Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.277
Filtrar
1.
Clin Lab Med ; 44(3): 495-509, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089754

RESUMO

Clinical flow cytometry plays a vital role in the diagnosis and monitoring of various red blood cell disorders. The high throughput, precision, and automation potential of this technique allows for cost-effective and timely analysis compared to older and more manual test methods. Flow cytometric analysis serves as the gold standard diagnostic method for multiple hematological disorders, especially in clinical scenarios where an assay needs to have high sensitivity, high specificity, and a short turnaround time. In this review, we discuss the role of flow cytometric analysis in paroxysmal nocturnal hemoglobinuria, fetal-maternal hemorrhage, and hereditary spherocytosis.


Assuntos
Citometria de Fluxo , Esferocitose Hereditária , Humanos , Citometria de Fluxo/métodos , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/sangue , Eritrócitos/citologia , Hemoglobinúria Paroxística/diagnóstico , Hemoglobinúria Paroxística/sangue , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/sangue , Gravidez , Feminino , Transfusão Feto-Materna/diagnóstico , Transfusão Feto-Materna/sangue
2.
Sci Rep ; 14(1): 18477, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122771

RESUMO

Measurement of cellular resting membrane potential (RMP) is important in understanding ion channels and their role in regulation of cell function across a wide range of cell types. However, methods available for the measurement of RMP (including patch clamp, microelectrodes, and potential-sensitive fluorophores) are expensive, slow, open to operator bias, and often result in cell destruction. We present non-contact, label-free membrane potential estimation which uses dielectrophoresis to determine the cytoplasm conductivity slope as a function of medium conductivity. By comparing this to patch clamp data available in the literature, we have demonstratet the accuracy of this approach using seven different cell types, including primary suspension cells (red blood cells, platelets), cultured suspension cells (THP-1), primary adherent cells (chondrocytes, human umbilical mesenchymal stem cells), and adherent (HeLa) and suspension (Jurkat) cancer cell lines. Analysis of the effect of ion channel inhibitors suggests the effects of pharmaceutical agents (TEA on HeLa; DMSO and neuraminidase on red blood cells) can also be measured. Comparison with published values of membrane potential suggest that the differences between our estimates and values recorded by patch clamp are accurate to within published margins of error. The method is low-cost, non-destructive, operator-independent and label-free, and has previously been shown to allow cells to be recovered after measurement.


Assuntos
Eletroforese , Potenciais da Membrana , Humanos , Potenciais da Membrana/fisiologia , Eletroforese/métodos , Células HeLa , Células Jurkat , Técnicas de Patch-Clamp/métodos , Eritrócitos/citologia , Eritrócitos/metabolismo
3.
Anal Chem ; 96(31): 12718-12728, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39047233

RESUMO

Glycans, particularly sialic acids (SAs), play crucial roles in diverse biological processes. Despite their significance, analyzing specific glycans, such as sialic acids, on individual small extracellular vesicles (sEVs) has remained challenging due to the limited glycan capacity and substantial heterogeneity of sEVs. To tackle this issue, we introduce a chemical modification method of surface SAs on sEVs named PALEV-nFCM, which involves periodate oxidation and aniline-catalyzed oxime ligation (PAL), in conjunction with single-particle analysis using a laboratory-built nano-flow cytometer (nFCM). The specificity of the PALEV labeling method was validated using SA-decorated liposomes, enzymatic removal of terminal SA residues, lectin preblocking, and cellular treatment with an endogenous sialyltransferase inhibitor. Comprehensive mapping of SA distributions was conducted for sEVs derived from different sources, including conditioned cell culture medium (CCCM) of various cell lines, human saliva, and human red blood cells (RBCs). Notably, treatment with the calcium ionophore substantially increases the population of SA-positive RBC sEVs and enhances the SA content on individual RBC sEVs as well. nFCM provides a sensitive and versatile platform for mapping SAs of individual sEVs, which could significantly contribute to resolving the heterogeneity of sEVs and advancing the understanding of their glycosignature.


Assuntos
Vesículas Extracelulares , Citometria de Fluxo , Humanos , Vesículas Extracelulares/química , Ácido N-Acetilneuramínico/análise , Ácido N-Acetilneuramínico/química , Eritrócitos/química , Eritrócitos/metabolismo , Eritrócitos/citologia , Propriedades de Superfície , Nanotecnologia , Saliva/química , Compostos de Anilina/química , Tamanho da Partícula
4.
Biomolecules ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062526

RESUMO

Red blood cell (RBC) storage solutions have evolved significantly over the past decades to optimize the preservation of cell viability and functionality during hypothermic storage. This comprehensive review provides an in-depth analysis of the effects of various storage solutions and conditions on critical RBC parameters during refrigerated preservation. A wide range of solutions, from basic formulations such as phosphate-buffered saline (PBS), to advanced additive solutions (ASs), like AS-7 and phosphate, adenine, glucose, guanosine, saline, and mannitol (PAGGSM), are systematically compared in terms of their ability to maintain key indicators of RBC integrity, including adenosine triphosphate (ATP) levels, morphology, and hemolysis. Optimal RBC storage requires a delicate balance of pH buffering, metabolic support, oxidative damage prevention, and osmotic regulation. While the latest alkaline solutions enable up to 8 weeks of storage, some degree of metabolic and morphological deterioration remains inevitable. The impacts of critical storage conditions, such as the holding temperature, oxygenation, anticoagulants, irradiation, and processing methods, on the accumulation of storage lesions are also thoroughly investigated. Personalized RBC storage solutions, tailored to individual donor characteristics, represent a promising avenue for minimizing storage lesions and enhancing transfusion outcomes. Further research integrating omics profiling with customized preservation media is necessary to maximize post-transfusion RBC survival and functions. The continued optimization of RBC storage practices will not only enhance transfusion efficacy but also enable blood banking to better meet evolving clinical needs.


Assuntos
Preservação de Sangue , Sobrevivência Celular , Eritrócitos , Eritrócitos/metabolismo , Eritrócitos/citologia , Humanos , Preservação de Sangue/métodos , Sobrevivência Celular/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo , Manitol/farmacologia
5.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 476-481, 2024 Mar 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38970522

RESUMO

There are 2 techniques for detecting red blood cell survival (RBCS) detection techniques: red blood cell labeling test and carbon monoxide (CO) breath test. The former has disadvantages such as long measurement times and complicated procedures, while the latter is simple, convenient, moderately priced, and capable of dynamically monitoring changes in RBCS before and after treatment. Currently, the CO breath test is gradually being implemented in clinical practice. RBCS is not only applied to hematologic diseases such as multiple myeloma, myelodysplastic syndromes, lymphoma, and thalassemia, but also to non-hematologic diseases like type 2 diabetes and chronic kidney disease. It can assist in diagnosis, guide treatment, evaluate drug treatment efficacy, and predict disease progression.


Assuntos
Eritrócitos , Humanos , Eritrócitos/citologia , Monóxido de Carbono/sangue , Testes Respiratórios/métodos , Sobrevivência Celular , Diabetes Mellitus Tipo 2/sangue , Doenças Hematológicas/sangue , Doenças Hematológicas/diagnóstico
6.
Sci Data ; 11(1): 722, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956115

RESUMO

Around 20% of complete blood count samples necessitate visual review using light microscopes or digital pathology scanners. There is currently no technological alternative to the visual examination of red blood cells (RBCs) morphology/shapes. True/non-artifact teardrop-shaped RBCs and schistocytes/fragmented RBCs are commonly associated with serious medical conditions that could be fatal, increased ovalocytes are associated with almost all types of anemias. 25 distinct blood smears, each from a different patient, were manually prepared, stained, and then sorted into four groups. Each group underwent imaging using different cameras integrated into light microscopes with 40X microscopic lenses resulting in total 47 K + field images/patches. Two hematologists processed cell-by-cell to provide one million + segmented RBCs with their XYWH coordinates and classified 240 K + RBCs into nine shapes. This dataset (Elsafty_RBCs_for_AI) enables the development/testing of deep learning-based (DL) automation of RBCs morphology/shapes examination, including specific normalization of blood smear stains (different from histopathology stains), detection/counting, segmentation, and classification. Two codes are provided (Elsafty_Codes_for_AI), one for semi-automated image processing and another for training/testing of a DL-based image classifier.


Assuntos
Eritrócitos , Eritrócitos/citologia , Humanos , Microscopia , Aprendizado Profundo , Processamento de Imagem Assistida por Computador
7.
Lab Chip ; 24(15): 3679-3689, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38904306

RESUMO

Urinalysis is a heavily used diagnostic test in clinical laboratories; however, it is chronically held back by urine sediment microscopic examination. Current instruments are bulky and expensive to be widely adopted, making microscopic examination a procedure that still relies on manual operations and requires large time and labor costs. To improve the efficacy and automation of urinalysis, this study develops an acoustofluidic-based microscopic examination system. The system utilizes the combination of acoustofluidic manipulation and a passive hydrodynamic mechanism, and thus achieves a high throughput (1000 µL min-1) and a high concentration factor (95.2 ± 2.1 fold) simultaneously, fulfilling the demands for urine examination. The concentrated urine sample is automatically dispensed into a hemocytometer chamber and the images are then analyzed using a machine learning algorithm. The whole process is completed within 3 minutes with detection accuracies of erythrocytes and leukocytes of 94.6 ± 3.5% and 95.1 ± 1.8%, respectively. The examination outcome of urine samples from 50 volunteers by this device shows a correlation coefficient of 0.96 compared to manual microscopic examination. Our system offers a promising tool for automated urine microscopic examination, thus it has potential to save a large amount of time and labor in clinical laboratories, as well as to promote point-of-care urine testing applications in and beyond hospitals.


Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Urinálise , Urinálise/instrumentação , Humanos , Microscopia/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Dispositivos Lab-On-A-Chip , Eritrócitos/citologia , Automação , Leucócitos/citologia , Acústica/instrumentação , Desenho de Equipamento
8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 577-583, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38932545

RESUMO

Red blood cells are destroyed when the shear stress in the blood pump exceeds a threshold, which in turn triggers hemolysis in the patient. The impeller design of centrifugal blood pumps significantly influences the hydraulic characteristics and hemolytic properties of these devices. Based on this premise, the present study employs a multiphase flow approach to numerically simulate centrifugal blood pumps, investigating the performance of pumps with varying numbers of blades and blade deflection angles. This analysis encompassed the examination of flow field characteristics, hydraulic performance, and hemolytic potential. Numerical results indicated that the concentration of red blood cells and elevated shear stresses primarily occurred at the impeller and volute tongue, which drastically increased the risk of hemolysis in these areas. It was found that increasing the number of blades within a certain range enhanced the hydraulic performance of the pump but also raised the potential for hemolysis. Moreover, augmenting the blade deflection angle could improve the hemolytic performance, particularly in pumps with a higher number of blades. The findings from this study can provide valuable insights for the structural improvement and performance enhancement of centrifugal blood pumps.


Assuntos
Desenho de Equipamento , Coração Auxiliar , Hemólise , Estresse Mecânico , Humanos , Coração Auxiliar/efeitos adversos , Eritrócitos/citologia , Centrifugação , Simulação por Computador
9.
J Opt Soc Am A Opt Image Sci Vis ; 41(6): 1082-1088, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856420

RESUMO

The high sensitivity of photoplethysmography (PPG) spectral signals provides conditions for extracting dynamic spectra carrying nonlinear information. By the idea of spatial conversion precision, this paper uses a spectral camera to collect highly sensitive spectral data of 24 wavelengths and proposes a method for extracting dynamic spectra of three different optical path lengths and their joint modeling. In the experiment, the models of the red blood cells and white blood cells established by the joint spectra achieved good results, with the correlation coefficients above 0.77. This study has great significance for achieving high-precision noninvasive quantitative analysis of human blood components.


Assuntos
Dinâmica não Linear , Fotopletismografia , Fotopletismografia/instrumentação , Humanos , Análise Espectral , Processamento de Sinais Assistido por Computador , Eritrócitos/citologia
10.
Lab Chip ; 24(14): 3456-3469, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38895892

RESUMO

We combine two-photon-excited fluorescence microscopy and acoustofluidic trapping in a spherical microchamber to in vitro study cells and cell clusters three-dimensionally close to in vivo conditions. The two-photon microscopy provides the in-depth 3D analysis of the spherical microchamber dimensions as well as the positions of trapped samples therein with high spatial precision and high temporal resolution enabling even tracking of the fast moving particles. Furthermore, optical sectioning allows to gather information of individual cells in trapped cell clusters inside the chamber. We demonstrate real-time monitoring of osmosis in A549 lung cells and red blood cells as one possible biomedical application. The observed osmosis reduced the cell membrane diameter by approximately 4 µm in the A549 cells and by approximately 2 µm in the red blood cells. Our approach provides an important optical tool for future investigations of cell functions and cell-cell interactions avoiding wall-contact inside an acoustofluidic device.


Assuntos
Eritrócitos , Humanos , Eritrócitos/citologia , Células A549 , Técnicas Analíticas Microfluídicas/instrumentação , Acústica , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Desenho de Equipamento
11.
Soft Matter ; 20(25): 4950-4963, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38873747

RESUMO

Red blood cells (RBC), the primary carriers of oxygen in the body, play a crucial role across several biomedical applications, while also being an essential model system of a deformable object in the microfluidics and soft matter fields. However, RBC behavior in viscoelastic liquids, which holds promise in enhancing microfluidic diagnostic applications, remains poorly studied. We here show that using viscoelastic polymer solutions as a suspending carrier causes changes in the clustering and shape of flowing RBC in microfluidic flows when compared to a standard Newtonian suspending liquid. Additionally, when the local RBC concentration increases to a point where hydrodynamic interactions take place, we observe the formation of equally-spaced RBC structures, resembling the viscoelasticity-driven ordered particles observed previously in the literature, thus providing the first experimental evidence of viscoelasticity-driven cell ordering. The observed RBC ordering, unaffected by polymer molecular architecture, persists as long as the surrounding medium exhibits shear-thinning, viscoelastic properties. Complementary numerical simulations reveal that viscoelasticity-induced repulsion between RBCs leads to equidistant structures, with shear-thinning modulating this effect. Our results open the way for the development of new biomedical technologies based on the use of viscoelastic liquids while also clarifying fundamental aspects related to multibody hydrodynamic interactions in viscoelastic microfluidic flows.


Assuntos
Elasticidade , Eritrócitos , Eritrócitos/citologia , Viscosidade , Humanos , Hidrodinâmica , Microfluídica
12.
Commun Biol ; 7(1): 765, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914723

RESUMO

Red blood cell (RBC) transfusions facilitate many life-saving acute and chronic interventions. Transfusions are enabled through the gold-standard hypothermic storage of RBCs. Today, the demand for RBC units is unfulfilled, partially due to the limited storage time, 6 weeks, in hypothermic storage. This time limit stems from high metabolism-driven storage lesions at +1-6 °C. A recent and promising alternative to hypothermic storage is the supercooled storage of RBCs at subzero temperatures, pioneered by our group. Here, we report on long-term supercooled storage of human RBCs at physiological hematocrit levels for up to 23 weeks. Specifically, we assess hypothermic RBC additive solutions for their ability to sustain supercooled storage. We find that a commercially formulated next-generation solution (Erythro-Sol 5) enables the best storage performance and can form the basis for further improvements to supercooled storage. Our analyses indicate that oxidative stress is a prominent time- and temperature-dependent injury during supercooled storage. Thus, we report on improved supercooled storage of RBCs at -5 °C by supplementing Erythro-Sol 5 with the exogenous antioxidants, resveratrol, serotonin, melatonin, and Trolox. Overall, this study shows the long-term preservation potential of supercooled storage of RBCs and establishes a foundation for further improvement toward clinical translation.


Assuntos
Preservação de Sangue , Eritrócitos , Eritrócitos/citologia , Humanos , Preservação de Sangue/métodos , Temperatura Baixa , Antioxidantes/metabolismo , Estresse Oxidativo , Criopreservação/métodos , Fatores de Tempo
13.
Cell Reprogram ; 26(3): 107-115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38917437

RESUMO

Our group generated two induced pluripotent stem cell (iPSC) lines for in vitro red blood cell (RBC) production from blood donors with extensively known erythrocyte antigen profiles. One line was intended to give rise to RBCs for transfusions in patients with sickle cell disease (SCD), while the other was developed to create RBC panel reagents. Two blood donors were selected based on their RBC phenotypes, further complemented by high-throughput DNA array analysis to obtain a more comprehensive erythrocyte antigen profile. Enriched erythroblast populations from the donors' peripheral blood mononuclear cells were reprogrammed into iPSCs using nonintegrative plasmid vectors. The iPSC lines were characterized and subsequently subjected to hematopoietic differentiation. iPSC PB02 and iPSC PB12 demonstrated in vitro and in vivo iPSC features and retained the genotype of each blood donor's RBC antigen profile. Colony-forming cell assays confirmed that iPSC PB02 and iPSC PB12 generated hematopoietic progenitors. These two iPSC lines were generated with defined erythrocyte antigen profiles, self-renewal capacity, and hematopoietic differentiation potential. With improvements in hematopoietic differentiation, these cells could potentially be more efficiently differentiated into RBCs in the future. They could serve as a complementary approach for obtaining donor-independent RBCs and addressing specific demands for blood transfusions.


Assuntos
Doadores de Sangue , Diferenciação Celular , Eritrócitos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Eritrócitos/metabolismo , Eritrócitos/citologia , Linhagem Celular , Animais , Antígenos de Grupos Sanguíneos , Camundongos , Anemia Falciforme/terapia , Anemia Falciforme/sangue
14.
Cytometry A ; 105(7): 555-558, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38722042

RESUMO

To achieve high-sensitivity cell measurements (<1 in 105 cells) by flow cytometry (FCM), the minimum number of acquired cells must be considered and conventional immunophenotyping protocols fall short of these numbers. The bulk lysis (BL) assay is a standardized erythrocyte lysing approach that allows the analysis of the millions of cells required for high-sensitivity measurable residual disease (MRD) detection. However, this approach has been associated with significant cell loss, along with potential over or underestimates of rare cells when using this method. The aim of this study was to evaluate bulk lysis protocols and compare them with minimal sample perturbation (MSP) protocols, which are reported to better preserve the native cellular state and avoid significant cell loss due to washing steps. To achieve this purpose, we first generated an MRD model by spiking fresh peripheral blood with K562 cells, stably expressing EGFP, at known percentages of EGFP positive cells to leukocytes. Samples were then prepared with BL and MSP protocols and analyzed using FCM. For all percentages of K562 cells established and evaluated, a significant decrease of this population was detected in BL samples compared with MSP samples, even at low K562 cell percentages. Significant decreases for non-necrotic cells were also observed in BL samples relative to MSP samples. In conclusion, the evaluation of the potential effects of BL protocols in obtaining the final count is of great interest, especially for over- or under-estimation of target cells, as in the case of measurable residual disease. Since conventional flow cytometry or minimal sample perturbation assays fall short in obtaining the minimum numbers required to reach high sensitivity measurements, significant efforts may be needed to improve bulk lysis solution reagents.


Assuntos
Citometria de Fluxo , Humanos , Citometria de Fluxo/métodos , Células K562 , Imunofenotipagem/métodos , Neoplasia Residual , Eritrócitos/citologia , Leucócitos/citologia , Contagem de Células/métodos
15.
Stem Cell Res Ther ; 15(1): 142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750578

RESUMO

Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.


Assuntos
Eritrócitos , Eritropoese , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo
16.
Anat Histol Embryol ; 53(3): e13054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735037

RESUMO

Identifying and analysing distinct blood cells is crucial for the diagnosis and treatment of diseases in the field of biomedicine. The present study was undertaken to study the cytomorphological and cytochemical characteristics of the blood cells of Zoar, a non-descript indigenous breed of chicken extensively reared under backyard poultry farming in Mizoram, India. For this study, 2 mL of blood samples were aseptically collected from the wings veins of 12 chickens and were processed for light microscopic study under standard protocols. The matured erythrocytes were elliptical, while the immature erythrocytes appeared oval. The heterophils were positive for SBB (SBB), Periodic Acid Schiff (PAS), acid phosphatase, alkaline phosphatase and Arylsulphatase while the eosinophils were positive for SBB, PAS, alkaline phosphatase, cytochrome oxidase and peroxidase. The basophils of were positive for toluidine blue while the thrombocytes were positive for PAS. These cytochemical and cytoenzymatic staining properties plays a very important role in diagnosis, differentiation, and classification of leukaemias.


Assuntos
Galinhas , Eosinófilos , Eritrócitos , Animais , Galinhas/anatomia & histologia , Índia , Eritrócitos/citologia , Eosinófilos/citologia , Células Sanguíneas/citologia , Plaquetas/citologia , Fosfatase Alcalina/sangue , Basófilos/citologia , Fosfatase Ácida/sangue , Complexo IV da Cadeia de Transporte de Elétrons/análise
17.
Lab Chip ; 24(11): 2906-2919, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38721867

RESUMO

Type 2 diabetes mellitus (T2DM) is a prevalent and debilitating disease with numerous health risks, including cardiovascular diseases, kidney dysfunction, and nerve damage. One important aspect of T2DM is its association with the abnormal morphology of red blood cells (RBCs), which leads to increased blood viscosity and impaired blood flow. Therefore, evaluating the mechanical properties of RBCs is crucial for understanding the role of T2DM in cellular deformability. This provides valuable insights into disease progression and potential diagnostic applications. In this study, we developed an open micro-electro-fluidic (OMEF) biochip technology based on dielectrophoresis (DEP) to assess the deformability of RBCs in T2DM. The biochip facilitates high-throughput single-cell RBC stretching experiments, enabling quantitative measurements of the cell size, strain, stretch factor, and post-stretching relaxation time. Our results confirm the significant impact of T2DM on the deformability of RBCs. Compared to their healthy counterparts, diabetic RBCs exhibit ∼27% increased size and ∼29% reduced stretch factor, suggesting potential biomarkers for monitoring T2DM. The observed dynamic behaviors emphasize the contrast between the mechanical characteristics, where healthy RBCs demonstrate notable elasticity and diabetic RBCs exhibit plastic behavior. These differences highlight the significance of mechanical characteristics in understanding the implications for RBCs in T2DM. With its ∼90% sensitivity and rapid readout (ultimately within a few minutes), the OMEF biochip holds potential as an effective point-of-care diagnostic tool for evaluating the deformability of RBCs in individuals with T2DM and tracking disease progression.


Assuntos
Diabetes Mellitus Tipo 2 , Deformação Eritrocítica , Eritrócitos , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Eritrócitos/citologia , Eritrócitos/patologia , Dispositivos Lab-On-A-Chip , Eletroforese/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento
18.
Anal Chem ; 96(17): 6511-6516, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38634936

RESUMO

Charge detection quadrupole ion trap mass spectrometry (CD-QIT MS) is an effective way of achieving the mass analysis of microparticles with ultrahigh mass. However, its mass accuracy and resolution are still poor. To enhance the performance of CD-QIT MS, the resolution Rpeak of each peak in the mass spectra resulting from an individual particle was assessed, and a peak filtering algorithm that can filter out particle adducts and clusters with a lower Rpeak was proposed. By using this strategy, more accurate mass information about the analyzed particles could be obtained, and the mass resolution of CD-QIT MS was improved by nearly 2-fold, which was demonstrated by using the polystyrene (PS) particle size standards and red blood cells (RBCs). Benefiting from these advantages of the peak filtering algorithm, the baseline separation and relative quantification of 3 and 4 µm PS particles were achieved. To prove the application value of this algorithm in a biological system, the mass of yeast cells harvested at different times was measured, and it was found that the mixed unbudded and budded yeast cells, which otherwise would not be differentiable, were distinguished and quantified with the algorithm.


Assuntos
Algoritmos , Espectrometria de Massas , Tamanho da Partícula , Poliestirenos , Poliestirenos/química , Espectrometria de Massas/métodos , Eritrócitos/citologia , Eritrócitos/química , Saccharomyces cerevisiae , Humanos
19.
Stem Cells Dev ; 33(11-12): 321-331, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613816

RESUMO

Human pluripotent stem cell (hPSC)-derived red blood cells (RBCs) possess great potential for compensating shortages in transfusion medicine. For better RBC generation from hPSCs, we compared the cell seeding density in the embryoid body formation-based hPSC induction protocol. In the selection of low- and high-density inoculation conditions, we found that low-density culture performed better in the final RBC product with more cell output and increased average cellular hemoglobin content. An elaborate study using flow cytometry demonstrated that low inoculation density promoted endothelial-to-hematopoietic transition, followed by improved hematopoietic progenitor formation and erythrocyte generation. The improved transformation from glycolysis to mitochondrial oxidation and reduced apoptosis might be responsible for this effect. Hints from RNA sequencing suggested that molecules involved in microenvironment interaction and metabolic regulation might respond for the different developmental potential. The possible mediators between outer message and intracellular response could be the nutrition sensors FOXO, PRKAA1 (AMPK), and MTOR genes. It is possible that low inoculation density triggered metabolic regulation signals, promoted mitochondrial oxidation, and resulted in enhanced cell amplification and hematopoietic differentiation. The low cell culture density will improve RBC generation from hPSCs.


Assuntos
Diferenciação Celular , Eritrócitos , Células-Tronco Pluripotentes , Humanos , Eritrócitos/citologia , Eritrócitos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Contagem de Células , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 383-388, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38686421

RESUMO

Interventional micro-axial flow blood pump is widely used as an effective treatment for patients with cardiogenic shock. Hemolysis and coagulation are vital concerns in the clinical application of interventional micro-axial flow pumps. This paper reviewed hemolysis and coagulation models for micro-axial flow blood pumps. Firstly, the structural characteristics of commercial interventional micro-axial flow blood pumps and issues related to clinical applications were introduced. Then the basic mechanisms of hemolysis and coagulation were used to study the factors affecting erythrocyte damage and platelet activation in interventional micro-axial flow blood pumps, focusing on the current models of hemolysis and coagulation on different scales (macroscopic, mesoscopic, and microscopic). Since models at different scales have different perspectives on the study of hemolysis and coagulation, a comprehensive analysis combined with multi-scale models is required to fully consider the influence of complex factors of interventional pumps on hemolysis and coagulation.


Assuntos
Coagulação Sanguínea , Coração Auxiliar , Hemólise , Humanos , Eritrócitos/citologia , Eritrócitos/fisiologia , Choque Cardiogênico/terapia , Ativação Plaquetária , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...