coupling by enhancing VEGFR2 + POTCs meditated odontoblast maturation partly via upregulating HIF-1α, which contributes to increasing pulp-dentin complex for tissue-engineered pulp regeneration.


Assuntos
Polpa Dentária , Epóxido Hidrolases , Camundongos , Animais , Feminino , Humanos , Epóxido Hidrolases/metabolismo , Camundongos Nus , Células-Tronco , Camundongos Endogâmicos C57BL , Regeneração , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana , Diferenciação Celular , Dentina
14.
J Biol Chem ; 300(2): 105635, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199576

RESUMO

Microbial epoxide hydrolases, cis-epoxysuccinate hydrolases (CESHs), have been utilized for commercial production of enantiomerically pure L(+)- and D(-)-tartaric acids for decades. However, the stereo-catalytic mechanism of CESH producing L(+)-tartaric acid (CESH[L]) remains unclear. Herein, the crystal structures of two CESH[L]s in ligand-free, product-complexed, and catalytic intermediate forms were determined. These structures revealed the unique specific binding mode for the mirror-symmetric substrate, an active catalytic triad consisting of Asp-His-Glu, and an arginine providing a proton to the oxirane oxygen to facilitate the epoxide ring-opening reaction, which has been pursued for decades. These results provide the structural basis for the rational engineering of these industrial biocatalysts.


Assuntos
Biocatálise , Epóxido Hidrolases , Hidrolases , Epóxido Hidrolases/metabolismo , Hidrolases/química , Hidrolases/genética , Hidrolases/metabolismo , Tartaratos/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Estrutura Quaternária de Proteína
15.
CNS Neurosci Ther ; 30(4): e14511, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37905690

RESUMO

BACKGROUND: Neuroinflammation is widely recognized as a significant hallmark of Alzheimer's disease (AD). To combat neuroinflammation, the inhibition of the soluble epoxide hydrolase (sEH) enzyme has been demonstrated crucial. Importantly, sEH inhibition could be related to other neuroprotective pathways described in AD. AIMS: The aim of the study was to unveil new molecular pathways driving neuroprotection through sEH, we used an optimized, potent, and selective sEH inhibitor (sEHi, UB-SCG-51). MATERIALS AND METHODS: UB-SCG-51 was tested in neuroblastoma cell line, SH-SY5Y, in primary mouse and human astrocytes cultures challenged with proinflammatory insults and in microglia cultures treated with amyloid oligomers, as well as in mice AD model (5XFAD). RESULTS: UB-SCG-51 (10 and 30 µM) prevented neurotoxic reactive-astrocyte conversion in primary mouse astrocytes challenged with TNF-α, IL-1α, and C1q (T/I/C) combination for 24 h. Moreover, in microglial cultures, sEHi reduced inflammation and glial activity. In addition, UB-SCG-51 rescued 5XFAD cognitive impairment, reducing the number of Amyloid-ß plaques and Tau hyperphosphorylation accompanied by a reduction in neuroinflammation and apoptotic markers. Notably, a transcriptional profile analysis revealed a new pathway modulated by sEHi treatment. Specifically, the eIF2α/CHOP pathway, which promoted the endoplasmic reticulum response, was increased in the 5XFAD-treated group. These findings were confirmed in human primary astrocytes by combining sEHi and eIF2α inhibitor (eIF2αi) treatment. Besides, combining both treatments resulted in increased in C3 gene expression after T/I/C compared with the group treated with sEHi alone in cultures. DISCUSSION: Therefore, sEHi rescued cognitive impairment and neurodegeneration in AD mice model, based on the reduction of inflammation and eIF2α/CHOP signaling pathway. CONCLUSIONS: In whole, our results support the concept that targeting neuroinflammation through sEH inhibition is a promising therapeutic strategy to fight against Alzheimer's disease with additive and/or synergistic activities targeting neuroinflammation and cell stress.


Assuntos
Doença de Alzheimer , Neuroblastoma , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/uso terapêutico , Neuroproteção , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
16.
Am J Pathol ; 194(1): 71-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925018

RESUMO

Alcohol-associated liver disease (ALD) is a serious public health problem with limited pharmacologic options. The goal of the current study was to investigate the efficacy of pharmacologic inhibition of soluble epoxide hydrolase (sEH), an enzyme involved in lipid metabolism, in experimental ALD, and to examine the underlying mechanisms. C57BL/6J male mice were subjected to acute-on-chronic ethanol (EtOH) feeding with or without the sEH inhibitor 4-[[trans-4-[[[[4-trifluoromethoxy phenyl]amino]carbonyl]-amino]cyclohexyl]oxy]-benzoic acid (TUCB). Liver injury was assessed by multiple end points. Liver epoxy fatty acids and dihydroxy fatty acids were measured by targeted metabolomics. Whole-liver RNA sequencing was performed, and free modified RNA bases were measured by mass spectrometry. EtOH-induced liver injury was ameliorated by TUCB treatment as evidenced by reduced plasma alanine aminotransferase levels and was associated with attenuated alcohol-induced endoplasmic reticulum stress, reduced neutrophil infiltration, and increased numbers of hepatic M2 macrophages. TUCB altered liver epoxy and dihydroxy fatty acids and led to a unique hepatic transcriptional profile characterized by decreased expression of genes involved in apoptosis, inflammation, fibrosis, and carcinogenesis. Several modified RNA bases were robustly changed by TUCB, including N6-methyladenosine and 2-methylthio-N6-threonylcarbamoyladenosine. These findings show the beneficial effects of sEH inhibition by TUCB in experimental EtOH-induced liver injury, warranting further mechanistic studies to explore the underlying mechanisms, and highlighting the translational potential of sEH as a drug target for this disease.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatias Alcoólicas , Camundongos , Animais , Masculino , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Hepatopatias Alcoólicas/genética , Ácidos Graxos , Etanol , RNA
17.
J Immunol ; 212(3): 433-445, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117781

RESUMO

Epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids are short-acting lipids involved in resolution of inflammation. Their short half-life, due to its metabolism by soluble epoxide hydrolase (sEH), limits their effects. Specialized proresolving mediators (SPMs) are endogenous regulatory lipids insufficiently synthesized in uncontrolled and chronic inflammation. Using an experimental periodontitis model, we pharmacologically inhibited sEH, examining its impact on T cell activation and systemic SPM production. In humans, we analyzed sEH in the gingival tissue of periodontitis patients. Mice were treated with sEH inhibitor (sEHi) and/or EETs before ligature placement and treated for 14 d. Bone parameters were assessed by microcomputed tomography and methylene blue staining. Blood plasma metabololipidomics were carried out to quantify SPM levels. We also determined T cell activation by reverse transcription-quantitative PCR and flow cytometry in cervical lymph nodes. Human gingival samples were collected to analyze sEH using ELISA and electrophoresis. Data reveal that pharmacological sEHi abrogated bone resorption and preserved bone architecture. Metabololipidomics revealed that sEHi enhances lipoxin A4, lipoxin B4, resolvin E2, and resolvin D6. An increased percentage of regulatory T cells over Th17 was noted in sEHi-treated mice. Lastly, inflamed human gingival tissues presented higher levels and expression of sEH than did healthy gingivae, being positively correlated with periodontitis severity. Our findings indicate that sEHi preserves bone architecture and stimulates SPM production, associated with regulatory actions on T cells favoring resolution of inflammation. Because sEH is enhanced in human gingivae from patients with periodontitis and connected with disease severity, inhibition may prove to be an attractive target for managing osteolytic inflammatory diseases.


Assuntos
Reabsorção Óssea , Periodontite , Humanos , Animais , Camundongos , Microtomografia por Raio-X , Periodontite/metabolismo , Inflamação , Eicosanoides , Epóxido Hidrolases/metabolismo
18.
Immun Inflamm Dis ; 11(12): e1105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156378

RESUMO

OBJECTIVES: We aimed to investigate the role of soluble epoxide hydrolase for hyperglycemia induced-disruption of blood-brain barrier (BBB) integrity after diffuse axonal injury (DAI). METHODS: Rat DAI hyperglycemia model was established by a lateral head rotation device and intraperitoneal injection of 50% glucose. Glial fibrillary acidic protein, ionized calcium-binding adapter molecule-1, ß-amyloid precursor protein, neurofilament light chain, and neurofilament heavy chain was detected by immunohistochemistry. Cell apoptosis was examined by terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) assay. The permeability of blood-brain barrier (BBB) was assessed by expression of tight junction proteins, leakage of Evans blue and brain water content. The soluble epoxide hydrolase (sEH) pathway was inhibited by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) and the nuclear transcription factor kappa B (NF-κB) pathway was inhibited by pyrrolidine dithiocarbamate and activated by phorbol-12-myristate-13-acetate in vivo and/or vitro, respectively. The inflammatory factors were detected by enzyme-linked immunosorbent assay. RESULTS: Hyperglycemia could exacerbate axonal injury, aggravate cell apoptosis and glial activation, worsen the loss of BBB integrity, increase the release of inflammatory factors, and upregulate the expression of sEH and NF-κB. Inhibition of sEH could reverse all these damages and protect BBB integrity by upregulating the expression of tight junction proteins and downregulating the levels of inflammatory factors in vivo and vitro, while the agonist of NF-κB pathway abrogated the protective effects of TPPU on BBB integrity in vitro. CONCLUSIONS: sEH was involved in mediating axonal injury induced by hyperglycemia after DAI by disrupting BBB integrity through inducing inflammation via the NF-κB pathway.


Assuntos
Lesão Axonal Difusa , Hiperglicemia , Animais , Ratos , Barreira Hematoencefálica , Epóxido Hidrolases/metabolismo , NF-kappa B/metabolismo , Proteínas de Junções Íntimas/metabolismo
19.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139180

RESUMO

Soluble epoxide hydrolase (sEH) is an important enzyme for metabolic and cardiovascular health. sEH converts FFA epoxides (EpFAs), many of which are regulators of various cellular processes, to biologically less active diols. In human studies, diol (sEH product) to EpFA (sEH substrate) ratios in plasma or serum have been used as indices of sEH activity. We previously showed these ratios profoundly decreased in rats during acute feeding, possibly reflecting decreases in tissue sEH activities. The present study was designed to test which tissue(s) these measurements in the blood represent and if factors other than sEH activity, such as renal excretion or dietary intake of EpFAs and diols, significantly alter plasma EpFAs, diols, and/or their ratios. The results show that postprandial changes in EpFAs and diols and their ratios in plasma were very similar to those observed in the liver but not in other tissues, suggesting that the liver is largely responsible for these changes in plasma levels. EpFAs and diols were excreted into the urine, but their levels were not significantly altered by feeding, suggesting that renal excretion of EpFAs and diols may not play a major role in postprandial changes in circulating EpFAs, diols, or their ratios. Diet intake had significant impacts on circulating EpFA and diol levels but not on diol-to-EpFA (D-to-E) ratios, suggesting that these ratios, reflecting sEH activities, may not be significantly affected by the availability of sEH substrates (i.e., EpFAs). In conclusion, changes in FFA D-to-E ratios in plasma may reflect those in the liver, which may in turn represent sEH activities in the liver, and they may not be significantly affected by renal excretion or the dietary intake of EpFAs and diols.


Assuntos
Epóxido Hidrolases , Compostos de Epóxi , Humanos , Ratos , Animais , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Fígado/metabolismo
20.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 9-16, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953590

RESUMO

Soluble epoxide hydrolase (sEH) inhibition has currently emerged as a therapeutic target in the treatment of various neuroinflammatory neurodegenerative diseases, including multiple sclerosis. Previously, we reported that treatment of mice with a sEH-selective inhibitor, 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea; TPPU), ameliorated chronic experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein 35-55 peptide immunization followed by injection of pertussis toxin to mice via regulating pro-inflammatory and anti-inflammatory pathways in the central nervous system. This study tested the hypothesis that the pro-inflammatory G protein-coupled receptor (GPR) 75 and anti-apoptotic phospholipase C (PLC) signaling pathways also contribute to the ameliorating effect of TPPU on chronic EAE. Brains and spinal cords of phosphate-buffered saline-, dimethyl sulfoxide-, or TPPU (3 mg/kg)-treated mice were used for the measurement of sEH, GPR75, Gaq/11, activator protein (AP)-1, PLC ß4, phosphoinositide 3-kinase (PI3K) p85a, Akt1, mitogen-activated protein kinase kinase (MEK) 1/2, extracellular signal-regulated kinase (ERK) 1/2, cyclic adenosine monophosphate-response element-binding protein (CREB) 1, B-cell lymphoma (Bcl)-2, semaphorin (SEMA) 3A, and myelin proteolipid protein (PLP) expression and/or activity by using the immunoblotting method. Expression of sEH, GPR75, Gaq/11, c-jun, phosphorylated c-Jun, and SEMA3A was lower, while PLCß4, phosphorylated PI3K p85a, phosphorylated Akt1, phosphorylated MEK1/2, phosphorylated ERK1/2, phosphorylated CREB1, Bcl-2, and myelin PLP expression was higher in the tissues of TPPU (3 mg/kg)-treated mice as compared with the EAE and vehicle control groups. Inhibition of sEH by TPPU ameliorates chronic EAE through suppressing pro-inflammatory GPR75/Gaq/11/AP-1 pathway and reducing expression of the remyelination inhibitor, SEMA3A, as well as increasing anti-apoptotic PLC/PI3K/Akt1/MEK1/2/ERK1/2/CREB1/Bcl-2 pathway activity and myelin PLP expression.


Assuntos
Encefalomielite Autoimune Experimental , Fosfolipases , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Camundongos Endogâmicos C57BL , Proteína Proteolipídica de Mielina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Semaforina-3A , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA