Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros













Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(1): 48, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951654

RESUMO

BACKGROUND: Pro-apoptotic and pro-inflammatory ceramides are crucially involved in atherosclerotic plaque development. Local cellular ceramide accumulation mediates endothelial apoptosis, especially in type 2 diabetes mellitus, which is a major cardiovascular risk factor. In recent years, large extracellular vesicles (lEVs) have been identified as an important means of intercellular communication and as regulators of cardiovascular health and disease. A potential role for lEVs as vehicles for ceramide transfer and inductors of diabetes-associated endothelial apoptosis has never been investigated. METHODS AND RESULTS: A mass-spectrometric analysis of human coronary artery endothelial cells (HCAECs) and their lEVs revealed C16 ceramide (d18:1-16:0) to be the most abundant ceramide in lEVs and to be significantly increased in lEVs after hyperglycemic injury to HCAECs. The increased packaging of ceramide into lEVs after hyperglycemic injury was shown to be dependent on neutral sphingomyelinase 2 (nSMase2), which was upregulated in glucose-treated HCAECs. lEVs from hyperglycemic HCAECs induced apoptosis in the recipient HCAECs compared to native lEVs from untreated HCAECs. Similarly, lEVs from hyperglycemic mice after streptozotocin injection induced higher rates of apoptosis in murine endothelial cells compared to lEVs from normoglycemic mice. To generate lEVs with high levels of C16 ceramide, ceramide was applied exogenously and shown to be effectively packaged into the lEVs, which then induced apoptosis in lEV-recipient HCAECs via activation of caspase 3. Intercellular transfer of ceramide through lEVs was confirmed by use of a fluorescently labeled ceramide analogue. Treatment of HCAECs with a pharmacological inhibitor of nSMases (GW4869) or siRNA-mediated downregulation of nSMase2 abrogated the glucose-mediated effect on apoptosis in lEV-recipient cells. In contrast, for small EVs (sEVs), hyperglycemic injury or GW4869 treatment had no effect on apoptosis induction in sEV-recipient cells. CONCLUSION: lEVs mediate the induction of apoptosis in endothelial cells in response to hyperglycemic injury through intercellular transfer of ceramides.


Assuntos
Doenças das Artérias Carótidas/metabolismo , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Esfingomielina Fosfodiesterase/fisiologia , Animais , Apoptose , Linhagem Celular , Células Endoteliais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
FEBS Open Bio ; 11(12): 3262-3275, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34709730

RESUMO

Bacterial phospholipases and sphingomyelinases are lipolytic esterases that are structurally and evolutionarily heterogeneous. These enzymes play crucial roles as virulence factors in several human and animal infectious diseases. Some bacterial phospholipases C (PLCs) have both phosphatidylcholinesterase and sphingomyelinase C activities. Among them, Listeria monocytogenes PlcB, Clostridium perfringens PLC, and Pseudomonas aeruginosa PlcH are the most deeply understood. In silico predictions of substrates docking with these three bacterial enzymes provide evidence that they interact with different substrates at the same active site. This review discusses structural aspects, substrate specificity, and the mechanism of action of those bacterial enzymes on target cells and animal infection models to shed light on their roles in pathogenesis.


Assuntos
Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/fisiologia , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/fisiologia , Animais , Clostridium perfringens/enzimologia , Clostridium perfringens/patogenicidade , Humanos , Listeria monocytogenes/enzimologia , Listeria monocytogenes/patogenicidade , Fosfolipases , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade , Fosfolipases Tipo C/genética
3.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445706

RESUMO

Here, we present the main features of human acid sphingomyelinase (ASM), its biosynthesis, processing and intracellular trafficking, its structure, its broad substrate specificity, and the proposed mode of action at the surface of the phospholipid substrate carrying intraendolysosomal luminal vesicles. In addition, we discuss the complex regulation of its phospholipid cleaving activity by membrane lipids and lipid-binding proteins. The majority of the literature implies that ASM hydrolyses solely sphingomyelin to generate ceramide and ignores its ability to degrade further substrates. Indeed, more than twenty different phospholipids are cleaved by ASM in vitro, including some minor but functionally important phospholipids such as the growth factor ceramide-1-phosphate and the unique lysosomal lysolipid bis(monoacylglycero)phosphate. The inherited ASM deficiency, Niemann-Pick disease type A and B, impairs mainly, but not only, cellular sphingomyelin catabolism, causing a progressive sphingomyelin accumulation, which furthermore triggers a secondary accumulation of lipids (cholesterol, glucosylceramide, GM2) by inhibiting their turnover in late endosomes and lysosomes. However, ASM appears to be involved in a variety of major cellular functions with a regulatory significance for an increasing number of metabolic disorders. The biochemical characteristics of ASM, their potential effect on cellular lipid turnover, as well as a potential impact on physiological processes will be discussed.


Assuntos
Fosfolipídeos/biossíntese , Esfingomielina Fosfodiesterase/biossíntese , Esfingomielina Fosfodiesterase/metabolismo , Transporte Biológico , Ceramidas/metabolismo , Colesterol/metabolismo , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Lipídeos de Membrana/metabolismo , Doença de Niemann-Pick Tipo A/metabolismo , Fosfolipídeos/metabolismo , Esfingomielina Fosfodiesterase/fisiologia , Esfingomielinas/metabolismo , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/fisiologia
4.
Blood ; 138(4): 344-349, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34075401

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with the hypercoagulable state. Tissue factor (TF) is the primary cellular initiator of coagulation. Most of the TF expressed on cell surfaces remains cryptic. Sphingomyelin (SM) is responsible for maintaining TF in the encrypted state, and hydrolysis of SM by acid sphingomyelinase (ASMase) increases TF activity. ASMase was shown to play a role in virus infection biology. In the present study, we investigated the role of ASMase in SARS-CoV-2 infection-induced TF procoagulant activity. Infection of human monocyte-derived macrophages (MDMs) with SARS-CoV-2 spike protein pseudovirus (SARS-CoV-2-SP-PV) markedly increased TF procoagulant activity at the cell surface and released TF+ extracellular vesicles. The pseudovirus infection did not increase either TF protein expression or phosphatidylserine externalization. SARS-CoV-2-SP-PV infection induced the translocation of ASMase to the outer leaflet of the plasma membrane, which led to the hydrolysis of SM in the membrane. Pharmacologic inhibitors or genetic silencing of ASMase attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Inhibition of the SARS-CoV-2 receptor, angiotensin-converting enzyme-2, attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Overall, our data suggest that SARS-CoV-2 infection activates the coagulation by decrypting TF through activation of ASMase. Our data suggest that the US Food and Drug Administration-approved functional inhibitors of ASMase may help treat hypercoagulability in patients with COVID-19.


Assuntos
COVID-19/sangue , Macrófagos/virologia , Proteínas de Membrana/fisiologia , SARS-CoV-2 , Esfingomielina Fosfodiesterase/fisiologia , Glicoproteína da Espícula de Coronavírus/fisiologia , Trombofilia/etiologia , Tromboplastina/fisiologia , Enzima de Conversão de Angiotensina 2/fisiologia , COVID-19/complicações , Micropartículas Derivadas de Células , Ativação Enzimática , Humanos , Hidrólise , Macrófagos/enzimologia , Terapia de Alvo Molecular , Plasmídeos , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Virais/fisiologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielinas/fisiologia , Trombofilia/sangue , Trombofilia/tratamento farmacológico , Trombofilia/enzimologia
5.
Biomed Pharmacother ; 139: 111610, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33957567

RESUMO

Sphingomyelin (SM) can be converted into ceramide (Cer) by neutral sphingomyelinase (NSM) and acid sphingomyelinase (ASM). Cer is a second messenger of lipids and can regulate cell growth and apoptosis. Increasing evidence shows that NSM and ASM play key roles in many processes, such as apoptosis, immune function and inflammation. Therefore, NSM and ASM have broad prospects in clinical treatments, especially in cancer, cardiovascular diseases (such as atherosclerosis), nervous system diseases (such as Alzheimer's disease), respiratory diseases (such as chronic obstructive pulmonary disease) and the phenotype of dwarfisms in adolescents, playing a complex regulatory role. This review focuses on the physiological functions of NSM and ASM and summarizes their roles in certain diseases and their potential applications in therapy.


Assuntos
Esfingomielina Fosfodiesterase/fisiologia , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/terapia , Humanos , Neoplasias/enzimologia , Neoplasias/terapia , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/terapia , Doenças Respiratórias/enzimologia , Doenças Respiratórias/terapia , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/classificação
6.
Biochim Biophys Acta Mol Basis Dis ; 1867(7): 166146, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33862145

RESUMO

The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis in response to hyperhomocysteinemia (hHcy). However, it remains unknown how the products of NLRP3 inflammasome in cytoplasm are secreted out of podocytes. In the present study, we tested whether exosome release serves as a critical mechanism to mediate the action of NLRP3 inflammasome activation in hHcy-induced glomerular injury. By various approaches, we found that hHcy induced NLRP3 inflammasome activation and neutrophil infiltration in glomeruli of WT/WT mice. Lysosome-MVB interaction in glomeruli remarkably decreased in WT/WT mice fed with FF diet, leading to elevation of urinary exosome excretion of these mice. Podocyte-derived exosomes containing pro-inflammatory cytokines increased in urine of WT/WT mice in response to hHcy. The release of inflammatory exosomes from podocytes was prevented by Smpd1 gene deletion but enhanced by podocyte-specific Smpd1 gene overexpression (Smpd1 encodes Asm in mice). Pathologically, hHcy-induced podocyte injury and glomerular sclerosis were blocked by Smpd1 gene knockout but amplified by podocyte-specific Smpd1 gene overexpression. Taken together, our results suggest that Asm-ceramide signaling pathway contributes to NLRP3 inflammasome activation and robust release of inflammatory exosomes in podocytes during hHcy, which together trigger local glomerular inflammation and sclerosis.


Assuntos
Exossomos/patologia , Hiper-Homocisteinemia/complicações , Inflamação/patologia , Nefropatias/patologia , Podócitos/patologia , Esclerose/patologia , Esfingomielina Fosfodiesterase/fisiologia , Animais , Exossomos/metabolismo , Inflamassomos , Inflamação/etiologia , Inflamação/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Podócitos/metabolismo , Esclerose/etiologia , Esclerose/metabolismo
7.
Blood ; 137(5): 690-701, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232973

RESUMO

Transfusion-related acute lung injury (TRALI) is a hazardous transfusion complication with an associated mortality of 5% to 15%. We previously showed that stored (5 days) but not fresh platelets (1 day) cause TRALI via ceramide-mediated endothelial barrier dysfunction. As biological ceramides are hydrophobic, extracellular vesicles (EVs) may be required to shuttle these sphingolipids from platelets to endothelial cells. Adding to complexity, EV formation in turn requires ceramide. We hypothesized that ceramide-dependent EV formation from stored platelets and EV-dependent sphingolipid shuttling induces TRALI. EVs formed during storage of murine platelets were enumerated, characterized for sphingolipids, and applied in a murine TRALI model in vivo and for endothelial barrier assessment in vitro. Five-day EVs were more abundant, had higher long-chain ceramide (C16:0, C18:0, C20:0), and lower sphingosine-1-phosphate (S1P) content than 1-day EVs. Transfusion of 5-day, but not 1-day, EVs induced characteristic signs of lung injury in vivo and endothelial barrier disruption in vitro. Inhibition or supplementation of ceramide-forming sphingomyelinase reduced or enhanced the formation of EVs, respectively, but did not alter the injuriousness per individual EV. Barrier failure was attenuated when EVs were abundant in or supplemented with S1P. Stored human platelet 4-day EVs were more numerous compared with 2-day EVs, contained more long-chain ceramide and less S1P, and caused more endothelial cell barrier leak. Hence, platelet-derived EVs become more numerous and more injurious (more long-chain ceramide, less S1P) during storage. Blockade of sphingomyelinase, EV elimination, or supplementation of S1P during platelet storage may present promising strategies for TRALI prevention.


Assuntos
Vesículas Extracelulares/fisiologia , Transfusão de Plaquetas/efeitos adversos , Esfingolipídeos/metabolismo , Lesão Pulmonar Aguda Relacionada à Transfusão/etiologia , Animais , Plaquetas/ultraestrutura , Preservação de Sangue , Ceramidas/metabolismo , Células Endoteliais/fisiologia , Endotoxinas/toxicidade , Humanos , Lisofosfolipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/fisiologia , Esfingosina/análogos & derivados , Esfingosina/fisiologia , Lesão Pulmonar Aguda Relacionada à Transfusão/metabolismo , Lesão Pulmonar Aguda Relacionada à Transfusão/prevenção & controle
8.
J Surg Res ; 259: 296-304, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33131764

RESUMO

BACKGROUND: Chronic traumatic encephalopathy is a consequence of repetitive mild traumatic brain injury (rmTBI). These injuries can result in psychiatric disorders that are treated with amitriptyline. Amitriptyline improves neuronal regeneration in major depression via inhibition of acid sphingomyelinase. We hypothesized that acid sphingomyelinase inhibition would preserve neuronal regeneration and decrease depressive symptoms following rmTBI in a murine model. METHODS: A murine model of rmTBI was established using a weight-drop method. Mice were subjected to mTBI every other day for 7 d. Mice received amitriptyline injection 2 h prior to each mTBI. After the final mTBI, mice underwent behavioral studies or biochemical analysis. Hippocampi were analyzed for markers of neurogenesis and phosphorylated tau aggregation. RESULTS: Mice that underwent rmTBI showed increased hippocampal phosphorylated tau aggregation 1 mo following rmTBI as well as decreased neuronal regeneration by bromodeoxyuridine uptake and doublecortin immunohistochemistry. Mice with either genetic deficiency or pharmacologic inhibition of acid sphingomyelinase demonstrated improved neuronal regeneration and decreased phosphorylated tau aggregation compared to untreated rmTBI mice. Behavioral testing showed rmTBI mice spent significantly more time in the dark and waiting to initiate feeding compared to sham mice. These behaviors were partially prevented by the inhibition of acid sphingomyelinase. CONCLUSIONS: We established a murine model of rmTBI that leads to tauopathy, depression, and impaired hippocampal neurogenesis. Inhibition of acid sphingomyelinase prevented the harmful neurologic and behavioral effects of rmTBI. These findings highlight an important opportunity to improve recovery or prevent neuropsychiatric decline in patients at risk for chronic traumatic encephalopathy.


Assuntos
Concussão Encefálica/tratamento farmacológico , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Amitriptilina/uso terapêutico , Animais , Concussão Encefálica/enzimologia , Concussão Encefálica/patologia , Concussão Encefálica/psicologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agregação Patológica de Proteínas/prevenção & controle , Esfingomielina Fosfodiesterase/fisiologia , Proteínas tau/química
9.
Neurobiol Aging ; 93: 142.e5-142.e7, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32409254

RESUMO

Mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene were reported to be associated with Parkinson's disease and dementia with Lewy bodies. In the current study, we aimed to evaluate the role of SMPD1 variants in isolated rapid eye movement sleep behavior disorder (iRBD). SMPD1 and its untranslated regions were sequenced using targeted next-generation sequencing in 959 iRBD patients and 1287 controls from European descent. Our study reports no statistically significant association of SMPD1 variants and iRBD. It is hence unlikely that SMPD1 plays a major role in iRBD.


Assuntos
Estudos de Associação Genética , Variação Genética , Resultados Negativos , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/fisiopatologia , Sono REM/genética , Esfingomielina Fosfodiesterase/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Esfingomielina Fosfodiesterase/fisiologia
10.
Am J Pathol ; 189(9): 1831-1845, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199918

RESUMO

SMPD3 deficiency in the neutral sphingomyelinase (Smpd3-/-) mouse results in a novel form of juvenile dwarfism, suggesting smpd3 is a polygenetic determinant of body height. SMPD3 controls homeostasis of the sphingomyelin cycle in the Golgi compartment, essential for membrane remodeling, initiating multiform vesicle formation and transport in the Golgi secretory pathway. Using the unbiased Smpd3-/- genetic model, this study shows that the perturbed Golgi secretory pathway of chondrocytes of the epiphyseal growth zone leads to dysproteostasis, skeletal growth inhibition, malformation, and chondrodysplasia, but showed unimpaired mineralization in primary and secondary enchondral ossification centers. This has been elaborated by biochemical analyses and immunohistochemistry of long bones of Smpd3-/- mice. A more precise definition of the microarchitecture and three-dimensional structure of the bone was shown by peripheral quantitative computed tomography, high-resolution microcomputed tomography, and less precisely by dual-energy X-ray absorptiometry for osteodensitometry. Ablation of the Smpd3 locus as part of a 980-kb deletion on chromosome 8 in the fro/fro mutant, generated by chemical mutagenesis, is held responsible for skeletal hypomineralization, osteoporosis, and multiple fractures of long bones, which are hallmarks of human osteogenesis imperfecta. The phenotype of the genetically unbiased Smpd3-/- mouse, described here, precludes the proposed role of Smpd3 as a candidate gene of human osteogenesis imperfecta, but suggests SMPD3 deficiency as the pathogenetic basis of a novel form of chondrodysplasia.


Assuntos
Desenvolvimento Ósseo , Calcificação Fisiológica , Condrócitos/patologia , Osteocondrodisplasias/etiologia , Esfingomielina Fosfodiesterase/fisiologia , Animais , Condrócitos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteocondrodisplasias/patologia
11.
Clin Sci (Lond) ; 133(6): 763-776, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30890654

RESUMO

Sphingolipids, such as sphingomyelins, ceramides, glycosphingolipids, and sphingosine-1-phosphates (S1P) are a large group of structurally and functionally diverse molecules. Some specific species are found associated with atherogenesis and provide novel therapeutic targets. Herein, we briefly review how sphingolipids are implicated in the progression of atherosclerosis and related diseases, and then we discuss the potential therapy options by targetting several key enzymes in sphingolipid metabolism.


Assuntos
Aterosclerose/metabolismo , Terapia de Alvo Molecular/métodos , Esfingolipídeos/fisiologia , Aterosclerose/tratamento farmacológico , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Ceramidas/metabolismo , Humanos , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/fisiologia , Esfingomielinas/metabolismo
12.
BMB Rep ; 52(2): 111-112, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30760383

RESUMO

Although many studies have reported that the breakdown of the blood-brain barrier (BBB) represents one of the major pathological changes in aging, the mechanism underlying this process remains relatively unexplored. In this study, we described that acid sphingomyelinase (ASM) derived from endothelial cells plays a critical role in BBB disruption in aging. ASM levels were elevated in the brain endothelium and plasma of aged humans and mice, resulting in BBB leakage through an increase in caveolae-mediated transcytosis. Moreover, ASM caused damage to the caveolae-cytoskeleton via protein phosphatase 1-mediated ezrin/radixin/moesin dephosphorylation in primary mouse brain endothelial cells. Mice overexpressing brain endothelial cell-specific ASM exhibited acceleration of BBB impairment and neuronal dysfunction. However, genetic inhibition and endothelial specific knock-down of ASM in mice improved BBB disruption and neurocognitive impairment during aging. Results of this study revealed a novel role of ASM in the regulation of BBB integrity and neuronal function in aging, thus highlighting the potential of ASM as a new therapeutic target for anti-aging. [BMB Reports 2019; 52(2): 111-112].


Assuntos
Envelhecimento/fisiologia , Barreira Hematoencefálica/fisiologia , Esfingomielina Fosfodiesterase/fisiologia , Animais , Encéfalo/metabolismo , Cavéolas/fisiologia , Células Endoteliais/metabolismo , Humanos , Camundongos , Esfingomielina Fosfodiesterase/genética , Junções Íntimas/metabolismo , Transcitose/fisiologia
13.
Brain Res Bull ; 146: 310-319, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30716394

RESUMO

Alcohol use disorder and depression show a high comorbidity at clinical level with no treatment available selectively for this condition. A hyperfunction of acid sphingomyelinase (ASM) and resulting ceramide overload were recently identified as one pathway into this comorbidity. Here we analyzed the involvement of ASM, one of the main enzymes involved in ceramide synthesis, in the molecular control of monoaminergic systems in their basal activity and in response to pharmacological and natural reinforcers. The effects of alcohol and a palatable food on the extracellular levels of dopamine (DA), serotonin (5-HT), and noradrenaline (NE) were measured by in-vivo microdialysis in ASM overexpressing mice (tgASM). We found reduced basal extracellular DA levels in the nucleus accumbens (Nac) and dorsal hippocampus (DH) of tgASM mice with little effect on 5-HT and NE levels. In contrast, ASM overexpression potentiated the DA response to alcohol (2 g/kg, i.p.) in the DH and Nac, but reduced NE responses. DA and NE responses to a food stimulus were not altered in tgASM mice, but the Nac 5-HT response was enhanced. An immunohistochemical analysis of the DH showed a preserved dopaminergic and serotonergic innervation in tgASM mice and in mice that consumed alcohol for one month. These findings suggest a direct modulation of monoaminergic basal activity and/or responses to reinforcing stimuli by the sphingolipid regulatory enzyme ASM in mice.


Assuntos
Estimulantes do Apetite/metabolismo , Apetite/efeitos dos fármacos , Esfingomielina Fosfodiesterase/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Dopamina/metabolismo , Etanol/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Norepinefrina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Serotonina/metabolismo , Esfingomielina Fosfodiesterase/fisiologia
14.
Life Sci ; 219: 303-310, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30677425

RESUMO

AIMS: Vascular adventitial fibroblasts (AFs) in the vascular remodeling during atherosclerosis are increasing arousing attention. Acid sphingomyelinase (ASM) is a soluble glycoprotein which is involved in the development and progression of atherosclerosis. However, it remains unknown if ASM is expressed in vascular AFs and regulates vascular adventitial remodeling and underlying mechanisms. MAIN METHODS AND KEY FINDINGS: ASM downregulation with gene silencing was used in the rat AFs treated with angiotensin (Ang) II, which is universally demonstrated to induce vascular adventitia remodeling. It was showed that ASM was indeed expressed in vascular AFs and ASM downregulation resulted in a significant decrease in the protein level of PCNA and collagen I and cell migration under Ang II stimulation. Such improvement of adventitial remodeling was not further augmented by Ang-(1-7), which is deemed as an endogenous Ang II blocker. We further found that ASM downregulation blocked the Nox2-dependent superoxide (O2-) generation, which regulated vascular remodeling in AFs under Ang II. ASM siRNA decreased the aggregation of membrane rafts (MRs) and the consequent recruiting of ceramide and Nox2 in MRs. SIGNIFICANCE: In conclusion, these results suggested that ASM downregulation could improve vascular adventitial remodeling which was attributed to inhibiting MRs/Nox2 redox signaling pathway in AFs. Thus, these data supported the idea that ASM is a potential therapeutic target for diabetic vascular complication.


Assuntos
Angiotensina II/farmacologia , Microdomínios da Membrana/metabolismo , NADPH Oxidase 2/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/fisiologia , Remodelação Vascular/efeitos dos fármacos , Túnica Adventícia/efeitos dos fármacos , Túnica Adventícia/metabolismo , Túnica Adventícia/fisiologia , Animais , Western Blotting , Inativação Gênica , Imunoprecipitação , Masculino , Microscopia Confocal , NADPH Oxidase 2/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Esfingomielina Fosfodiesterase/metabolismo , Remodelação Vascular/fisiologia
15.
Blood ; 132(5): e1-e12, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29784642

RESUMO

Platelet integrity and function critically depend on lipid composition. However, the lipid inventory in platelets was hitherto not quantified. Here, we examined the lipidome of murine platelets using lipid-category tailored protocols on a quantitative lipidomics platform. We could show that the platelet lipidome comprises almost 400 lipid species and covers a concentration range of 7 orders of magnitude. A systematic comparison of the lipidomics network in resting and activated murine platelets, validated in human platelets, revealed that <20% of the platelet lipidome is changed upon activation, involving mainly lipids containing arachidonic acid. Sphingomyelin phosphodiesterase-1 (Smpd1) deficiency resulted in a very specific modulation of the platelet lipidome with an order of magnitude upregulation of lysosphingomyelin (SPC), and subsequent modification of platelet activation and thrombus formation. In conclusion, this first comprehensive quantitative lipidomic analysis of platelets sheds light on novel mechanisms important for platelet function, and has therefore the potential to open novel diagnostic and therapeutic opportunities.


Assuntos
Plaquetas/metabolismo , Lipídeos/análise , Fosforilcolina/análogos & derivados , Esfingomielina Fosfodiesterase/fisiologia , Esfingosina/análogos & derivados , Trombose/fisiopatologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilcolina/metabolismo , Ativação Plaquetária , Esfingosina/metabolismo , Trombose/metabolismo
16.
Int J Radiat Biol ; 94(7): 678-684, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659325

RESUMO

PURPOSE: Exposure to extremely low frequency electromagnetic fields (ELF-EMFs) could elicit biological effects including carcinogenesis. However, the detailed mechanisms by which these ELF-EMFs interact with biological system are currently unclear. Previously, we found that a 50-Hz magnetic field (MF) exposure could induce epidermal growth factor receptor (EGFR) clustering and phosphorylation on cell membranes. In the present experiment, the possible roles of reactive oxygen species (ROS) in MF-induced EGFR clustering were investigated. MATERIALS AND METHODS: Human amnion epithelial (FL) cells were exposed to a 50-Hz MF with or without N-acetyl-l-cysteine (NAC) or pyrrolidine dithiocarbamate (PDTC). EGFR clustering on cellular membrane surface was analyzed using confocal microscopy after indirect immunofluorescence staining. The intracellular ROS level and acid sphingomyelinase (ASMase) activity were detected using an ROS assay kit and an Amplex® Red Sphingomyelinase Assay Kit, respectively. RESULTS: Results showed that exposure of FL cells to a 50-Hz MF at 0.4 mT for 15 min significantly enhanced the ROS level, induced EGFR clustering and increased ASMase activity. However, pretreatment with NAC or PDTC, the scavenger of ROS, not only counteracted the effects of a 50-Hz MF on ROS level and AMS activity, but also inhibited the EGFR clustering induced by MF exposure. CONCLUSIONS: The present and previous data suggest that ROS mediates the MF-induced EGFR clustering via ASMase activation.


Assuntos
Campos Magnéticos , Espécies Reativas de Oxigênio/metabolismo , Esfingomielina Fosfodiesterase/fisiologia , Células Cultivadas , Ativação Enzimática , Receptores ErbB/química , Receptores ErbB/efeitos da radiação , Humanos
17.
Sci Rep ; 8(1): 3071, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29449691

RESUMO

Multiple Sclerosis (MuS) is a complex multifactorial neuropathology, resulting in heterogeneous clinical presentation. A very active MuS research field concerns the discovery of biomarkers helpful to make an early and definite diagnosis. The sphingomyelin pathway has emerged as a molecular mechanism involved in MuS, since high levels of ceramides in cerebrospinal fluid (CSF) were related to axonal damage and neuronal dysfunction. Ceramides are the hydrolysis products of sphingomyelins through a reaction catalyzed by a family of enzymes named sphingomyelinases, which were recently related to myelin repair in MuS. Here, using a lipidomic approach, we observed low levels of several sphingomyelins in CSF of MuS patients compared to other inflammatory and non-inflammatory, central or peripheral neurological diseases. Starting by this result, we investigated the sphingomyelinase activity in CSF, showing a significantly higher enzyme activity in MuS. In support of these results we found high number of total exosomes in CSF of MuS patients and a high number of acid sphingomyelinase-enriched exosomes correlated to enzymatic activity and to disease severity. These data are of diagnostic relevance and show, for the first time, high number of acid sphingomyelinase-enriched exosomes in MuS, opening a new window for therapeutic approaches/targets in the treatment of MuS.


Assuntos
Esclerose Múltipla/patologia , Esfingomielina Fosfodiesterase/fisiologia , Esfingomielinas/fisiologia , Adolescente , Adulto , Biomarcadores/líquido cefalorraquidiano , Ceramidas/análise , Ceramidas/líquido cefalorraquidiano , Ceramidas/metabolismo , Exossomos/metabolismo , Exossomos/patologia , Exossomos/fisiologia , Feminino , Humanos , Lipídeos/análise , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/análise , Esfingomielinas/líquido cefalorraquidiano
18.
J Physiol ; 595(15): 5265-5284, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28555839

RESUMO

KEY POINTS: At rat calyx of Held terminals, ATP was required not only for slow endocytosis, but also for rapid phase of compensatory endocytosis. An ATP-independent form of endocytosis was recruited to accelerate membrane retrieval at increased activity and temperature. ATP-independent endocytosis primarily involved retrieval of pre-existing membrane, which depended on Ca2+ and the activity of neutral sphingomyelinase but not clathrin-coated pit maturation. ATP-independent endocytosis represents a non-canonical mechanism that can efficiently retrieve membrane at physiological conditions without competing for the limited ATP at elevated neuronal activity. ABSTRACT: Neurotransmission relies on membrane endocytosis to maintain vesicle supply and membrane stability. Endocytosis has been generally recognized as a major ATP-dependent function, which efficiently retrieves more membrane at elevated neuronal activity when ATP consumption within nerve terminals increases drastically. This paradox raises the interesting question of whether increased activity recruits ATP-independent mechanism(s) to accelerate endocytosis at the same time as preserving ATP availability for other tasks. To address this issue, we studied ATP requirement in three typical forms of endocytosis at rat calyx of Held terminals by whole-cell membrane capacitance measurements. At room temperature, blocking ATP hydrolysis effectively abolished slow endocytosis and rapid endocytosis but only partially inhibited excess endocytosis following intense stimulation. The ATP-independent endocytosis occurred at calyces from postnatal days 8-15, suggesting its existence before and after hearing onset. This endocytosis was not affected by a reduction of exocytosis using the light chain of botulinum toxin C, nor by block of clathrin-coat maturation. It was abolished by EGTA, which preferentially blocked endocytosis of retrievable membrane pre-existing at the surface, and was impaired by oxidation of cholesterol and inhibition of neutral sphingomyelinase. ATP-independent endocytosis became more significant at 34-35°C, and recovered membrane by an amount that, on average, was close to exocytosis. The results of the present study suggest that activity and temperature recruit ATP-independent endocytosis of pre-existing membrane (in addition to ATP-dependent endocytosis) to efficiently retrieve membrane at nerve terminals. This less understood endocytosis represents a non-canonical mechanism regulated by lipids such as cholesterol and sphingomyelinase.


Assuntos
Trifosfato de Adenosina/fisiologia , Tronco Encefálico/fisiologia , Endocitose/fisiologia , Animais , Membrana Celular/fisiologia , Capacitância Elétrica , Feminino , Masculino , Ratos Sprague-Dawley , Esfingomielina Fosfodiesterase/fisiologia
19.
J Dent Res ; 96(3): 339-346, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28221099

RESUMO

Sphingomyelin phosphodiesterase 3 ( Smpd3), which encodes neutral sphingomyelinase 2 (nSMase2), is a key molecule for skeletal development as well as for the cytodifferentiation of odontoblasts and alveolar bone. However, the effects of nSMase2 on the cytodifferentiation of periodontal ligament (PDL) cells are still unclear. In this study, the authors analyzed the effects of Smpd3 on the cytodifferentiation of human PDL (HPDL) cells. The authors found that Smpd3 increases the mRNA expression of calcification-related genes, such as alkaline phosphatase (ALPase), type I collagen, osteopontin, Osterix (Osx), and runt-related transcription factor (Runx)-2 in HPDL cells. In contrast, GW4869, an inhibitor of nSMase2, clearly decreased the mRNA expression of ALPase, type I collagen, and osteocalcin in HPDL cells, suggesting that Smpd3 enhances HPDL cytodifferentiation. Next, the authors used exome sequencing to evaluate the genetic variants of Smpd3 in a Japanese population with aggressive periodontitis (AgP). Among 44 unrelated subjects, the authors identified a single nucleotide polymorphism (SNP), rs145616324, in Smpd3 as a putative genetic variant for AgP among Japanese people. Moreover, Smpd3 harboring this SNP did not increase the sphingomyelinase activity or mRNA expression of ALPase, type I collagen, osteopontin, Osx, or Runx2, suggesting that this SNP inhibits Smpd3 such that it has no effect on the cytodifferentiation of HPDL cells. These data suggest that Smpd3 plays a crucial role in maintaining the homeostasis of PDL tissue.


Assuntos
Periodontite Agressiva/genética , Ligamento Periodontal/citologia , Esfingomielina Fosfodiesterase/fisiologia , Adulto , Periodontite Agressiva/enzimologia , Fosfatase Alcalina/metabolismo , Calcificação Fisiológica , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Immunoblotting , Japão , Masculino , Osteocalcina/metabolismo , Osteopontina/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Esfingomielina Fosfodiesterase/genética
20.
Mediators Inflamm ; 2017: 8102170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375200

RESUMO

Prevalence of thyroid dysfunction and its impact on cognition in older people has been demonstrated, but many points remain unclarified. In order to study the effect of aging on the thyroid gland, we compared the thyroid gland of very old mice with that of younger ones. We have first investigated the changes of thyroid microstructure and the possibility that molecules involved in thyroid function might be associated with structural changes. Results from this study indicate changes in the height of the thyrocytes and in the amplitude of interfollicular spaces, anomalous expression/localization of thyrotropin, thyrotropin receptor, and thyroglobulin aging. Thyrotropin and thyrotropin receptor are upregulated and are distributed inside the colloid while thyroglobulin fills the interfollicular spaces. In an approach aimed at defining the behavior of molecules that change in different physiopathological conditions of thyroid, such as galectin-3 and sphingomyelinase, we then wondered what was their behavior in the thyroid gland in aging. Importantly, in comparison with the thyroid of young animals, we have found a higher expression of galectin-3 and a delocalization of neutral sphingomyelinase in the thyroid of old animals. A possible relationship between galectin-3, neutral sphingomyelinase, and aging has been discussed.


Assuntos
Envelhecimento/patologia , Galectina 3/fisiologia , Esfingomielina Fosfodiesterase/fisiologia , Glândula Tireoide/patologia , Animais , Galectina 3/análise , Masculino , Camundongos , Receptores da Tireotropina/análise , Esfingomielina Fosfodiesterase/análise , Tireotropina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA