Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.875
Filtrar
1.
PLoS One ; 19(9): e0307877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39240891

RESUMO

Tuberculosis(TB) of the Central nervous system (CNS) is a rare and highly destructive disease. The emergence of drug resistance has increased treatment difficulty, leaving the Bacillus Calmette-Guérin (BCG) vaccine as the only licensed preventative immunization available. This study focused on identifying the epitopes of PknD (Rv0931c) and Rv0986 from Mycobacterium tuberculosis(Mtb) strain H37Rv using an in silico method. The goal was to develop a therapeutic mRNA vaccine for preventing CNS TB. The vaccine was designed to be non-allergenic, non-toxic, and highly antigenic. Codon optimization was performed to ensure effective translation in the human host. Additionally, the secondary and tertiary structures of the vaccine were predicted, and molecular docking with TLR-4 was carried out. A molecular dynamics simulation confirmed the stability of the complex. The results indicate that the vaccine structure shows effectiveness. Overall, the constructed vaccine exhibits ideal physicochemical properties, immune response, and stability, laying a theoretical foundation for future laboratory experiments.


Assuntos
Simulação por Computador , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis , Tuberculose do Sistema Nervoso Central , Humanos , Mycobacterium tuberculosis/imunologia , Tuberculose do Sistema Nervoso Central/prevenção & controle , Tuberculose do Sistema Nervoso Central/imunologia , Vacinas contra a Tuberculose/imunologia , Epitopos/imunologia , Epitopos/química , Vacinas de mRNA , Vacinas Sintéticas/imunologia
2.
Acta Trop ; 259: 107388, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39251172

RESUMO

Heartland virus (HRTV) is a single-stranded negative-sense RNA virus that infects human beings. Because there are no antiviral medications available to treat HRTV infection, supportive care management is used in cases of severe disease. Therefore, it has spurred research into developing a multi-epitope vaccine capable of providing effective protection against HRTV infection. A multi-epitope vaccine was created using a combination of immuno-informatics, molecular docking and molecular dynamics simulation in this investigation. The HRTV proteome was utilized to predict B-cell, T-cell (HTL and CTL), and IFN-epitopes. Following prediction, highly antigenic, non-allergenic and immunogenic epitopes were chosen, including 6 CTL, 8 HTL, and 5 LBL epitopes that were connected to the final peptide by AAY, GPGPG, and KK linkers, respectively. An adjuvant was introduced to the vaccine's N-terminal through the EAAAK linker to increase its immunogenicity. Following the inclusion of linkers and adjuvant, the final construct has 359 amino acids. The presence of B-cell and IFN-γ-epitopes validates the construct's acquired humoral and cell-mediated immune responses. To ensure the vaccine's safety and immunogenicity profile, its allergenicity, antigenicity, and various physicochemical characteristics were assessed. Docking was used to assess the binding affinity and molecular interaction between the vaccination and TLR-3. In silico cloning was used to confirm the construct's validity and expression efficiency. The results of these computer assays demonstrated that the designed vaccine is highly promising in terms of developing protective immunity against HRTV; nevertheless, additional in vivo and in vitro investigations are required to validate its true immune-protective efficiency.


Assuntos
Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vacinas Virais , Humanos , Vacinas Virais/imunologia , Vacinas Virais/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Biologia Computacional , Epitopos/imunologia , Epitopos/química , Bunyaviridae
3.
Biochemistry (Mosc) ; 89(7): 1260-1272, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39218023

RESUMO

COVID-19 has caused millions of deaths and many times more infections worldwide, emphasizing the unpreparedness of the global health system in the face of new infections and the key role for vaccines and therapeutics, including virus-neutralizing antibodies, in prevention and containment of the disease. Continuous evolution of the SARS-CoV-2 coronavirus has been causing its new variants to evade the action of the immune system, which highlighted the importance of detailed knowledge of the epitopes of already selected potent virus-neutralizing antibodies. A single-chain antibody ("nanobody") targeting the SARS-CoV-2 receptor-binding domain (RBD), clone P2C5, had exhibited robust virus-neutralizing activity against all SARS-CoV-2 variants and, being a major component of the anti-COVID-19 formulation "GamCoviMab", had successfully passed Phase I of clinical trials. However, after the emergence of the Delta and XBB variants, a decrease in the neutralizing activity of this nanobody was observed. Here we report on the successful crystal structure determination of the RBD:P2C5 complex at 3.1 Å, which revealed the intricate protein-protein interface, sterically occluding full ACE2 receptor binding by the P2C5-neutralized RBD. Moreover, the structure revealed the developed RBD:P2C5 interface centered around residues Leu452 and Phe490, thereby explaining the evasion of the Delta or Omicron XBB, but not Omicron B.1.1.529 variant, as a result of the single L452R or F490S mutations, respectively, from the action of P2C5. The structure obtained is expected to foster nanobody engineering in order to rescue neutralization activity and will facilitate epitope mapping for other neutralizing nanobodies by competition assays.


Assuntos
Anticorpos Neutralizantes , SARS-CoV-2 , Anticorpos de Domínio Único , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Domínios Proteicos , Ligação Proteica , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Evasão da Resposta Imune , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/imunologia , Sítios de Ligação
4.
Sci Rep ; 14(1): 17910, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095538

RESUMO

Helicobacter pylori (H. pylori) is responsible for various chronic or acute diseases, such as stomach ulcers, dyspepsia, peptic ulcers, gastroesophageal reflux, gastritis, lymphoma, and stomach cancers. Although specific drugs are available to treat the bacterium's harmful effects, there is an urgent need to develop a preventive or therapeutic vaccine. Therefore, the current study aims to create a multi-epitope vaccine against H. pylori using lipid nanoparticles. Five epitopes from five target proteins of H. pylori, namely, Urease, CagA, HopE, SabA, and BabA, were used. Immunogenicity, MHC (Major Histocompatibility Complex) bonding, allergenicity, toxicity, physicochemical analysis, and global population coverage of the entire epitopes and final construct were carefully examined. The study involved using various bioinformatic web tools to accomplish the following tasks: modeling the three-dimensional structure of a set of epitopes and the final construct and docking them with Toll-Like Receptor 4 (TLR4). In the experimental phase, the final multi-epitope construct was synthesized using the solid phase method, and it was then enclosed in lipid nanoparticles. After synthesizing the construct, its loading, average size distribution, and nanoliposome shape were checked using Nanodrop at 280 nm, dynamic light scattering (DLS), and atomic force microscope (AFM). The designed vaccine has been confirmed to be non-toxic and anti-allergic. It can bind with different MHC alleles at a rate of 99.05%. The construct loading was determined to be about 91%, with an average size of 54 nm. Spherical shapes were also observed in the AFM images. Further laboratory tests are necessary to confirm the safety and immunogenicity of the multi-epitope vaccine.


Assuntos
Vacinas Bacterianas , Biologia Computacional , Helicobacter pylori , Nanopartículas , Helicobacter pylori/imunologia , Nanopartículas/química , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/química , Biologia Computacional/métodos , Humanos , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/química , Epitopos/imunologia , Epitopos/química , Simulação de Acoplamento Molecular , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química , Infecções por Helicobacter/prevenção & controle , Infecções por Helicobacter/imunologia , Receptor 4 Toll-Like/imunologia , Urease/imunologia , Urease/química , Imunoinformática , Lipossomos
5.
BMC Genomics ; 25(1): 791, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160492

RESUMO

Acinetobacter baumannii is a gram-negative bacillus prevalent in nature, capable of thriving under various environmental conditions. As an opportunistic pathogen, it frequently causes nosocomial infections such as urinary tract infections, bacteremia, and pneumonia, contributing to increased morbidity and mortality in clinical settings. Consequently, developing novel vaccines against Acinetobacter baumannii is of utmost importance. In our study, we identified 10 highly conserved antigenic proteins from the NCBI and UniProt databases for epitope mapping. We subsequently screened and selected 8 CTL, HTL, and LBL epitopes, integrating them into three distinct vaccines constructed with adjuvants. Following comprehensive evaluations of immunological and physicochemical parameters, we conducted molecular docking and molecular dynamics simulations to assess the efficacy and stability of these vaccines. Our findings indicate that all three multi-epitope mRNA vaccines designed against Acinetobacter baumannii are promising; however, further animal studies are required to confirm their reliability and effectiveness.


Assuntos
Acinetobacter baumannii , Vacinas Bacterianas , Biologia Computacional , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Biologia Computacional/métodos , Epitopos/imunologia , Epitopos/química , Simulação de Acoplamento Molecular , Infecções por Acinetobacter/prevenção & controle , Infecções por Acinetobacter/imunologia , Mapeamento de Epitopos , Vacinas de mRNA , Simulação de Dinâmica Molecular , Humanos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
6.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39133098

RESUMO

Pseudomonas aeruginosa is a complex nosocomial infectious agent responsible for numerous illnesses, with its growing resistance variations complicating treatment development. Studies have emphasized the importance of virulence factors OprE and OprF in pathogenesis, highlighting their potential as vaccine candidates. In this study, B-cell, MHC-I, and MHC-II epitopes were identified, and molecular linkers were active to join these epitopes with an appropriate adjuvant to construct a vaccine. Computational tools were employed to forecast the tertiary framework, characteristics, and also to confirm the vaccine's composition. The potency was weighed through population coverage analysis and immune simulation. This project aims to create a multi-epitope vaccine to reduce P. aeruginosa-related illness and mortality using immunoinformatics resources. The ultimate complex has been determined to be stable, soluble, antigenic, and non-allergenic upon inspection of its physicochemical and immunological properties. Additionally, the protein exhibited acidic and hydrophilic characteristics. The Ramachandran plot, ProSA-web, ERRAT, and Verify3D were employed to ensure the final model's authenticity once the protein's three-dimensional structure had been established and refined. The vaccine model showed a significant binding score and stability when interacting with MHC receptors. Population coverage analysis indicated a global coverage rate of 83.40%, with the USA having the highest coverage rate, exceeding 90%. Moreover, the vaccine sequence underwent codon optimization before being cloned into the Escherichia coli plasmid vector pET-28a (+) at the EcoRI and EcoRV restriction sites. Our research has developed a vaccine against P. aeruginosa that has strong binding affinity and worldwide coverage, offering an acceptable way to mitigate nosocomial infections.


Assuntos
Biologia Computacional , Infecções por Pseudomonas , Pseudomonas aeruginosa , Sepse , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/genética , Humanos , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Sepse/prevenção & controle , Sepse/imunologia , Sepse/microbiologia , Biologia Computacional/métodos , Epitopos/imunologia , Epitopos/química , Pneumonia/prevenção & controle , Pneumonia/imunologia , Pneumonia/microbiologia , Vacinas contra Pseudomonas/imunologia , Vacinas Bacterianas/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética
7.
Nat Commun ; 15(1): 7219, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174507

RESUMO

Anelloviruses are nonpathogenic viruses that comprise a major portion of the human virome. Despite being ubiquitous in the human population, anelloviruses (ANVs) remain poorly understood. Basic features of the virus, such as the identity of its capsid protein and the structure of the viral particle, have been unclear until now. Here, we use cryogenic electron microscopy to describe the first structure of an ANV-like particle. The particle, formed by 60 jelly roll domain-containing ANV capsid proteins, forms an icosahedral particle core from which spike domains extend to form a salient part of the particle surface. The spike domains come together around the 5-fold symmetry axis to form crown-like features. The base of the spike domain, the P1 subdomain, shares some sequence conservation between ANV strains while a hypervariable region, forming the P2 subdomain, is at the spike domain apex. We propose that this structure renders the particle less susceptible to antibody neutralization by hiding vulnerable conserved domains while exposing highly diverse epitopes as immunological decoys, thereby contributing to the immune evasion properties of anelloviruses. These results shed light on the structure of anelloviruses and provide a framework to understand their interactions with the immune system.


Assuntos
Proteínas do Capsídeo , Microscopia Crioeletrônica , Evasão da Resposta Imune , Vírion , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/ultraestrutura , Vírion/ultraestrutura , Vírion/imunologia , Humanos , Anelloviridae/genética , Anelloviridae/imunologia , Modelos Moleculares , Domínios Proteicos , Epitopos/imunologia , Epitopos/química , Sequência de Aminoácidos
8.
Emerg Microbes Infect ; 13(1): 2389095, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39101691

RESUMO

Influenza virus infection poses a continual menace to public health. Here, we developed soluble trimeric HA ectodomain vaccines by establishing interprotomer disulfide bonds in the stem region, which effectively preserve the native antigenicity of stem epitopes. The stable trimeric H1 ectodomain proteins exhibited higher thermal stabilities in comparison with unmodified HAs and showed strong binding activities towards a panel of anti-stem cross-reactive antibodies that recognize either interprotomer or intraprotomer epitopes. Negative stain transmission electron microscopy (TEM) analysis revealed the stable trimer architecture of the interprotomer disulfide-stapled WA11#5, NC99#2, and FLD#1 proteins as well as the irregular aggregation of unmodified HA molecules. Immunizations of mice with those trimeric HA ectodomain vaccines formulated with incomplete Freund's adjuvant elicited significantly more potent cross-neutralizing antibody responses and offered broader immuno-protection against lethal infections with heterologous influenza strains compared to unmodified HA proteins. Additionally, the findings of our study indicate that elevated levels of HA stem-specific antibody responses correlate with strengthened cross-protections. Our design strategy has proven effective in trimerizing HA ectodomains derived from both influenza A and B viruses, thereby providing a valuable reference for designing future influenza HA immunogens.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Dissulfetos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Anticorpos Antivirais/imunologia , Camundongos , Dissulfetos/química , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Anticorpos Neutralizantes/imunologia , Feminino , Proteção Cruzada/imunologia , Reações Cruzadas , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Influenza Humana/virologia , Epitopos/imunologia , Epitopos/genética , Epitopos/química , Multimerização Proteica , Vírus da Influenza B/imunologia , Vírus da Influenza B/genética , Vírus da Influenza B/química
9.
J Agric Food Chem ; 72(36): 20077-20090, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39198262

RESUMO

Spotted seabass (Lateolabrax maculatus) is the second largest maricultural fish species in China and is the main trigger of food-related allergic reactions. Nevertheless, studies on the allergens of L. maculatus are limited. This study aimed to characterize pan-allergen parvalbumin from L. maculatus. Two proteins of about 11 kDa were purified and confirmed as parvalbumins by mass spectrometry. The IgG- and IgE-binding activities were evaluated through an immunoblotting assay. The molecular characteristics of ß-parvalbumin were investigated by combining proteomics, genomics, and immunoinformatics approaches. The results indicated that ß-parvalbumin consists of 109 amino acids with a molecular weight of 11.5 kDa and is the major allergen displaying strong IgE-binding capacity. In silico analysis and a dot blotting assay confirmed seven linear B cell epitopes distributed mainly on α-helixes and the calcium-binding loops. In addition, the cross-reactivity among 26 commonly consumed fish species was analyzed. The in-house generated anti-L. maculatus parvalbumin polyclonal antibody recognized 100% of the 26 fish species, demonstrating cross-reactivity and better binding capacity than the anticod parvalbumin antibody. Together, this study provides an efficient protocol to characterize allergens with multiomics methods and supports parvalbumin from L. maculatus as a candidate for fish allergen determination and allergy diagnosis.


Assuntos
Alérgenos , Reações Cruzadas , Proteínas de Peixes , Hipersensibilidade Alimentar , Imunoglobulina E , Parvalbuminas , Parvalbuminas/imunologia , Parvalbuminas/química , Parvalbuminas/genética , Animais , Alérgenos/imunologia , Alérgenos/genética , Alérgenos/química , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Imunoglobulina E/imunologia , Hipersensibilidade Alimentar/imunologia , Bass/imunologia , Bass/genética , Epitopos/imunologia , Epitopos/química , Humanos , Proteômica , Imunoglobulina G/imunologia , Sequência de Aminoácidos , Multiômica
10.
Talanta ; 280: 126636, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39126964

RESUMO

As artificial receptors for protein recognition, epitope-imprinted polymers combined with fluorescence sensing based on quantum dots (QDs) can be potentially used for biological analysis and disease diagnosis. However, the usual way for fabrication of QD sensors through unoriented epitope imprinting is confronted with the problems of disordered imprinting sites and low template utilization. In this context, a facile and efficient oriented epitope surface imprinting was put forward based on immobilization of the epitope templates via thiol-disulfide exchange reactions. With N-succinimidyl 3-(2-pyridyldithio)-propionate (SPDP) as a heterobifunctional reagent, cysteine-modified epitopes of cytochrome c were anchored on the surface of pyridyl disulfide functionalized silica nanoparticles sandwiching CdTe QDs. After surface imprinting via a sol-gel process, the epitope templates were removed from the surface-imprinted layers simply by reduction of the thiol-disulfide, affording oriented epitope-imprinted sites. By this method, the amount of epitope templates was only 1/20 of traditionally unoriented epitopes. The resulting sensors demonstrated significantly enhanced imprinting performance and high sensitivity, with the imprinting factor increasing from 2.6 to 3.9, and the limit of detection being 91 nM. Such epitope-oriented surface-imprinted method may offer a new design strategy for the construction of high-affinity protein recognition nanomaterials with fluorescence sensing.


Assuntos
Dissulfetos , Epitopos , Impressão Molecular , Nanopartículas , Pontos Quânticos , Dióxido de Silício , Compostos de Sulfidrila , Pontos Quânticos/química , Dióxido de Silício/química , Compostos de Sulfidrila/química , Epitopos/química , Dissulfetos/química , Nanopartículas/química , Propriedades de Superfície , Telúrio/química , Fluorescência , Espectrometria de Fluorescência , Compostos de Cádmio/química
11.
Nat Commun ; 15(1): 7334, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187497

RESUMO

HIV-1 envelope glycoproteins (Envs) of most primary HIV-1 strains exist in closed conformation and infrequently sample open states, limiting access to internal epitopes. Thus, immunogen design aims to mimic the closed Env conformation as preferred target for eliciting broadly neutralizing antibodies (bnAbs). Here we identify incompletely closed Env conformations of 6 out of 13 transmitted/founder (T/F) strains that are sensitive to antibodies that recognize internal epitopes typically exposed on open Envs. A 3.6 Å cryo-electron microscopy structure of unliganded, incompletely closed T/F Envs (1059-SOSIP) reveals protomer motion that increased sampling of states with incompletely closed trimer apex. We reconstruct de novo the post-transmission evolutionary pathway of a second T/F. Evolved viruses exhibit increased Env resistance to cold, soluble CD4 and 19b, all of which correlate with closing of the adapted Env trimer. Lastly, we show that the ultra-broad N6 bnAb efficiently recognizes different Env conformations and exhibits improved antiviral breadth against VRC01-resistant Envs isolated during the first-in-humans antibody-mediated-prevention trial.


Assuntos
Anticorpos Neutralizantes , Microscopia Crioeletrônica , Anticorpos Anti-HIV , HIV-1 , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana , HIV-1/imunologia , Humanos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Anti-HIV/imunologia , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Epitopos/imunologia , Epitopos/química , Anticorpos Amplamente Neutralizantes/imunologia , Anticorpos Amplamente Neutralizantes/química , Células HEK293 , Antígenos CD4/metabolismo , Antígenos CD4/imunologia , Antígenos CD4/química , Modelos Moleculares
12.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39201514

RESUMO

Transmissible gastroenteritis virus (TGEV) is an etiological agent of enteric disease that results in high mortality rates in piglets. The economic impact of the virus is considerable, causing significant losses to the pig industry. The development of an efficacious subunit vaccine to provide promising protection against TGEV is of the utmost importance. The viral antigen, spike glycoprotein (S), is widely regarded as one of the most effective antigenic components for vaccine research. In this study, we employed immunoinformatics and molecular dynamics approaches to develop an 'ideal' multi-epitope vaccine. Firstly, the dominant, non-toxic, highly antigenic T (Th, CTL) and B cell epitopes predicted from the TGEV S protein were artificially engineered in tandem to design candidate subunit vaccines. Molecular docking and dynamic simulation results demonstrate that it exhibits robust interactions with toll-like receptor 4 (TLR4). Of particular significance was the finding that the vaccine was capable of triggering an immune response in mammals, as evidenced by the immune simulation results. The humoral aspect is typified by elevated levels of IgG and IgM, whereas the cellular immune aspect is capable of eliciting the robust production of interleukins and cytokines (IFN-γ and IL-2). Furthermore, the adoption of E. coli expression systems for the preparation of vaccines will also result in cost savings. This study offers logical guidelines for the development of a secure and efficacious subunit vaccine against TGEV, in addition to providing a novel theoretical foundation and strategy to prevent associated CoV infections.


Assuntos
Gastroenterite Suína Transmissível , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vírus da Gastroenterite Transmissível , Vacinas Virais , Vírus da Gastroenterite Transmissível/imunologia , Animais , Vacinas Virais/imunologia , Suínos , Gastroenterite Suína Transmissível/prevenção & controle , Gastroenterite Suína Transmissível/imunologia , Epitopos de Linfócito T/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Epitopos de Linfócito B/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Biologia Computacional/métodos , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Epitopos/imunologia , Epitopos/química
13.
J Mol Graph Model ; 132: 108848, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182254

RESUMO

Staphylococcus aureus is a common bacterium that causes a variety of infections in humans. This microorganism produces several virulence factors, including hemolysins, which contribute to its disease-causing ability. The treatment of S. aureus infections typically involves the use of antibiotics. However, the emergence of antibiotic-resistant strains has become a major concern. Therefore, vaccination against S. aureus has gained attention as an alternative approach. Vaccination has the advantage of stimulating the immune system to produce specific antibodies that can neutralize bacteria and prevent infection. However, developing an effective vaccine against S. aureus has proven to be challenging. This study aimed to use in silico methods to design a multi-epitope vaccine against S. aureus infection based on hemolysin proteins. The designed vaccine contained four B-cell epitopes, four CTL epitopes, and four HTL epitopes, as well as the ribosomal protein L7/L12 and pan-HLA DR-binding epitope, included as adjuvants. Furthermore, the vaccine was non-allergenic and non-toxic with the potential to stimulate the TLR2-, TLR-4, and TLR-6 receptors. The predicted vaccine exhibited a high degree of antigenicity and stability, suggesting potential for further development as a viable vaccine candidate. The population coverage of the vaccine was 94.4 %, indicating potential widespread protection against S. aureus. Overall, these findings provide valuable insights into the design of an effective multi-epitope vaccine against S. aureus infection and pave the way for future experimental validations.


Assuntos
Epitopos de Linfócito B , Proteínas Hemolisinas , Staphylococcus aureus , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/química , Staphylococcus aureus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Humanos , Vacinas Antiestafilocócicas/imunologia , Vacinas Antiestafilocócicas/química , Biologia Computacional/métodos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos/imunologia , Epitopos/química , Sequência de Aminoácidos
14.
J Am Chem Soc ; 146(34): 23842-23853, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39146039

RESUMO

Understanding binding epitopes involved in protein-protein interactions and accurately determining their structure are long-standing goals with broad applicability in industry and biomedicine. Although various experimental methods for binding epitope determination exist, these approaches are typically low throughput and cost-intensive. Computational methods have potential to accelerate epitope predictions; however, recently developed artificial intelligence (AI)-based methods frequently fail to predict epitopes of synthetic binding domains with few natural homologues. Here we have developed an integrated method employing generalized-correlation-based dynamic network analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2Multimer structures, to unravel the structure and binding epitope of the therapeutic PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics trajectory analysis were ineffective in distinguishing between two proposed binding models, parallel and perpendicular. However, our integrated approach, utilizing dynamic network analysis, demonstrated that the perpendicular mode was significantly more stable. These predictions were validated using a suite of experimental epitope mapping protocols, including cross-linking mass spectrometry and next-generation sequencing-based deep mutational scanning. Conversely, AlphaFold3 failed to predict a structure bound in the perpendicular pose, highlighting the necessity for exploratory research in the search for binding epitopes and challenging the notion that AI-generated protein structures can be accepted without scrutiny. Our research underscores the potential of employing dynamic network analysis to enhance AI-based structure predictions for more accurate identification of protein-protein interaction interfaces.


Assuntos
Antígeno B7-H1 , Epitopos , Simulação de Dinâmica Molecular , Antígeno B7-H1/química , Antígeno B7-H1/imunologia , Epitopos/química , Epitopos/imunologia , Inteligência Artificial , Humanos , Ligação Proteica
15.
Nature ; 632(8025): 622-629, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112696

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a severe, post-infectious sequela of SARS-CoV-2 infection1,2, yet the pathophysiological mechanism connecting the infection to the broad inflammatory syndrome remains unknown. Here we leveraged a large set of samples from patients with MIS-C to identify a distinct set of host proteins targeted by patient autoantibodies including a particular autoreactive epitope within SNX8, a protein involved in regulating an antiviral pathway associated with MIS-C pathogenesis. In parallel, we also probed antibody responses from patients with MIS-C to the complete SARS-CoV-2 proteome and found enriched reactivity against a distinct domain of the SARS-CoV-2 nucleocapsid protein. The immunogenic regions of the viral nucleocapsid and host SNX8 proteins bear remarkable sequence similarity. Consequently, we found that many children with anti-SNX8 autoantibodies also have cross-reactive T cells engaging both the SNX8 and the SARS-CoV-2 nucleocapsid protein epitopes. Together, these findings suggest that patients with MIS-C develop a characteristic immune response to the SARS-CoV-2 nucleocapsid protein that is associated with cross-reactivity to the self-protein SNX8, demonstrating a mechanistic link between the infection and the inflammatory syndrome, with implications for better understanding a range of post-infectious autoinflammatory diseases.


Assuntos
Anticorpos Antivirais , Autoanticorpos , COVID-19 , Reações Cruzadas , Epitopos , Mimetismo Molecular , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , Anticorpos Antivirais/imunologia , Autoanticorpos/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/complicações , Reações Cruzadas/imunologia , Epitopos/imunologia , Epitopos/química , Mimetismo Molecular/imunologia , Fosfoproteínas/química , Fosfoproteínas/imunologia , SARS-CoV-2/química , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Nexinas de Classificação/química , Nexinas de Classificação/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Síndrome de Resposta Inflamatória Sistêmica/virologia , Linfócitos T/imunologia
16.
ACS Chem Biol ; 19(9): 2050-2059, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39137393

RESUMO

Generating antibodies specific to the functional epitope containing phosphotyrosine remains highly challenging. Here, we create an "epitope-directed immunogen" by incorporating fluorosulfate-l-tyrosine (FSY) with cross-linking activities into a specific tyrosine phosphorylation site of insulin receptor substrate 1 (IRS1) and immunizing mice to elicit site-specific antibody responses. By taking advantage of antibody clonal selection and evolution in vivo, we efficiently identified antibodies that target the IRS1 Y612 epitope and are capable of neutralizing the binding interactions between IRS1 and p85α mediated by the phosphorylation of Y612. This epitope-directed antibody elicitation by encoding the cross-linking reactivity in the immunogen potentially enables a general method for facile generation of neutralizing antibodies to protein tyrosine phosphorylation sites.


Assuntos
Anticorpos Neutralizantes , Epitopos , Proteínas Substratos do Receptor de Insulina , Epitopos/imunologia , Epitopos/química , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/imunologia , Animais , Fosforilação , Camundongos , Anticorpos Neutralizantes/imunologia , Tirosina/química , Tirosina/imunologia , Humanos
17.
Sci Rep ; 14(1): 19533, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174623

RESUMO

Due to the high affinity and specificity of antibodies toward antigens, various antibody-based applications have been developed. Recently, variable antigen-binding domains of heavy-chain antibodies (VHH) have become an attractive alternative to conventional fragment antibodies due to their unique molecular characteristics. As an antibody-generating strategy, synthetic VHH libraries (including humanized VHH libraries) have been developed using distinct strategies to constrain the diversity of amino acid sequences. In this study, we designed and constructed several novel synthetic humanized VHH libraries based on biophysical analyses conducted using the complementarity determining region-grafting method and comprehensive sequence analyses of VHHs deposited in the protein data bank. We obtained VHHs from the libraries, and hit clones exhibited considerable thermal stability. We also found that VHHs from distinct libraries tended to have different epitopes. Based on our results, we propose a strategy for generating humanized VHHs with distinct epitopes toward various antigens by utilizing our library combinations.


Assuntos
Regiões Determinantes de Complementaridade , Biblioteca de Peptídeos , Humanos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Regiões Determinantes de Complementaridade/genética , Epitopos/imunologia , Epitopos/química , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Sequência de Aminoácidos , Antígenos/imunologia , Estabilidade Proteica
18.
Commun Biol ; 7(1): 979, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134636

RESUMO

Previous work has shown that binding of target proteins to a sparse, unbiased sample of all possible peptide sequences is sufficient to train a machine learning model that can then predict, with statistically high accuracy, target binding to any possible peptide sequence of similar length. Here, highly sequence-specific molecular recognition is explored by measuring binding of 8 monoclonal antibodies (mAbs) with specific linear cognate epitopes to an array containing 121,715 near-random sequences about 10 residues in length. Network models trained on resulting sequence-binding values are used to predict the binding of each mAb to its cognate sequence and to an in silico generated one million random sequences. The model always ranks the binding of the cognate sequence in the top 100 sequences, and for 6 of the 8 mAbs, the cognate sequence ranks in the top ten. Practically, this approach has potential utility in selecting highly specific mAbs for therapeutics or diagnostics. More fundamentally, this demonstrates that very sparse random sampling of a large amino acid sequence spaces is sufficient to generate comprehensive models predictive of highly specific molecular recognition.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Sequência de Aminoácidos , Aprendizado de Máquina , Epitopos/imunologia , Epitopos/química , Humanos , Ligação Proteica , Sítios de Ligação de Anticorpos , Simulação por Computador
19.
BMC Biotechnol ; 24(1): 45, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970027

RESUMO

Marburg virus (MARV) is a highly contagious and virulent agent belonging to Filoviridae family. MARV causes severe hemorrhagic fever in humans and non-human primates. Owing to its highly virulent nature, preventive approaches are promising for its control. There is currently no approved drug or vaccine against MARV, and management mainly involves supportive care to treat symptoms and prevent complications. Our aim was to design a novel multi-epitope vaccine (MEV) against MARV using immunoinformatics studies. In this study, various proteins (VP35, VP40 and glycoprotein precursor) were used and potential epitopes were selected. CTL and HTL epitopes covered 79.44% and 70.55% of the global population, respectively. The designed MEV construct was stable and expressed in Escherichia coli (E. coli) host. The physicochemical properties were also acceptable. MARV MEV candidate could predict comprehensive immune responses such as those of humoral and cellular in silico. Additionally, efficient interaction to toll-like receptor 3 (TLR3) and its agonist (ß-defensin) was predicted. There is a need for validation of these results using further in vitro and in vivo studies.


Assuntos
Biologia Computacional , Doença do Vírus de Marburg , Marburgvirus , Vacinas Virais , Marburgvirus/imunologia , Doença do Vírus de Marburg/prevenção & controle , Doença do Vírus de Marburg/imunologia , Vacinas Virais/imunologia , Biologia Computacional/métodos , Animais , Humanos , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos/imunologia , Epitopos/genética , Epitopos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Imunoinformática
20.
Methods Mol Biol ; 2821: 179-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997489

RESUMO

Characterization of peptide antibodies through identification of their target epitopes is of utmost importance, as information about epitopes provide important knowledge, among others, for discovery and development of new therapeutics, vaccines, and diagnostics.This chapter describes a strategy for mapping of continuous peptide antibody epitopes using resin-bound and soluble peptides. The approach combines three different types of peptide sets for full characterization of peptide antibodies; (i) overlapping peptides, used to locate antigenic regions; (ii) truncated peptides, used to identify the minimal peptide length required for antibody binding; and (iii) substituted peptides, used to identify the key residues important for antibody binding and to determine the specific contribution of key residues. For initial screening, resin-bound peptides are used for epitope estimation, while soluble peptides subsequently are used for final epitope characterization and identification of critical hot spot residues. The combination of resin-bound peptides and soluble peptides for epitope mapping provides a time-saving and straightforward approach for characterization of antibodies recognizing continuous epitopes, which applies to peptide antibodies and occasionally antibodies directed to larger proteins as well.


Assuntos
Anticorpos , Mapeamento de Epitopos , Epitopos , Peptídeos , Mapeamento de Epitopos/métodos , Peptídeos/imunologia , Peptídeos/química , Epitopos/imunologia , Epitopos/química , Anticorpos/imunologia , Anticorpos/química , Solubilidade , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...