Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Environ Monit Assess ; 196(9): 792, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110269

RESUMO

Soil erosion and sediment yield is a global problem that increasingly contributes to soil degradation. Although erosion analysis requires the availability of erosion and sedimentation data, the lack of sediment monitoring stations and the resulting limitations in collecting sediment measurements have necessitated the use of experimental models in many areas. The present study aimed to compare Factorial Scoring Model (FSM) and Modified Pacific South-West Inter-Agency Committee (MPSIAC) model for estimating erosion in the Mazdaran Basin (Firoozkuh, Iran). For this purpose, the required maps were prepared for both models, and the sediment rate was estimated using the two models to compare their efficiency using the corresponding maximum error (ME) and coefficient of determination (R2) values. The results showed that considering sediment based on the FSM model, the studied catchment consisted of regions with a high and very high sediment yield, while the MPSIAC model identified regions with low, medium, and high sediment yield. With an R2 value of 0.62 and an ME value of 2.24, the MPSIAC model provided more accurate estimates of the sediment yield in the studied area. Using the MPSIAC model, sediment yield was 6687.86 tons per year or the equivalent of 2.64 tons/ha per year.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Erosão do Solo , Solo , Irã (Geográfico) , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Solo/química , Modelos Teóricos
2.
Environ Monit Assess ; 196(9): 806, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126527

RESUMO

Soil erosion is expected to worsen in the future as a result of climate change, growing population demands, improper land use, and excessive exploitation of natural resources in India. Due to the growing population and changes in land use, it has become increasingly crucial to map and quantitatively assess soil for the purpose of sustainable agricultural usage and planning conservation efforts. The problem of soil erosion is mainly on steeper slopes with intense rainfall in parts of Western Ghats. The 20.17% of geographical area have been converted into wasteland due to soil erosion. The Revised Universal Soil Loss Equation (RUSLE) is a highly prevalent and effective technique utilized for estimating soil loss in order to facilitate the planning of erosion control measures. Despite the fact that RUSLE is accurately estimate sediment yields from gully erosion, it is an effective tool in estimating sheet and rill erosions losses from diverse land uses like agricultural to construction sites. The current study is mainly about combining the RUSLE model with GIS (Geographic Information System) to find out how much soil is being lost, particularly in Noyyal and Sanganur watersheds which is located in Coimbatore district of Tamil Nadu, India. This analysis is based on the soil order, with a significant proportion of alfisols and inceptisols being considered. The obtained outcome is contrasted with the established soil loss tolerance threshold, leading to the identification of the areas with the highest susceptibility to erosion. Within the narrower and more inclined section of the watershed, yearly soil loss scales from 0 to 5455 tonnes/ha/year, with an average annual loss of soil of 2.44 tonnes/ha. The severe soil erosion of 100 to 5455 tonnes/ha/year is found along the steep and greater slope length. The generated soil map was classified into six categories: very slight, slight, moderate, high, severe, and very severe. These classifications, respectively, occupied 6.23%, 14.88%, 10.56%, 15.70%, 7.73%, and 6.63% of the basin area. Based on the results of cross-validation, the estimated result of the present study was found to be very high compared to past studies conducted 0 to 368.12 tonnes/ha/year especially in very severe erosion zones. But very slight to severe erosion zones nearly matched with same level of soil loss. To protect the soil in the study area from erosion, more specific actions should be taken. These include micro-catchment, broad bed furrows, up-and-down farming, soil amendment with coconut coir pith composition, streambank stabilization with vegetation, and micro-water harvesting with abandoned well recharge. These actions should be carried out over time to make sure to work.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Erosão do Solo , Solo , Análise Espacial , Índia , Solo/química , Sistemas de Informação Geográfica , Agricultura
3.
PLoS One ; 19(7): e0305758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052553

RESUMO

Wind erosion resulting from soil degradation is a significant problem in Iran's Baluchistan region. This study evaluated the accuracy of remote sensing models in assessing degradation severity through field studies. Sentinel-2 Multispectral Imager's (MSI) Level-1C satellite data was used to map Rutak's degradation severity in Saravan. The relationship between surface albedo and spectral indices (NDVI, SAVI, MSAVI, BSI, TGSI) was assessed. Linear regression establishes correlations between the albedo and each index, producing a degradation severity map categorized into five classes based on albedo and spectral indices. Accuracy was tested with 100 ground control points and field observations. The Mann-Whitney U-Test compares remote sensing models with field data. Results showed no significant difference (P > 0.05) between NDVI, SAVI, and MSAVI models with field data, while BSI and TGSI models exhibited significant differences (P ≤ 0.001). The best model, BSI-NDVI, achieves a regression coefficient of 0.86. This study demonstrates the advantage of remote sensing technology for mapping and monitoring degraded areas, providing valuable insights into land degradation assessment in Baluchistan. By accurately identifying severity levels, informed interventions can be implemented to mitigate wind erosion and combat soil degradation in the region.


Assuntos
Tecnologia de Sensoriamento Remoto , Irã (Geográfico) , Tecnologia de Sensoriamento Remoto/métodos , Monitoramento Ambiental/métodos , Solo/química , Imagens de Satélites/métodos , Erosão do Solo , Vento , Conservação dos Recursos Naturais/métodos
4.
Sci Total Environ ; 948: 174820, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032742

RESUMO

The environmental risks of migration of heavy metals (HMs) following applications of sewage sludge (SS) to forest soils are garnering increased attention. Plant litter at the forest floor may modify HM migration pathways through impacts on soil aggregates and water/soil erosion; however, HM migration responses to plant litter are poorly understood. The aim of this study was to determine the effects of plant litter cover on HMs migration, and water and soil erosion following the application of SS to subtropical forest soils. Effects of addition of SS along and SS plus plant litter at 0.75 or 1.5 kg m-2 on the migration of cadmium, chromium, copper, nickel, lead, and zinc in surface runoff, soil interflow, and sediments were quantified across nine simulated rainfall events in a laboratory experiment and following natural intense rain events in a field experiment. Addition of SS elevated HM concentrations in surface runoff by 38.7 to 98.5 %, in soil interflow by 48.3 to 312.5 %, and in sediment by 28.5 to 149.4 %, and increased the production of sediment aggregates <0.05 mm that led to greater cumulative migrations of HMs in surface runoff and sediment; sediment accounted for 89.5 % of HM migrations. Addition of plant litter reduced cumulative migration of HMs by 87.1-97.27 %; however, the higher rate of plant litter led to a decrease in surface runoff and sediment yield, and an increase in soil interflow. Addition of plant litter shifted the main pathway of HM migration from sediment to surface runoff and soil interflow. The potential ecological HM risk index was "low" for each treatment. We found consistency in HM concentrations and migrations via surface runoff between the field and laboratory experiments. Overall, the addition of plant litter with SS mitigated soil erosion and reduced total migration of HMs, resulting in a 88.7-97.3 % decrease in the ecological risk index of the six HMs. We conclude that the addition of plant litter may provide a management strategy for the mitigation of HM risks to environmental safety for the disposal of SS in subtropical forest systems.


Assuntos
Florestas , Metais Pesados , Esgotos , Poluentes do Solo , Solo , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Monitoramento Ambiental , Erosão do Solo
5.
J Environ Manage ; 366: 121830, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39013316

RESUMO

The rapid expansion of laver (Porphyra yezoensis) cultivation on lower tidal flats has become integral to the local economy, yet it also raises concerns regarding its potential impact on the morphological evolution due to increasing human activities. This study utilizes integrated near-bed field measurements to assess morphological dynamics and quantify sediment erosion processes, highlighting the significant impact of laver harvest on tidal flat stability. Our results show that erosion and bed coarsening in the cultivated areas experienced a notable intensification immediately after harvest, with net erosion in cultivated areas reaching approximately -38.2 mm during the first tide post-harvest, markedly higher-more than an order of magnitude-compared to adjacent uncultivated areas. The erosion rate notably spiked with the average bed level change rate increasing to -13.8 × 10-4 mm/s, compared to a rate of +0.3 × 10-4 mm/s during the unharvest period. Subsequently, the cultivated areas entered a recovery phase with a deposition amount of +12.5 mm, while the net cumulative erosion thickness throughout the entire observation period was -25.2 mm. The cultivation method, characterized by consistent harvests every 10 days, means that even minor erosion from continuous harvests can escalate into significant degradation. This study suggests that long-term cultivation cycle practices may result in irreversible changes to the depositional environment, potentially jeopardizing the habitat viability and ecological function. Sustainable agricultural strategies, including site selection, infrastructure planning, monitoring environmental changes, ecological assessments and sustainable practices, are recommended to mitigate the negative impacts of cultivation on regional stability and preserve the coastal ecological balance.


Assuntos
Conservação dos Recursos Naturais , Algas Comestíveis , Monitoramento Ambiental , Sedimentos Geológicos , Porphyra , Erosão do Solo
6.
Environ Sci Pollut Res Int ; 31(35): 48154-48163, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39017864

RESUMO

Soil erosion from agricultural fields is a persistent ecological problem, potentially leading to eutrophication of aquatic habitats in the catchment area. Often used and recommended mitigation measures are vegetated filter strips (VFS) as buffer zones between arable land and water bodies. However, if they are designed and managed poorly, nutrients - especially phosphorus (P) - may accumulate in the soil. Ultimately, VFS can switch from being a nutrient sink to a source. This problem is further aggravated if the field runoff does not occur as uniform sheet flow, but rather in concentrated form, as is usually the case. To assess the impact of concentrated flow on VFS performance, we have taken soil core samples from field-VFS transition zones at six sites in Lower Austria. We determined a multitude of physical and chemical soil parameters, focusing on P fractions and indices. Our results revealed that concentrated flow can lead to an accumulation of P in the VFS. P levels in the VFS inside the area of concentrated runoff can be equal to or higher than in the field, even though they receive no direct fertilization. However, the concentration and distribution of nutrients in the fields and VFSs were also site-specific and affected by local factors such as the age of the VFS, cropping, and fertilization. Accordingly, there is a need for more sophisticated, bespoke VFS designs that can cope with site-specific runoff volumes and movements of nutrients that occur.


Assuntos
Agricultura , Fósforo , Solo , Fósforo/análise , Solo/química , Áustria , Monitoramento Ambiental , Erosão do Solo
7.
Environ Geochem Health ; 46(9): 338, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073635

RESUMO

Climate change poses an immediate threat to tropical soils with changes in rainfall patterns resulting in accelerated land degradation processes. To ensure the future sustainability of arable land, it is essential to improve our understanding of the factors that influence soil erosion processes. This work aimed to evaluate patterns of soil erosion using the activity of plutonium isotopes (Pu) at sites with different land use and clearance scale in the Winam Gulf catchment of Lake Victoria in Kenya. Erosion rates were modelled at potential erosive sites using the MODERN model to understand small-scale erosion processes and the effect of different management practices. The lowest soil redistribution rates for arable land were 0.10 Mg ha-1 yr-1 showing overall deposition, resulting from community-led bottom-up mitigation practices. In contrast erosion rates of 8.93 Mg ha-1 yr-1 were found in areas where steep terraces have been formed. This demonstrates the significance of community-led participation in effectively managing land degradation processes. Another key factor identified in the acceleration of soil erosion rates was the clearance of land with an increased rate of erosion over three years reported (0.45 to 0.82 Mg ha-1 yr-1) underlining the importance vegetation cover plays in limiting soil erosion processes. This novel application of fallout plutonium as a tracer, highlights its potential to inform the understanding of how soil erosion processes respond to land management, which will better support implementation of effective mitigation strategies.


Assuntos
Plutônio , Erosão do Solo , Quênia , Plutônio/análise , Poluentes Radioativos do Solo/análise , Solo/química , Monitoramento de Radiação , Modelos Teóricos
8.
Environ Monit Assess ; 196(8): 731, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001905

RESUMO

Gully erosion is a serious global environmental problem associated with land degradation and ecosystem security. Examining the influencing factors of gullies and determining susceptibility hold significance in environmental sustainability. The study evaluates the spatial distribution, influencing factors, and susceptibility of gullies in the Sunshui River Basin in Sichuan Province, Southwest China. The frequency ratio method supported by satellite images and the gully inventory dataset (1614 gully head points) with different influencing factors were applied to assess the distribution and susceptibility of gullies. Additionally, gully head points were grouped into a training set (70%, 1130 points) and a test set (30%, 484 points). Spatial distribution results indicated that most gullies are located in the middle and upper part of the basin, characterized by moderate elevation (2100-3300 m), steep slopes (11.63-27.34°), abandoned farmland, and Cambisols soil, and fewer gullies are located in lower part characterized by lower elevation, gentle slopes, and low vegetation coverage. Land use and land cover influence on susceptibility is significantly greater than other factors with a prediction rate of 33.9, especially farmland abandonment, while the occurrence of gullies is also more often on southwest-orientated slopes. Gully susceptibility highlighted that the study area affected by the very low, low, moderate, high, and very high susceptibilities to these gullies covered an area of about 16%, 23%, 32%, 26%, and 3% of the total basin respectively, which indicates 61% of the study area is susceptible to gully erosion. Moderate to high susceptibility is situated in the upper and middle part, consistent with the spatial distribution of gullies in the basin, and very high susceptibility (3%) is distributed in both the lower and upper parts of the basin. These results have important implications for soil loss control, land planning, and integrated watershed management in the mountainous areas of Southwest China.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Rios , China , Monitoramento Ambiental/métodos , Rios/química , Animais , Ecossistema , Conservação dos Recursos Naturais , Erosão do Solo
9.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1275-1282, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886426

RESUMO

During the snowmelt period, the external erosive forces are dominated by freeze-thaw cycles and snowmelt runoff. These forces may affect soil structure and aggregate stability, thereby influencing snowmelt erosion. The process of snowmelt runoff can lead to the breakdown of aggregates during their transportation. However, few studies examined the effects of freeze-thaw cycles on the breakdown of aggregates during transportation. Focusing on 5-7 and 3-5 mm soil aggregates of typical black soil region in Northeast China, we analyzed the composition of water-stable aggregates, mean weight diameter (MWD), normalized mean weight diameter (NMWD), as well as breakdown rate of soil aggregates (BR) under different freeze-thaw cycles (0, 1, 5, 10, 15 and 20 times) and different transport distances (5, 10, 15, 20, 25 and 30 m). We further investigated the contribution (CT) of both freeze-thaw cycles and transport distances to BR. The results showed that: 1) After freeze-thaw cycles, the 5-7 and 3-5 mm aggregates were mainly composed of particles with a diameter of 0.5-1 mm. With increasing frequency of freeze-thaw cycles, the MWD generally showed a downward trend. Moreover, under the same number of freeze-thaw cycles, the NMWD of 3-5 mm aggregates was higher than that of 5-7 mm aggregates. 2) As the transport distance increased, the BR of 5-7and 3-5 mm aggregates gradually increased. Compared that under control group, the BR under one freeze-thaw cycle increased by 59.7%, 32.2%, 13.7%, 6.2%, 13.4%, 7.5%, and 60.0%, 39.0%, 18.4%, 13.0%, 6.3%, 6.1% at the condition of 5, 10, 15, 20, 25 and 30 m transport distances, respectively. However, with increasing frequency of freeze-thaw cycles, the BR increased slowly. 3) The breakdown of soil aggregates was mainly influenced by the transport distance (CT=54.6%) and freeze-thaw cycles (CT=26.2%). Freeze-thaw cycles primarily altered the stability of soil aggregates, which in turn affected the BR. Therefore, during the snowmelt period, freeze-thaw cycles reduced the stability of soil aggregates, leading to severe breakdown of soil aggregates during snowmelt runoff process. This made the soil more susceptible to migration with snowmelt runoff, which triggered soil erosion. Therefore, more attention should be paid on the prevention of soil erosion during snowmelt period.


Assuntos
Congelamento , Solo , Meios de Transporte , Solo/química , China , Erosão do Solo/prevenção & controle , Neve
10.
J Environ Manage ; 363: 121382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852416

RESUMO

Vegetation restoration not only extensively reshapes spatial land use patterns but also profoundly affects the dynamics of runoff and sediment loss. However, the influence of vegetation restoration on runoff and sediment yield from a regional perspective are scarce. This study therefore focused on 85 sites within the "Grain for Green" Project (GGP) region on the Loess Plateau, to investigate the impacts of the GGP on soil erosion. The results revealed a notable reduction in sediment loss and runoff due to vegetation restoration. Since the inception of the GGP in 1999, approximately 4.1 × 106 ha of degraded lands have been converted into forestlands, shrublands, and grasslands, resulting in an average annual reduction of 1.4 × 109 m3 in runoff and a decrease of 3.6 × 108 t in annual sediment loss on the whole Loess Plateau, with the GGP contributing approximately 26.7% of the sediment reduction in the Yellow River basin. The reduced soil erosion has mainly been regulated by vegetation cover, soil properties (clay, silt, and sand), slope, and precipitation on the Loess Plateau. The insights gained offer valuable contributions to large-scale assessments of changes in soil erosion in response to vegetation reconstruction and enhance our understanding of the spatial configurations associated with soil erosion control measures.


Assuntos
Conservação dos Recursos Naturais , Erosão do Solo , Solo , Sedimentos Geológicos , China , Monitoramento Ambiental , Florestas
11.
Environ Monit Assess ; 196(7): 615, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38871834

RESUMO

The Citarum watershed and the Saguling reservoir are vital natural resources in Indonesia, affecting the livelihood of West Java and the DKI Jakarta population. This study aimed to assess the soil erosion in the Upper Citarum watershed and identify its source. The study used the fallout radionuclide technique, geochemical tracers, and an unmixing model to measure soil erosion and the contribution of suspended sediment sources due to erosion. Soil bulk transects and surface soil were sampled using a coring tool on the Ciwidey and Cisangkuy sub-watersheds. Riverbank and suspended sediment samples were collected from tributaries and rivers. With 137Cs, 40% of the samples had values below the minimum detectable activity, and vice versa for 210Pbex, all samples are detectable. For mitigation, bare land needs to be recovered due to its erosion (25.6 t ha-1 year-1) exceeding the tolerance erosion value (17 t ha-1 year-1). Statistically, Mg and Na were the most appropriate composite tracers for suspended sediment contribution. The unmixing model predicted the sediment contributors from bare land (58%), the riverbank (32.7%), and plantation land (9.3%). Proper land conservation could reduce sediment supply by almost 14.7% and extend the reservoir's life. This is the first study to report the feasibility of the unmixing model in Indonesia.


Assuntos
Monitoramento Ambiental , Rios , Erosão do Solo , Indonésia , Monitoramento Ambiental/métodos , Rios/química , Sedimentos Geológicos/química , Solo/química , Radioisótopos de Césio/análise , Conservação dos Recursos Naturais/métodos
12.
Glob Chang Biol ; 30(6): e17354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822629

RESUMO

Wildfires directly emit 2.1 Pg carbon (C) to the atmosphere annually. The net effect of wildfires on the C cycle, however, involves many interacting source and sink processes beyond these emissions from combustion. Among those, the role of post-fire enhanced soil organic carbon (SOC) erosion as a C sink mechanism remains essentially unquantified. Wildfires can greatly enhance soil erosion due to the loss of protective vegetation cover and changes to soil structure and wettability. Post-fire SOC erosion acts as a C sink when off-site burial and stabilization of C eroded after a fire, together with the on-site recovery of SOC content, exceed the C losses during its post-fire transport. Here we synthesize published data on post-fire SOC erosion and evaluate its overall potential to act as longer-term C sink. To explore its quantitative importance, we also model its magnitude at continental scale using the 2017 wildfire season in Europe. Our estimations show that the C sink ability of SOC water erosion during the first post-fire year could account for around 13% of the C emissions produced by wildland fires. This indicates that post-fire SOC erosion is a quantitatively important process in the overall C balance of fires and highlights the need for more field data to further validate this initial assessment.


Assuntos
Ciclo do Carbono , Incêndios Florestais , Erosão do Solo , Carbono/análise , Europa (Continente) , Solo/química , Sequestro de Carbono , Incêndios , Modelos Teóricos
13.
Environ Monit Assess ; 196(6): 510, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703304

RESUMO

Soils provide habitat, regulation and utilization functions. Therefore, Germany aims to reduce soil sealing to 30 ha day - 1 by 2030 and to eliminate it by 2050. About 55 ha day - 1 of soil are damaged (average 2018-2021), but detailed information on its soil quality is lacking. This study proposes a new approach using geo-information and remote sensing data to assess agricultural soil loss in Lower Saxony and Brandenburg. Soil quality is assessed based on erosion resistance, runoff regulation, filter functions, yield potential and the Müncheberg Soil Quality Rating from 2006 to 2015. Data from the German Soil Map at a scale of 1:200,000 (BÜK 200), climate, topography, CORINE Land Cover (CLC) and Imperviousness Layer (IMCC), both provided by the Copernicus Land Monitoring Service (CLMS), are used to generate information on soil functions, potentials and agricultural soil loss due to sealing. For the first time, soil losses under arable land are assessed spatially, quantitatively and qualitatively. An estimate of the qualitative loss of agricultural soil in Germany between 2006 and 2015 is obtained by intersecting the soil evaluation results with the quantitative soil loss according to IMCC. Between 2006 and 2015, about 73,300 ha of land were sealed in Germany, affecting about 37,000 ha of agricultural soils. This corresponds to a sealing rate of 11 ha per day for Germany. In Lower Saxony and Brandenburg, agricultural soils were sealed at a rate of 1.9 ha day - 1 and 0.8 ha day - 1 respectively, removing these soils from primary land use. In Lower Saxony, 75% of soils with moderate or better biotic yield potential have been removed from primary land use, while in Brandenburg this figure is as high as 88%. Implementing this approach can help decision-makers reassess sealed land and support Germany's sustainable development strategy.


Assuntos
Agricultura , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Solo , Alemanha , Agricultura/métodos , Solo/química , Monitoramento Ambiental/métodos , Erosão do Solo , Conservação dos Recursos Naturais/métodos
14.
J Environ Manage ; 359: 120991, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704952

RESUMO

Soil erosion is a significant environmental issue worldwide. It affects water quality, biodiversity, and land productivity. New Zealand government agencies and regional councils work to mitigate soil erosion through policies, management programmes, and funding for soil conservation projects. Information about cost-effectiveness is crucial for planning, targeting, and implementing erosion mitigation to achieve improvements in sediment-related water quality. While there is a good understanding of the costs of erosion mitigation measures, there is a dearth of literature on their cost-effectiveness in reducing sediment loads and improving water quality at the catchment level. In this study, we estimate the cost-effectiveness of erosion mitigation measures in meeting visual water clarity targets. The analysis utilizes the spatially explicit SedNetNZ erosion process and sediment budget modelling in the Manawatu-Whanganui Region and region-specific mitigation costs. The erosion mitigation measures considered in the analysis include afforestation, bush retirement, riparian retirement, space-planted trees, and gully tree planting. We modelled two scenarios with on-farm erosion mitigation implemented across the region from 2021 to 2100, resulting in a 48% and 60% reduction of total sediment load. We estimate the marginal costs to achieve the visual national bottom line for water clarity, as assessed by the length of waterways that meet the clarity targets. We also estimate the marginal costs of improving average water clarity, which can be linked with non-market valuation studies when conducting a cost-benefit analysis. We find that gully tree planting and space-planted trees are the most cost-effective mitigation measures and that riparian retirement is the least cost-effective. Moreover, cost-effectiveness is highly dependent on current land use and the biophysical features of the landscape. Our estimates can be used in cost-benefit analysis to plan and prioritize soil erosion mitigation at the catchment and regional levels.


Assuntos
Conservação dos Recursos Naturais , Análise Custo-Benefício , Erosão do Solo , Nova Zelândia , Erosão do Solo/prevenção & controle , Qualidade da Água , Solo
15.
Environ Sci Pollut Res Int ; 31(23): 34569-34587, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709409

RESUMO

Nonpoint source pollution (NPSP) has always been the dominant threat to regional waters. Based on empirical models of the revised universal soil loss equation and the phosphorus index, an NPSP risk assessment model denoted as SL-NPSRI was developed. The surface soil pollutant loss was estimated by simulating the rain-runoff topographic process, and the influence of path attenuation was quantified. A case study in the Yellow River Delta and corresponding field surveys of soil pollutants and water quality showed that the established model can be applied to evaluate the spatial heterogeneity of NPSP. NPSP usually occurs during high-intensity rainfall periods and in larger estuaries. Summer rainfall increased pollutant transport into the sea from late July to mid-August and caused estuarine dilution. Higher NPSP risks often correspond to coastal areas with lower vegetation coverage, higher soil erodibility, and higher soil pollutant concentrations. Agricultural NPSP originating from cropland significantly increase the pollutant fluxes. Therefore, area-specific land use management and vegetation coverage improvement, and temporal-specific strategies can be explored for NPSP control during source-transport hydrological processes. This research provides a novel insight for coastal NPSP simulations by comprehensively analyzing the soil erosion process and its associated pollutant loss effects, which can be useful for targeted spatiotemporal solutions.


Assuntos
Monitoramento Ambiental , Rios , Erosão do Solo , China , Rios/química , Poluição Difusa , Solo/química , Poluentes do Solo/análise , Medição de Risco
16.
J Environ Manage ; 360: 121020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763116

RESUMO

Reducing soil erosion (SE) is crucial for achieving harmony between human society and the ecological environment. The cultivated land fragmentation (CLF), directly or indirectly, alters soil structure, diminishes its water-holding capacity, and escalates the risk of SE. Scientific assessment of the effect of CLF on SE can provide new insights into controlling of SE across watersheds in China. However, few studies have quantified the effect of CLF on SE. Therefore, we utilized land use change data in the Yangtze River basin from 2000 to 2020, measuring the levels of CLF and SE using Fragstats and InVEST models. The bivariate spatial autocorrelation model was employed to reveal the spatial relationship between CLF and SE. Additionally, we constructed a spatial Durbin model and introduced the geographically and temporally weighted regression model to analyze the role of CLF on SE. The south bank of the upper and middle reaches of the Yangtze River basin exhibited high CLF and SE. The bivariate spatial autocorrelation results showed a significant positive spatial correlation between CLF and SE. The spatial Durbin model results showed that CLF had a spatial spillover effect and time lag on SE, and the effect of CLF on SE had an inverted "N" curve. The study also confirmed that last SE and neighboring SE areas influenced local SE. Currently, CLF had a negative effect on SE in the Sichuan Basin, Yunnan-Guizhou Plateau, and the middle and lower Yangtze River Plain, and positively in Qinghai, Hunan, and Jiangxi provinces. These findings suggest that the government should enhance cross-regional and cross-sectoral cooperation and monitoring of cultivated land changes to prevent and control SE effectively.


Assuntos
Rios , Erosão do Solo , Solo , China , Solo/química , Conservação dos Recursos Naturais , Agricultura , Monitoramento Ambiental
17.
Sci Total Environ ; 930: 172728, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663614

RESUMO

Vegetation resilience is critical for understanding the dynamic feedback effect of regional ecological environment stability against interferences. Thus, based on quantify the interferences of climate dryness and vegetation water deficit affecting vegetation growth function, incorporate mechanical Hooke's law to develop a vegetation resilience assessment model by quantitatively expressing vegetation growth function maintenance ability, to reveal the ecological environment stability and its feedback effect on interferences in the study area. The essential discoveries of the study are as follows: (1) with the increase of precipitation and the improvement of afforestation on soil erosion, the interferences intensity of climate dryness and vegetation water deficit in the ecological environment decreased by 5.88 % and 4.92 % respectively, the regional vegetation growth function loss was improved, especially in the southern region; (2) the decrease of vegetation growth function loss promoted the vegetation resilience level fluctuated from class II to class IV, with the average annual vegetation resilience increased by 7.02 %, reflecting that the regional ecological environment stability increased from difficult to rapid recovery after disturbance, and the benefit was especially noticeable in the eastern and southern forested areas; (3) the contribution rates of climate dryness and vegetation water deficit to the variation of vegetation resilience caused by vegetation restoration were -1.38 % and 4.73 %, respectively, and the prominent positive feedback effect of increasing vegetation resilience with decreasing vegetation water deficit degree in forest restoration area, indicating that the vegetation water deficit greatly impacts ecological environment stability in the study area, and forest restoration constantly improves regional ecological environment stability more than grassland restoration. This research has crucial guiding implications for supporting the sustainable development of regional ecological environments.


Assuntos
Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Ecossistema , Florestas , Modelos Teóricos , Monitoramento Ambiental/métodos , Clima , Erosão do Solo , Mudança Climática
18.
Environ Sci Pollut Res Int ; 31(22): 32428-32440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649610

RESUMO

Exposed soils associated with active construction sites provide opportunities for erosion and sediment transport during storm events, introducing risks associated with excess sediment to downstream infrastructure and aquatic biota. A better understanding of the drivers of sediment transport in construction site runoff is needed to improve the design and performance of erosion and sediment control measures (ESCMs). Eleven monitoring locations on 3 active road construction sites in central Ohio were established to characterize runoff quality from points of concentrated flow during storm events. Grab samples were analyzed for total suspended solids (TSS), turbidity, and particle size distribution (PSD). Median TSS concentrations and turbidity levels across all samples were 626 mg/L (range 25-28,600 mg/L) and 759 NTU (range 22-33,000 NTU), respectively. The median PSD corresponded to a silty clay loam, mirroring the soil texture of much of Ohio's subsoils. TSS concentrations and turbidity were significantly positively correlated with the rainfall intensity 10 min prior to sample collection, suggesting that higher flow rates created greater shear stress on bare soil which resulted in more erosion. Conversely, rainfall duration was negatively correlated with particle size, indicating that prolonged moisture from rainfall promoted the dispersion of soil aggregates which mobilized smaller particles. Multivariable linear regression models revealed that higher rainfall intensities corresponded to higher turbidity values, while higher TSS concentrations were associated with higher rainfall intensities, depths, and durations. Results from this study highlight the importance of reducing raindrop impact and subsequent shear stress applied by concentrated flows through the use of ESCMs to limit sediment export from construction sites.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Chuva , Sedimentos Geológicos/química , Solo/química , Erosão do Solo , Tamanho da Partícula , Ohio
19.
Environ Sci Pollut Res Int ; 31(22): 32746-32765, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38662291

RESUMO

Insufficient freshwater recharge and climate change resulted in seawater intrusion in most of the coastal aquifers in Pakistan. Coastal aquifers represent diverse landcover types with varying spectral properties, making it challenging to extract information about their state hence, such investigation requires a combination of geospatial tools. This study aims to monitor erosion along the major coastal aquifers of Pakistan and propose an approach that combines data fusion into the machine and deep learning image segmentation architectures for the erosion and accretion assessment in seascapes. The analysis demonstrated the image segmentation U-Net with EfficientNet backbone achieved the highest F1 score of 0.93, while ResNet101 achieved the lowest F1 score of 0.77. Resultant erosion maps indicated that Sandspit experiencing erosion at 3.14 km2 area. Indus delta is showing erosion, approximately 143 km2 of land over the past 30 years. Sonmiani has undergone substantial erosion with 52.2 km2 land. Miani Hor has experienced erosion up to 298 km2, Bhuri creek has eroded over 4.11 km2, east Phitii creek over 3.30 km2, and Waddi creek over 3.082 km2 land. Tummi creek demonstrates erosion, at 7.12 km2 of land, and East Khalri creek near Keti Bandar has undergone a measured loss of 5.2 km2 land linked with quantified reduction in the vertical sediment flow from 50 (billion cubic meters) to 10 BCM. Our analysis suggests that intense erosions are primarily a result of reduced sediment flow and climate change. Addressing this issue needs to be prioritized coastal management and climate change mitigation framework in Pakistan to safeguard communities. Leveraging emerging solutions, such as loss and damage financing and the integration of nature-based solutions (NbS), should be prioritized for the revival of the coastal aquifers.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Aprendizado de Máquina , Paquistão , Monitoramento Ambiental/métodos , Erosão do Solo , Mudança Climática
20.
J Environ Manage ; 357: 120801, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588622

RESUMO

Straw incorporation has been considered as an effective environmental management application to improve soil erosion resistance (SER) and organic carbon sequestration. SER is useful to evaluate soil erosion subjected to concentrated flow. Nevertheless, few studies have been performed to examine how SER varied with the amount of straw incorporation on sloping croplands in high latitude and cool regions. In the current study, the fixed bed scouring tests were conducted in a large hydraulic flume using undisturbed soil samples taken from Hebei small watershed in the black soil region of Northeast China. The response of SER to different straw incorporation amounts (0, 1.125, 2.25, 4.5, 6.75, 9.0 and 13.5 t ha-1) was quantified after three months of straw decomposition. The major influencing factors and the corresponding mechanisms were determined. The findings demonstrated that rill erodibility firstly decreased exponentially with straw incorporation amount (R2 = 0.93), while it slightly increased when straw incorporation amount was more than 9.0 t ha-1. Critical shear stress firstly increased logarithmically (R2 = 0.90) and then slightly decreased when the amount exceeded 9.0 t ha-1. Compared to the treatment of 0 t ha-1, rill erodibility reduced by 17.0%-92.8% and critical shear stress increased by 59.6%-127.2% across different treatments of straw incorporation. Rill erodibility had significant and negative correlations with soil organic matter content, aggregate stability, cohesion, root mass density, straw mass density and straw decomposition amount. The key mechanisms for promoting SER were derived by the direct and indirect effects of straw incorporation and its decomposition on soil physicochemical properties and crop roots. The amount of 9.0 t ha-1 was recommended as the optimum amount of straw incorporation in croplands in Northeast China. These findings are useful to understand how soil erosion resistance responds to the amount of straw incorporation and make rational environmental management policy for semi-humid and cool regions.


Assuntos
Erosão do Solo , Solo , Solo/química , China , Sequestro de Carbono , Políticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...