Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.269
Filtrar
1.
Sci Rep ; 14(1): 16032, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992075

RESUMO

This study explores the application of the RIP3-caspase3-assay in heterogeneous spheroid cultures to analyze cell death pathways, emphasizing the nuanced roles of apoptosis and necroptosis. By employing directly conjugated monoclonal antibodies, we provide detailed insights into the complex mechanisms of cell death. Our findings demonstrate the assay's capability to differentiate between RIP1-independent apoptosis, necroptosis, and RIP1-dependent apoptosis, marking a significant advancement in organoid research. Additionally, we investigate the effects of TNFα on isolated intestinal epithelial cells, revealing a concentration-dependent response and an adaptive or threshold reaction to TNFα-induced stress. The results indicate a preference for RIP1-independent cell death pathways upon TNFα stimulation, with a notable increase in apoptosis and a secondary role of necroptosis. Our research underscores the importance of the RIP3-caspase3-assay in understanding cell death mechanisms in organoid cultures, offering valuable insights for disease modeling and the development of targeted therapies. The assay's adaptability and robustness in spheroid cultures enhances its potential as a tool in personalized medicine and translational research.


Assuntos
Apoptose , Caspase 3 , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores , Esferoides Celulares , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos , Caspase 3/metabolismo , Apoptose/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Morte Celular/efeitos dos fármacos , Organoides/metabolismo , Organoides/citologia
2.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000504

RESUMO

HER2-targeted therapies, such as Trastuzumab (Tz), have significantly improved the clinical outcomes for patients with HER2+ breast cancer (BC). However, treatment resistance remains a major obstacle. To elucidate functional and metabolic changes associated with acquired resistance, we characterized protein profiles of BC Tz-responder spheroids (RSs) and non-responder spheroids (nRSs) by a proteomic approach. Three-dimensional cultures were generated from the HER2+ human mammary adenocarcinoma cell line BT-474 and a derived resistant cell line. Before and after a 15-day Tz treatment, samples of each condition were collected and analyzed by liquid chromatography-mass spectrometry. The analysis of differentially expressed proteins exhibited the deregulation of energetic metabolism and mitochondrial pathways. A down-regulation of carbohydrate metabolism and up-regulation of mitochondria organization proteins, the tricarboxylic acid cycle, and oxidative phosphorylation, were observed in nRSs. Of note, Complex I-related proteins were increased in this condition and the inhibition by metformin highlighted that their activity is necessary for nRS survival. Furthermore, a correlation analysis showed that overexpression of Complex I proteins NDUFA10 and NDUFS2 was associated with high clinical risk and worse survival for HER2+ BC patients. In conclusion, the non-responder phenotype identified here provides a signature of proteins and related pathways that could lead to therapeutic biomarker investigation.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Complexo I de Transporte de Elétrons , Proteômica , Receptor ErbB-2 , Trastuzumab , Humanos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Complexo I de Transporte de Elétrons/metabolismo , Proteômica/métodos , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos , Proteoma/metabolismo , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico
3.
Bull Exp Biol Med ; 177(1): 115-123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38963596

RESUMO

The cardiac perivascular niche is a cellular microenvironment of a blood vessel. The principles of niche regulation are still poorly understood. We studied the effect of TGFß1 on cells forming the cardiac perivascular niche using 3D cell culture (cardiospheres). Cardiospheres contained progenitor (c-Kit), endothelial (CD31), and mural (αSMA) cells, basement membrane proteins (laminin) and extracellular matrix proteins (collagen I, fibronectin). TGFß1 treatment decreased the length of CD31+ microvasculature, VE cadherin protein level, and proportion of NG2+ cells, and increased proportion of αSMA+ cells and transgelin/SM22α protein level. We supposed that this effect is related to the stabilizing function of TGFß1 on vascular cells: decreased endothelial cell proliferation, as shown for HUVEC, and activation of mural cell differentiation.


Assuntos
Diferenciação Celular , Proliferação de Células , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Animais , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Caderinas/metabolismo , Laminina/metabolismo , Laminina/farmacologia , Proteínas Musculares/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Antígenos CD/metabolismo , Miocárdio/metabolismo , Miocárdio/citologia , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/fisiologia , Colágeno Tipo I/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/citologia , Técnicas de Cultura de Células em Três Dimensões/métodos
4.
Nat Commun ; 15(1): 5894, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003281

RESUMO

Remarkable advances in protocol development have been achieved to manufacture insulin-secreting islets from human pluripotent stem cells (hPSCs). Distinct from current approaches, we devised a tunable strategy to generate islet spheroids enriched for major islet cell types by incorporating PDX1+ cell budding morphogenesis into staged differentiation. In this process that appears to mimic normal islet morphogenesis, the differentiating islet spheroids organize with endocrine cells that are intermingled or arranged in a core-mantle architecture, accompanied with functional heterogeneity. Through in vitro modelling of human pancreas development, we illustrate the importance of PDX1 and the requirement for EphB3/4 signaling in eliciting cell budding morphogenesis. Using this new approach, we model Mitchell-Riley syndrome with RFX6 knockout hPSCs illustrating unexpected morphogenesis defects in the differentiation towards islet cells. The tunable differentiation system and stem cell-derived islet models described in this work may facilitate addressing fundamental questions in islet biology and probing human pancreas diseases.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio , Ilhotas Pancreáticas , Morfogênese , Células-Tronco Pluripotentes , Esferoides Celulares , Transativadores , Humanos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Transativadores/metabolismo , Transativadores/genética , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Receptores da Família Eph/metabolismo , Receptores da Família Eph/genética
5.
Proc Natl Acad Sci U S A ; 121(28): e2404210121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38954541

RESUMO

Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.


Assuntos
Matriz Extracelular , Hidrogéis , Células-Tronco Mesenquimais , Esferoides Celulares , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Hidrogéis/química , Matriz Extracelular/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Humanos , Diferenciação Celular , Técnicas de Cultura de Células/métodos , Proliferação de Células , Porosidade , Mecanotransdução Celular/fisiologia , Células Cultivadas
6.
Front Endocrinol (Lausanne) ; 15: 1396965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38982992

RESUMO

Adipose tissues, particularly beige and brown adipose tissue, play crucial roles in energy metabolism. Brown adipose tissues' thermogenic capacity and the appearance of beige cells within white adipose tissue have spurred interest in their metabolic impact and therapeutic potential. Brown and beige fat cells, activated by environmental factors like cold exposure or by pharmacology, share metabolic mechanisms that drive non-shivering thermogenesis. Understanding these two cell types requires advanced, yet broadly applicable in vitro models that reflect the complex microenvironment and vasculature of adipose tissues. Here we present mouse vascularized adipose spheroids of the stromal vascular microenvironment from inguinal white adipose tissue, a tissue with 'beiging' capacity in mice and humans. We show that adding a scaffold improves vascular sprouting, enhances spheroid growth, and upregulates adipogenic markers, thus reflecting increased adipocyte maturity. Transcriptional profiling via RNA sequencing revealed distinct metabolic pathways upregulated in our vascularized adipose spheroids, with increased expression of genes involved in glucose metabolism, lipid metabolism, and thermogenesis. Functional assessment demonstrated increased oxygen consumption in vascularized adipose spheroids compared to classical 2D cultures, which was enhanced by ß-adrenergic receptor stimulation correlating with elevated ß-adrenergic receptor expression. Moreover, stimulation with the naturally occurring adipokine, FGF21, induced Ucp1 mRNA expression in the vascularized adipose spheroids. In conclusion, vascularized inguinal white adipose tissue spheroids provide a physiologically relevant platform to study how the stromal vascular microenvironment shapes adipocyte responses and influence activated thermogenesis in beige adipocytes.


Assuntos
Esferoides Celulares , Termogênese , Animais , Camundongos , Esferoides Celulares/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/citologia , Camundongos Endogâmicos C57BL , Masculino , Adipócitos/metabolismo , Adipócitos/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/citologia , Células Cultivadas , Adipócitos Bege/metabolismo , Adipócitos Bege/citologia , Metabolismo Energético , Adipogenia/fisiologia , Sistemas Microfisiológicos
7.
Biomolecules ; 14(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38927015

RESUMO

The production of nanomaterials through environmentally friendly methods is a top priority in the sustainable development of nanotechnology. This paper presents data on the synthesis of silver nanoparticles using an aqueous extract of Sphagnum fallax moss at room temperature. The morphology, stability, and size of the nanoparticles were analyzed using various techniques, including transmission electron microscopy, Doppler laser velocimetry, and UV-vis spectroscopy. In addition, Fourier transform infrared spectroscopy was used to analyze the presence of moss metabolites on the surface of nanomaterials. The effects of different concentrations of citrate-stabilized and moss extract-stabilized silver nanoparticles on cell viability, necrosis induction, and cell impedance were compared. The internalization of silver nanoparticles into both monolayers and three-dimensional cells spheroids was evaluated using dark-field microscopy and hyperspectral imaging. An eco-friendly method for the synthesis of silver nanoparticles at room temperature is proposed, which makes it possible to obtain spherical nanoparticles of 20-30 nm in size with high bioavailability and that have potential applications in various areas of human life.


Assuntos
Nanopartículas Metálicas , Extratos Vegetais , Prata , Prata/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Humanos , Sobrevivência Celular/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Tamanho da Partícula
8.
Cells ; 13(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38920683

RESUMO

Over the past decade, the development of three-dimensional (3D) models has increased exponentially, facilitating the unravelling of fundamental and essential cellular mechanisms by which cells communicate with each other, assemble into tissues and organs and respond to biochemical and biophysical stimuli under both physiological and pathological conditions. This section presents a concise overview of the most recent updates on the significant contribution of different types of 3D cell cultures including spheroids, organoids and organ-on-chip and bio-printed tissues in advancing our understanding of cellular and molecular mechanisms. The case studies presented include the 3D cultures of breast cancer (BC), endometriosis, the liver microenvironment and infections. In BC, the establishment of 3D culture models has permitted the visualization of the role of cancer-associated fibroblasts in the delivery of exosomes, as well as the significance of the physical properties of the extracellular matrix in promoting cell proliferation and invasion. This approach has also become a valuable tool in gaining insight into general and specific mechanisms of drug resistance. Given the considerable heterogeneity of endometriosis, 3D models offer a more accurate representation of the in vivo microenvironment, thereby facilitating the identification and translation of novel targeted therapeutic strategies. The advantages provided by 3D models of the hepatic environment, in conjunction with the high throughput characterizing various platforms, have enabled the elucidation of complex molecular mechanisms underlying various threatening hepatic diseases. A limited number of 3D models for gut and skin infections have been developed. However, a more profound comprehension of the spatial and temporal interactions between microbes, the host and their environment may facilitate the advancement of in vitro, ex vivo and in vivo disease models. Additionally, it may pave the way for the development of novel therapeutic approaches in diverse research fields. The interested reader will also find concluding remarks on the challenges and prospects of using 3D cell cultures for discovering cellular and molecular mechanisms in the research areas covered in this review.


Assuntos
Neoplasias da Mama , Técnicas de Cultura de Células em Três Dimensões , Endometriose , Humanos , Endometriose/patologia , Endometriose/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Técnicas de Cultura de Células em Três Dimensões/métodos , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/patologia , Técnicas de Cultura de Células/métodos , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Fígado/patologia , Fígado/metabolismo , Organoides/metabolismo , Organoides/patologia , Hepatopatias/patologia , Hepatopatias/metabolismo , Animais
9.
Biofabrication ; 16(3)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38865994

RESUMO

The lack of adequate humanin vitromodels that recapitulate the cellular composition and response of the human liver to injury hampers the development of anti-fibrotic drugs. The goal of this study was to develop a human spheroid culture model to study liver fibrosis by using induced pluripotent stem cell (iPSC)-derived liver cells. iPSCs were independently differentiated towards hepatoblasts (iHepatoblasts), hepatic stellate cells (iHSCs), endothelial cells (iECs) and macrophages (iMΦ), before assembly into free floating spheroids by culturing cells in 96-well U-bottom plates and orbital shaking for up to 21 days to allow further maturation. Through transcriptome analysis, we show further maturation of iECs and iMΦ, the differentiation of the iHepatoblasts towards hepatocyte-like cells (iHeps) and the inactivation of the iHSCs by the end of the 3D culture. Moreover, these cultures display a similar expression of cell-specific marker genes (CYP3A4, PDGFRß, CD31andCD68) and sensitivity to hepatotoxicity as spheroids made using freshly isolated primary human liver cells. Furthermore, we show the functionality of the iHeps and the iHSCs by mimicking liver fibrosis through iHep-induced iHSC activation, using acetaminophen. In conclusion, we have established a reproducible human iPSC-derived liver culture model that can be used to mimic fibrosisin vitroas a replacement of primary human liver derived 3D models. The model can be used to investigate pathways involved in fibrosis development and to identify new targets for chronic liver disease therapy.


Assuntos
Diferenciação Celular , Técnicas de Cocultura , Células-Tronco Pluripotentes Induzidas , Cirrose Hepática , Fígado , Esferoides Celulares , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Fígado/patologia , Fígado/citologia , Modelos Biológicos , Hepatócitos/citologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/patologia , Células Cultivadas
10.
J Control Release ; 371: 386-405, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844177

RESUMO

Recently, the formation of three-dimensional (3D) cell aggregates known as embryoid bodies (EBs) grown in media supplemented with HSC-specific morphogens has been utilized for the directed differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), into clinically relevant hematopoietic stem cells (HSCs). However, delivering growth factors and nutrients have become ineffective in inducing synchronous differentiation of cells due to their 3D conformation. Moreover, irregularly sized EBs often lead to the formation of necrotic cores in larger EBs, impairing differentiation. Here, we developed two gelatin microparticles (GelMPs) with different release patterns and two HSC-related growth factors conjugated to them. Slow and fast releasing GelMPs were conjugated with bone morphogenic factor-4 (BMP-4) and stem cell factor (SCF), respectively. The sequential presentation of BMP-4 and SCF in GelMPs resulted in efficient and effective hematopoietic differentiation, shown by the enhanced gene and protein expression of several mesoderm and HSC-related markers, and the increased concentration of released HSC-related cytokines. In the present study, we were able to generate CD34+, CD133+, and FLT3+ cells with similar cellular and molecular morphology as the naïve HSCs that can produce colony units of different blood cells, in vitro.


Assuntos
Proteína Morfogenética Óssea 4 , Diferenciação Celular , Gelatina , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Esferoides Celulares , Fator de Células-Tronco , Proteína Morfogenética Óssea 4/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator de Células-Tronco/metabolismo , Gelatina/química , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Animais , Humanos , Camundongos
11.
Arch Biochem Biophys ; 758: 110075, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942107

RESUMO

An exceptional expression of claudins (CLDNs), tight junction (TJ) proteins, is observed in various solid cancer tissues. However, the pathophysiological roles of CLDNs have not been clarified in detail. CLDN14 is highly expressed in human colorectal cancer (CRC) tissues and cultured cancer epithelial cells. We found CLDN14 silencing decreased cell viability without affecting spheroid size in the three-dimensional (3D) spheroid model of DLD-1 cells derived from human CRC. Mitochondria activity and oxidative stress level were reduced by CLDN14 silencing. Furthermore, CLDN14 silencing decreased the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target antioxidative genes. CLDN14 was colocalized with ZO-1, a scaffolding protein in the TJ. CLDN14 silencing induced the disruption of TJ barrier such as the reduction of transepithelial electrical resistance and elevation of fluxes of small molecules including glucose in two-dimensional (2D) cultured model,. The depletion of glucose induced the elevation of ROS generation, mitochondria activity, and Nrf2 expression. These results suggest that CLDN14 increases Nrf2 expression in spheroids mediated via the formation of paracellular barrier to glucose. The cytotoxicities of doxorubicin, an anthracycline anticancer drug, and oxaliplatin, a platinum-based agent, were augmented by an Nrf2 activator in 2D cultured cells. The anticancer drug-induced toxicity was enhanced by CLDN14 silencing in 3D spheroids. We suggest that CLDN14 may potentiate chemoresistance mediated by the suppression of paracellular glucose permeability and activation of the Nrf2 signaling pathway in CRC cells.


Assuntos
Claudinas , Neoplasias Colorretais , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Inativação Gênica , Fator 2 Relacionado a NF-E2 , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Claudinas/metabolismo , Claudinas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Linhagem Celular Tumoral , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Junções Íntimas/metabolismo , Antineoplásicos/farmacologia , Glucose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética
12.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892210

RESUMO

The tumor suppressor gene F-box and WD repeat domain-containing (FBXW) 7 reduces cancer stemness properties by promoting the protein degradation of pluripotent stem cell markers. We recently demonstrated the transcriptional repression of FBXW7 by the three-dimensional (3D) spheroid formation of several cancer cells. In the present study, we found that the transcriptional activity of FBXW7 was promoted by the inhibition of the Ca2+-activated K+ channel, KCa1.1, in a 3D spheroid model of human prostate cancer LNCaP cells through the Akt-Nrf2 signaling pathway. The transcriptional activity of FBXW7 was reduced by the siRNA-mediated inhibition of the CCAAT-enhancer-binding protein C/EBP δ (CEBPD) after the transfection of miR223 mimics in the LNCaP spheroid model, suggesting the transcriptional regulation of FBXW7 through the Akt-Nrf2-CEBPD-miR223 transcriptional axis in the LNCaP spheroid model. Furthermore, the KCa1.1 inhibition-induced activation of FBXW7 reduced (1) KCa1.1 activity and protein levels in the plasma membrane and (2) the protein level of the cancer stem cell (CSC) markers, c-Myc, which is a molecule degraded by FBXW7, in the LNCaP spheroid model, indicating that KCa1.1 inhibition-induced FBXW7 activation suppressed CSC conversion in KCa1.1-positive cancer cells.


Assuntos
Proteína 7 com Repetições F-Box-WD , Regulação Neoplásica da Expressão Gênica , Fator 2 Relacionado a NF-E2 , Neoplasias da Próstata , Transdução de Sinais , Esferoides Celulares , Humanos , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Esferoides Celulares/metabolismo , Linhagem Celular Tumoral , Regulação para Cima , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
STAR Protoc ; 5(2): 103111, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38833372

RESUMO

Currently, there is no effective treatment for obesity and alcohol-associated liver diseases, partially due to the lack of translational human models. Here, we present a protocol to generate 3D human liver spheroids that contain all the liver cell types and mimic "livers in a dish." We describe strategies to induce metabolic and alcohol-associated hepatic steatosis, inflammation, and fibrosis. We outline potential applications, including using human liver spheroids for experimental and translational research and drug screening to identify potential anti-fibrotic therapies.


Assuntos
Cirrose Hepática , Fígado , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Fígado/patologia , Estresse Fisiológico/fisiologia , Técnicas de Cultura de Células/métodos , Hepatócitos/metabolismo , Hepatócitos/patologia
14.
ACS Biomater Sci Eng ; 10(7): 4463-4479, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38848471

RESUMO

Scaffold-free bone microtissues differentiated from mesenchymal stem cell (MSC) spheroids offer great potential for bottom-up bone tissue engineering as a direct supply of cells and osteogenic signals. Many biomaterials or biomolecules have been incorporated into bone microtissues to enhance their osteogenic abilities, but these materials are far from clinical approval. Here, we aimed to incorporate hydroxyapatite (HAP) nanoparticles, an essential component of bone matrix, into MSC spheroids to instruct their osteogenic differentiation into bone microtissues and further self-organization into bone organoids with a trabecular structure. Furthermore, the biological interaction between HAP nanoparticles and MSCs and the potential molecular mechanisms in the bone development of MSC spheroids were investigated by both in vitro and in vivo studies. As a result, improved cell viability and osteogenic abilities were observed for the MSC spheroids incorporated with HAP nanoparticles at a concentration of 30 µg/mL. HAP nanoparticles could promote the sequential expression of osteogenic markers (Runx2, Osterix, Sclerostin), promote the expression of bone matrix proteins (OPN, OCN, and Collagen I), promote the mineralization of the bone matrix, and thus promote the bone development of MSC spheroids. The differentiated bone microtissues could further self-organize into linear, lamellar, and spatial bone organoids with trabecular structures. More importantly, adding FAK or Akt inhibitors could decrease the level of HAP-induced osteogenic differentiation of bone microtissues. Finally, excellent new bone regeneration was achieved after injecting bone microtissues into cranial bone defect models, which could also be eliminated by the Akt inhibitor. In conclusion, HAP nanoparticles could promote the development of bone microtissues by promoting the osteogenic differentiation of MSCs and the formation and mineralization of the bone matrix via the FAK/Akt pathway. The bone microtissues could act as individual ossification centers and self-organize into macroscale bone organoids, and in this meaning, the bone microtissues could be called microscale bone organoids. Furthermore, the bone microtissues revealed excellent clinical perspectives for injectable cellular therapies for bone defects.


Assuntos
Regeneração Óssea , Diferenciação Celular , Durapatita , Células-Tronco Mesenquimais , Nanopartículas , Osteogênese , Proteínas Proto-Oncogênicas c-akt , Durapatita/química , Durapatita/farmacologia , Regeneração Óssea/efeitos dos fármacos , Nanopartículas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Engenharia Tecidual/métodos , Quinase 1 de Adesão Focal/metabolismo , Osso e Ossos/efeitos dos fármacos , Camundongos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
15.
Cells ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891032

RESUMO

The Fusarium fungi is found in cereals and feedstuffs and may produce mycotoxins, which are secondary metabolites, such as the T-2 toxin (T-2). In this work, we explored the hepatotoxicity of T-2 using microfluidic 3D hepatic cultures. The objectives were: (i) exploring the benefits of microfluidic 3D cultures compared to conventional 3D cultures available commercially (Aggrewell plates), (ii) establishing 3D co-cultures of hepatic cells (HepG2) and stellate cells (LX2) and assessing T-2 exposure in this model, (iii) characterizing the induction of metabolizing enzymes, and (iv) evaluating inflammatory markers upon T-2 exposure in microfluidic hepatic cultures. Our results demonstrated that, in comparison to commercial (large-volume) 3D cultures, spheroids formed faster and were more functional in microfluidic devices. The viability and hepatic function decreased with increasing T-2 concentrations in both monoculture and co-cultures. The RT-PCR analysis revealed that exposure to T-2 upregulates the expression of multiple Phase I and Phase II hepatic enzymes. In addition, several pro- and anti-inflammatory proteins were increased in co-cultures after exposure to T-2.


Assuntos
Fígado , Esferoides Celulares , Toxina T-2 , Toxina T-2/toxicidade , Humanos , Células Hep G2 , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Técnicas de Cocultura , Microfluídica/métodos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Sobrevivência Celular/efeitos dos fármacos
16.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891883

RESUMO

Articular cartilage damage still remains a major problem in orthopedical surgery. The development of tissue engineering techniques such as autologous chondrocyte implantation is a promising way to improve clinical outcomes. On the other hand, the clinical application of autologous chondrocytes has considerable limitations. Mesenchymal stromal cells (MSCs) from various tissues have been shown to possess chondrogenic differentiation potential, although to different degrees. In the present study, we assessed the alterations in chondrogenesis-related gene transcription rates and extracellular matrix deposition levels before and after the chondrogenic differentiation of MSCs in a 3D spheroid culture. MSCs were obtained from three different tissues: umbilical cord Wharton's jelly (WJMSC-Wharton's jelly mesenchymal stromal cells), adipose tissue (ATMSC-adipose tissue mesenchymal stromal cells), and the dental pulp of deciduous teeth (SHEDs-stem cells from human exfoliated deciduous teeth). Monolayer MSC cultures served as baseline controls. Newly formed 3D spheroids composed of MSCs previously grown in 2D cultures were precultured for 2 days in growth medium, and then, chondrogenic differentiation was induced by maintaining them in the TGF-ß1-containing medium for 21 days. Among the MSC types studied, WJMSCs showed the most similarities with primary chondrocytes in terms of the upregulation of cartilage-specific gene expression. Interestingly, such upregulation occurred to some extent in all 3D spheroids, even prior to the addition of TGF-ß1. These results confirm that the potential of Wharton's jelly is on par with adipose tissue as a valuable cell source for cartilage engineering applications as well as for the treatment of osteoarthritis. The 3D spheroid environment on its own acts as a trigger for the chondrogenic differentiation of MSCs.


Assuntos
Diferenciação Celular , Condrócitos , Condrogênese , Matriz Extracelular , Células-Tronco Mesenquimais , Esferoides Celulares , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Condrogênese/genética , Matriz Extracelular/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Células Cultivadas , Geleia de Wharton/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Técnicas de Cultura de Células/métodos , Engenharia Tecidual/métodos , Cartilagem/citologia , Cartilagem/metabolismo , Dente Decíduo/citologia , Dente Decíduo/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo
17.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892032

RESUMO

Keloids, marked by abnormal cellular proliferation and excessive extracellular matrix (ECM) accumulation, pose significant therapeutic challenges. Ethyl pyruvate (EP), an inhibitor of the high-mobility group box 1 (HMGB1) and TGF-ß1 pathways, has emerged as a potential anti-fibrotic agent. Our research evaluated EP's effects on keloid fibroblast (KF) proliferation and ECM production, employing both in vitro cell cultures and ex vivo patient-derived keloid spheroids. We also analyzed the expression levels of ECM components in keloid tissue spheroids treated with EP through immunohistochemistry. Findings revealed that EP treatment impedes the nuclear translocation of HMGB1 and diminishes KF proliferation. Additionally, EP significantly lowered mRNA and protein levels of collagen I and III by attenuating TGF-ß1 and pSmad2/3 complex expression in both human dermal fibroblasts and KFs. Moreover, metalloproteinase I (MMP-1) and MMP-3 mRNA levels saw a notable increase following EP administration. In keloid spheroids, EP induced a dose-dependent reduction in ECM component expression. Immunohistochemical and western blot analyses confirmed significant declines in collagen I, collagen III, fibronectin, elastin, TGF-ß, AKT, and ERK 1/2 expression levels. These outcomes underscore EP's antifibrotic potential, suggesting its viability as a therapeutic approach for keloids.


Assuntos
Fibroblastos , Queloide , Piruvatos , Esferoides Celulares , Humanos , Queloide/metabolismo , Queloide/patologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Piruvatos/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Colágeno/metabolismo , Colágeno/biossíntese , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Regulação para Cima/efeitos dos fármacos , Masculino
18.
J Transl Med ; 22(1): 530, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831317

RESUMO

BACKGROUND: Cancer stem-like cells (CSCs) have been extensively researched as the primary drivers of therapy resistance and tumor relapse in patients with breast cancer. However, due to lack of specific molecular markers, increased phenotypic plasticity and no clear clinicopathological features, the assessment of CSCs presence and functionality in solid tumors is challenging. While several potential markers, such as CD24/CD44, have been proposed, the extent to which they truly represent the stem cell potential of tumors or merely provide static snapshots is still a subject of controversy. Recent studies have highlighted the crucial role of the tumor microenvironment (TME) in influencing the CSC phenotype in breast cancer. The interplay between the tumor and TME induces significant changes in the cancer cell phenotype, leading to the acquisition of CSC characteristics, therapeutic resistance, and metastatic spread. Simultaneously, CSCs actively shape their microenvironment by evading immune surveillance and attracting stromal cells that support tumor progression. METHODS: In this study, we associated in vitro mammosphere formation assays with bulk tumor microarray profiling and deconvolution algorithms to map CSC functionality and the microenvironmental landscape in a large cohort of 125 breast tumors. RESULTS: We found that the TME score was a significant factor associated with CSC functionality. CSC-rich tumors were characterized by an immune-suppressed TME, while tumors devoid of CSC potential exhibited high immune infiltration and activation of pathways involved in the immune response. Gene expression analysis revealed IFNG, CXCR5, CD40LG, TBX21 and IL2RG to be associated with the CSC phenotype and also displayed prognostic value for patients with breast cancer. CONCLUSION: These results suggest that the characterization of CSCs content and functionality in tumors can be used as an attractive strategy to fine-tune treatments and guide clinical decisions to improve patients therapy response.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , Microambiente Tumoral , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Feminino , Transcrição Gênica , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Fenótipo
19.
Biofabrication ; 16(3)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934608

RESUMO

Breast cancer develops in close proximity to mammary adipose tissue and interactions with the local adipose environment have been shown to drive tumor progression. The specific role, however, of this complex tumor microenvironment in cancer cell migration still needs to be elucidated. Therefore, in this study, a 3D bioprinted breast cancer model was developed that allows for a comprehensive analysis of individual tumor cell migration parameters in dependence of adjacent adipose stroma. In this co-culture model, a breast cancer compartment with MDA-MB-231 breast cancer cells embedded in collagen is surrounded by an adipose tissue compartment consisting of adipose-derived stromal cell (ASC) or adipose spheroids in a printable bioink based on thiolated hyaluronic acid. Printing parameters were optimized for adipose spheroids to ensure viability and integrity of the fragile lipid-laden cells. Preservation of the adipogenic phenotype after printing was demonstrated by quantification of lipid content, expression of adipogenic marker genes, the presence of a coherent adipo-specific extracellular matrix, and cytokine secretion. The migration of tumor cells as a function of paracrine signaling of the surrounding adipose compartment was then analyzed using live-cell imaging. The presence of ASC or adipose spheroids substantially increased key migration parameters of MDA-MB-231 cells, namely motile fraction, persistence, invasion distance, and speed. These findings shed new light on the role of adipose tissue in cancer cell migration. They highlight the potential of our 3D printed breast cancer-stroma model to elucidate mechanisms of stroma-induced cancer cell migration and to serve as a screening platform for novel anti-cancer drugs targeting cancer cell dissemination.


Assuntos
Tecido Adiposo , Bioimpressão , Neoplasias da Mama , Movimento Celular , Impressão Tridimensional , Esferoides Celulares , Células Estromais , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/metabolismo , Movimento Celular/efeitos dos fármacos , Tecido Adiposo/citologia , Feminino , Linhagem Celular Tumoral , Células Estromais/patologia , Células Estromais/metabolismo , Células Estromais/citologia , Técnicas de Cocultura , Microambiente Tumoral
20.
Adipocyte ; 13(1): 2347215, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864486

RESUMO

Adipose tissue plays a crucial role in metabolic syndrome, autoimmune diseases, and many cancers. Because of adipose's role in so many aspects of human health, there is a critical need for in vitro models that replicate adipose architecture and function. Traditional monolayer models, despite their convenience, are limited, showing heterogeneity and functional differences compared to 3D models. While monolayer cultures struggle with detachment and inefficient differentiation, healthy adipocytes in 3D culture accumulate large lipid droplets, secrete adiponectin, and produce low levels of inflammatory cytokines. The shift from monolayer models to more complex 3D models aims to better replicate the physiology of healthy adipose tissue in culture. This study introduces a simple and accessible protocol for generating adipose organoids using a scaffold-free spheroid model. The method, utilizing either 96-well spheroid plates or agarose micromolds, demonstrates increased throughput, uniformity, and ease of handling compared to previous techniques. This protocol allows for diverse applications, including drug testing, toxin screening, tissue engineering, and co-culturing. The choice between the two methods depends on the experimental goals, with the 96-well plate providing individualized control and the micromold offering scale advantages. The outlined protocol covers isolation, expansion, and characterization of stromal vascular fraction cells, followed by detailed steps for spheroid formation and optional downstream analyses.


Assuntos
Adipócitos , Tecido Adiposo , Esferoides Celulares , Esferoides Celulares/metabolismo , Esferoides Celulares/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Humanos , Adipócitos/metabolismo , Adipócitos/citologia , Técnicas de Cultura de Células/métodos , Animais , Engenharia Tecidual/métodos , Células Cultivadas , Diferenciação Celular , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...