Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.757
Filtrar
1.
Environ Sci Technol ; 58(28): 12520-12531, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953238

RESUMO

Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs). Our findings suggest that yeast, a cheap and readily available commercial powder, would involve ethanol-type fermentation in chain elongation to achieve abundant MCFA production from sewage sludge using electron donors (i.e., ethanol) and acceptors (i.e., short-chain fatty acids) produced in situ. The enhanced abundance and transcriptional activity of genes related to key enzymes, such as butyryl-CoA dehydrogenase and alcohol dehydrogenase, affirm the robust capacity for the self-sustained production of MCFAs. This is indicative of an effective metabolic network established between yeast and anaerobic microorganisms within this innovative sludge fermentation framework. Furthermore, life cycle assessment and techno-economic analysis evidence the sustainability and economic competitiveness of this biotechnological strategy. Overall, this work provides insights into sewage sludge upgrading independent of additional carbon input, which can be applied in existing anaerobic sludge fermentation infrastructure as well as to develop new applications in a diverse range of industries.


Assuntos
Fermentação , Esgotos , Biotecnologia/métodos , Ácidos Graxos/metabolismo
2.
Water Sci Technol ; 90(1): 124-141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007310

RESUMO

With the increasing frequency of extreme weather events and a deepening understanding of disasters, resilience has received widespread attention in urban drainage systems. The studies on the resilience assessment of urban drainage systems are mostly indirect assessments that did not simulate human behavior affected by rainfall or semi-quantitative assessments that did not build simulation models, but few research characterizes the processes between people and infrastructure to assess resilience directly. Our study developed a dynamic model that integrates urban mobility, flood inundation, and sewer hydrodynamics processes. The model can simulate the impact of rainfall on people's mobility behavior and the full process including runoff generation, runoff entering pipes, node overflow, flood migration, urban mobility, and residential water usage. Then, we assessed the resilience of the urban drainage system under rainfall events from the perspectives of property loss and urban mobility. The study found that the average percentage increase in commuting time under different return periods of rainfall ranged from 6.4 to 203.9%. Calculating the annual expectation of property loss and traffic obstruction, the study found that the annual expectation loss in urban mobility is 9.1% of the annual expectation of property loss if the rainfall is near the morning commuting peak.


Assuntos
Inundações , Hidrodinâmica , Modelos Teóricos , Cidades , Drenagem Sanitária , Chuva , Movimentos da Água , Esgotos
3.
Water Sci Technol ; 90(1): 190-212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007314

RESUMO

Numerous countries and regions have embraced implementing a separate sewer system, segregating sanitary and storm sewers into distinct systems. However, the functionality of these systems often needs to improve due to irregular interconnections, resulting in a mixed and malfunctioning system. Sewage collection is crucial for residential sanitation, but untreated collection significantly contributes to environmental degradation. Analyzing the simultaneous operation of both systems becomes vital for effective management. Using mathematical tools for precise and unified diagnosis and prognosis becomes imperative. However, municipal professionals and companies need more tools specifically designed to evaluate these systems in a unified way, mapping all the hydraulic connections observed in practice. This study proposes a unified simulation method for stormwater and sanitary sewer urban systems, addressing real-world scenarios and potential interferences. The primary goal is to develop a simulation method for both systems, considering system interconnections and urban layouts, involving hydrodynamic and water quality simulations. The practical application of this method, the Multilayer Hydrodynamic Simulation Method (MODCEL-MHUS), successfully identifies issues in urban water networks and suggests solutions, making it a valuable tool for urban water management and environmental engineering professionals.


Assuntos
Hidrodinâmica , Chuva , Esgotos , Drenagem Sanitária , Cidades , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Simulação por Computador , Movimentos da Água
4.
Water Sci Technol ; 90(1): 287-302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007320

RESUMO

Extracellular polymeric substances (EPS) are a critical influencing factor in sludge dewatering. Disrupting such EPS contributes to the release of bound water in sludge, enhancing the sludge dewatering performance. In This study, quaternized straw fibers that are destructive to the EPS structure and components in active sludge were prepared useing heterogeneous free radical graft polymerization. Straw fibers, dimethyl diallyl ammonium chloride (DMDAAC), ammonium persulfate (APS), and acrylamide (AM) were taken as the substrate, grafting monomer, catalyst, and cross-linking agent, respectively.The optimal processing conditions determined for the DMDAAC-based quaternization and graft modification of straw fibers were as follows: reaction temperature of 60 °C, reaction time of 5 h, 0.100 g of catalyst APS dosage per gram of straw, and 3.000 ml of DMDAAC dosage per gram of straw. The optimal processing conditions yielded 1.335 g of modified straw fibers per gram of straw, 33.67% grafting rate, and 31.70% substitution of the quaternary ammonium groups. The capillary suction time (CST) was conditioned from 243.3 ± 22.6 s in the original sludge to 134.5 ± 34.45 s. The specific resistance to filtration (SRF) was reduced from 8.82 ± 0.51 × 1012 m/kg in the original sludge to 4.59 ± 0.23 × 1012 m/kg.


Assuntos
Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Compostos de Amônio Quaternário/química , Compostos Alílicos/química
5.
Water Sci Technol ; 90(1): 303-313, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007321

RESUMO

The composition of waste-activated sludge (WAS) is complex, containing a large amount of harmful substances, which pose a threat to the environment and human health. The reduction and resource utilization of sludge has become a development demand in sludge treatment and disposal. Based on the technical bottlenecks in the practical application of direct anaerobic digestion technology, this study adopted two different thermal and thermal-alkali hydrolysis technologies to pretreat sludge. A pilot-scale experiment was conducted to investigate the experimental conditions, parameters, and effects of two hydrolysis technologies. This study showed that the optimal hydrolysis temperature was 70 °C, the hydrolysis effect and pH can reach equilibrium with the hydrolysis retention time was 4-8 h, and the optimal alkali concentration range was 0.0125-0.015 kg NaOH/kg dry-sludge. Thermal-alkali combination treatment greatly improved the performance of methane production, the addition of NaOH increased methane yield by 31.2% than that of 70 °C thermal hydrolysis. The average energy consumption is 75 kWh/m3 80% water-content sludge during the experiment. This study provides a better pretreatment strategy for exploring efficient anaerobic digestion treatment technologies suitable for southern characteristic sewage sludge.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Anaerobiose , Projetos Piloto , Hidrólise , Eliminação de Resíduos Líquidos/métodos , Álcalis/química , Temperatura Alta , Metano/metabolismo , Reatores Biológicos , Hidróxido de Sódio/química , Concentração de Íons de Hidrogênio
6.
Euro Surveill ; 29(28)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994605

RESUMO

BackgroundWastewater surveillance is an effective approach to monitor population health, as exemplified by its role throughout the COVID-19 pandemic.AimThis study explores the possibility of extending wastewater surveillance to the Paris 2024 Olympic and Paralympic Games, focusing on identifying priority pathogen targets that are relevant and feasible to monitor in wastewater for these events.MethodsA list of 60 pathogens of interest for general public health surveillance for the Games was compiled. Each pathogen was evaluated against three inclusion criteria: (A) analytical feasibility; (B) relevance, i.e. with regards to the specificities of the event and the characteristics of the pathogen; and (C) added value to inform public health decision-making. Analytical feasibility was assessed through evidence from peer-reviewed publications demonstrating the detectability of pathogens in sewage, refining the initial list to 25 pathogens. Criteria B and C were evaluated via expert opinion using the Delphi method. The panel consisting of some 30 experts proposed five additional pathogens meeting criterion A, totalling 30 pathogens assessed throughout the three-round iterative questionnaire. Pathogens failing to reach 70% group consensus threshold underwent further deliberation by a subgroup of experts.ResultsSix priority targets suitable for wastewater surveillance during the Games were successfully identified: poliovirus, influenza A virus, influenza B virus, mpox virus, SARS-CoV-2 and measles virus.ConclusionThis study introduced a model framework for identifying context-specific wastewater surveillance targets for a mass gathering. Successful implementation of a wastewater surveillance plan for Paris 2024 could incentivise similar monitoring efforts for other mass gatherings globally.


Assuntos
COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , Águas Residuárias/virologia , Águas Residuárias/microbiologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , SARS-CoV-2/isolamento & purificação , França/epidemiologia , Esportes , Saúde Pública , Pandemias , Esgotos/virologia , Paris/epidemiologia , Aniversários e Eventos Especiais , Vigilância em Saúde Pública/métodos
7.
Environ Monit Assess ; 196(8): 726, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995468

RESUMO

The feasibility of a simultaneous nitrification, denitrification and fermentation process (SNDF) under electric stirrer agitation conditions was verified in a single reactor. Enhanced activated sludge for phenol degradation and denitrification in pharmaceutical phenol-containing wastewater under low dissolved oxygen conditions, additional inoculation with Comamonas sp. BGH and optimisation of co-metabolites were investigated. At a hydraulic residence time (HRT) of 28 h, 15 mg/L of substrate as strain BGH co-metabolised substrate degraded 650 ± 50 mg/L phenol almost completely and was accompanied by an incremental increase in the quantity of strain BGH. Strain BGH showed enhanced phenol degradation. Under trisodium citrate co-metabolism, strain BGH combined with activated sludge treated phenol wastewater and degraded NO2--N from 50 ± 5 to 0 mg/L in only 7 h. The removal efficiency of this group for phenol, chemical oxygen demand (COD) and TN was 99.67%, 90.25% and 98.71%, respectively, at an HRT of 32 h. The bioaugmentation effect not only promotes the degradation of pollutants, but also increases the abundance of dominant bacteria in activated sludge. Illumina MiSeq sequencing research showed that strain BGH promoted the growth of dominant genera (Acidaminobacter, Raineyella, Pseudarcobacter) and increased their relative abundance in the activated sludge system. These genera are resistant to toxicity and organic matter degradation. This paper provides some reference for the activated sludge to degrade high phenol pharmaceutical wastewater under the action of biological enhancement.


Assuntos
Reatores Biológicos , Desnitrificação , Fermentação , Nitrificação , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Águas Residuárias/química , Fenol/metabolismo , Esgotos/microbiologia , Biodegradação Ambiental
8.
Appl Microbiol Biotechnol ; 108(1): 419, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012392

RESUMO

Waste glycerol is produced in excess by several industries, such as during biodiesel production. In this work, the metabolic versatility of anaerobic sludge was explored towards waste glycerol valorization. By applying different environmental (methanogenic and sulfate-reducing) conditions, three distinct microbial cultures were obtained from the same inoculum (anaerobic granular sludge), with high microbial specialization, within three different phyla (Thermodesulfobacteriota, Euryarchaeota and Pseudomonadota). The cultures are capable of glycerol conversion through different pathways: (i) glycerol conversion to methane by a bacterium closely related to Solidesulfovibrio alcoholivorans (99.8% 16S rRNA gene identity), in syntrophic relationship with Methanofollis liminatans (98.8% identity), (ii) fermentation to propionate by Propionivibrio pelophilus strain asp66 (98.6% identity), with a propionate yield of 0.88 mmol mmol-1 (0.71 mg mg-1) and a propionate purity of 80-97% and (iii) acetate production coupled to sulfate reduction by Desulfolutivibrio sulfoxidireducens (98.3% identity). In conclusion, starting from the same inoculum, we could drive the metabolic and functional potential of the microbiota towards the formation of several valuable products that can be used in industrial applications or as energy carriers. KEY POINTS: Versatility of anaerobic cultures was explored for waste glycerol valorization Different environmental conditions lead to metabolic specialization Biocommodities such as propionate, acetate and methane were produced.


Assuntos
Fermentação , Glicerol , Metano , RNA Ribossômico 16S , Esgotos , Glicerol/metabolismo , Esgotos/microbiologia , Anaerobiose , RNA Ribossômico 16S/genética , Metano/metabolismo , Filogenia , Sulfatos/metabolismo , Propionatos/metabolismo , Biocombustíveis , Acetatos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética
9.
Molecules ; 29(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998960

RESUMO

The United Nations proposed the Sustainable Development Goals with the aim to make human settlements in cities resilient and sustainable. The excessive discharge of urban waste including sludge and garden waste can pollute groundwater and lead to the emission of greenhouse gases (e.g., CH4). The proper recycling of urban waste is essential for responsible consumption and production, reducing environmental pollution and addressing climate change issues. This study aimed to prepare biochar with high adsorption amounts of iodine using urban sludge and peach wood from garden waste. The study was conducted to examine the variations in the mass ratio between urban sludge and peach wood (2/1, 1/1, and 1/2) as well as pyrolysis temperatures (300 °C, 500 °C, and 700 °C) on the carbon yield and adsorption capacities of biochar. Scanning electron microscopy, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectrometry, powder X-ray diffraction, and elemental analysis were used to characterize the biochar produced at different pyrolysis temperatures and mass ratios. The results indicate that the carbon yield of biochar was found to be the highest (>60%) at a pyrolysis temperature of 300 °C across different pyrolysis temperatures. The absorbed amounts of iodine in the aqueous solution ranged from 86 to 223 mg g-1 at a mass ratio of 1:1 between urban sludge and peach wood, which were comparably higher than those observed in other mass ratios. This study advances water treatment by offering a cost-effective method by using biochar derived from the processing of urban sludge and garden waste.


Assuntos
Carvão Vegetal , Iodo , Pirólise , Esgotos , Carvão Vegetal/química , Iodo/química , Esgotos/química , Adsorção , Temperatura , Jardins , Espectroscopia de Infravermelho com Transformada de Fourier , Cidades
10.
J Environ Sci (China) ; 146: 15-27, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969444

RESUMO

A large amount of sludge is inevitably produced during sewage treatment. Ultrasonication (US) as anaerobic digestion (AD) pretreatment was implemented on different sludges and its effects on batch and semi-continuous AD performance were investigated. US was effective in sludge SCOD increase, size decrease, and CH4 production in the subsequent AD, and these effects were enhanced with an elevated specific energy input. As indicated by semi-continuous AD experiments, the mean daily CH4 production of US-pretreated A2O-, A2O-MBR-, and AO-AO-sludge were 176.9, 119.8, and 141.7 NmL/g-VSadded, which were 35.1%, 32.1% and 78.2% higher than methane production of their respective raw sludge. The US of A2O-sludge achieved preferable US effects and CH4 production due to its high organic content and weak sludge structure stability. In response to US-pretreated sludge, a more diverse microbial community was observed in AD. The US-AD system showed negative net energy; however, it exhibited other positive effects, e.g., lower required sludge retention time and less residual total solids for disposal. US is a feasible option prior to AD to improve anaerobic bioconversion and CH4 yield although further studies are necessary to advance it in practice.


Assuntos
Reatores Biológicos , Metano , Esgotos , Eliminação de Resíduos Líquidos , Metano/metabolismo , Metano/análise , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Sonicação
11.
PLoS One ; 19(7): e0305108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959255

RESUMO

The Global Specialized Polio Laboratory at CDC supports the Global Poliovirus Laboratory Network with environmental surveillance (ES) to detect the presence of vaccine strain polioviruses, vaccine-derived polioviruses, and wild polioviruses in high-risk countries. Environmental sampling provides valuable supplementary information, particularly in areas with gaps in surveillance of acute flaccid paralysis (AFP) mainly in children less than 15 years. In collaboration with Guatemala's National Health Laboratory (Laboratorio Nacional de Salud Guatemala), monthly sewage collections allowed screening enterovirus (EV) presence without incurring additional costs for sample collection, transport, or concentration. Murine recombinant fibroblast L-cells (L20B) and human rhabdomyosarcoma (RD) cells are used for the isolation of polioviruses following a standard detection algorithm. Though non-polio-Enteroviruses (NPEV) can be isolated, the algorithm is optimized for the detection of polioviruses. To explore if other EV's are present in sewage not found through standard methods, five additional cell lines were piloted in a small-scale experiment, and next-generation sequencing (NGS) was used for the identification of any EV types. Human lung fibroblast cells (HLF) were selected based on their ability to isolate EV-A genus. Sewage concentrates collected between 2020-2021 were isolated in HLF cells and any cytopathic effect positive isolates used for NGS. A large variety of EVs, including echoviruses 1, 3, 6, 7, 11, 13, 18, 19, 25, 29; coxsackievirus A13, B2, and B5, EV-C99, EVB, and polioviruses (Sabin 1 and 3) were identified through genomic typing in NGS. When the EV genotypes were compared by phylogenetic analysis, it showed many EV's were genomically like viruses previously isolated from ES collected in Haiti. Enterovirus occurrence did not follow a seasonality, but more diverse EV types were found in ES collection sites with lower populations. Using the additional cell line in the existing poliovirus ES algorithm may add value by providing data about EV circulation, without additional sample collection or processing. Next-generation sequencing closed gaps in knowledge providing molecular epidemiological information on multiple EV types and full genome sequences of EVs present in wastewater in Guatemala.


Assuntos
Enterovirus , Fibroblastos , Águas Residuárias , Humanos , Enterovirus/genética , Enterovirus/isolamento & purificação , Águas Residuárias/virologia , Fibroblastos/virologia , Guatemala/epidemiologia , Pulmão/virologia , Pulmão/citologia , Epidemiologia Molecular , Linhagem Celular , Filogenia , Animais , Poliovirus/genética , Poliovirus/isolamento & purificação , Esgotos/virologia , Camundongos , Infecções por Enterovirus/virologia , Infecções por Enterovirus/epidemiologia
12.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954124

RESUMO

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Assuntos
Antibacterianos , Oxirredução , Tetraciclina , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Antibacterianos/química , Tetraciclina/química , Catálise , Águas Residuárias/química , Bismuto/química , Grafite/química , Compostos de Nitrogênio/química , Compostos de Tungstênio/química , Fotólise , Purificação da Água/métodos , Esgotos/química
13.
Water Environ Res ; 96(7): e11072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961619

RESUMO

This work assessed the performance of a pilot-scale cascade anaerobic digestion (AD) system when treating mixed municipal wastewater treatment sludges. The cascade system was compared with a conventional continuous stirred tank reactor (CSTR) digester (control) in terms of process performance, stability, and digestate quality. The results showed that the cascade system achieved higher volatile solids removal (VSR) efficiencies (28-48%) than that of the reference (25-41%) when operated at the same solids residence time (SRT) in the range of 11-15 days. When the SRT of the cascade system was reduced to 8 days the VSR (32-36%) was only slightly less than that of the reference digester that was operated at a 15-day SRT (39-43%). Specific hydrolysis rates in the first stage of the cascade system were 66-152% higher than those of the reference. Additionally, the cascade system exhibited relatively stable effluent concentrations of volatile fatty acids (VFAs: 100-120 mg/l), while the corresponding concentrations in the control effluent demonstrated greater fluctuations (100-160 mg/l). The cascade system's effluent pH and VFA/alkalinity ratios were consistently maintained within the optimal range. During a dynamic test when the feed total solids concentration was doubled, total VFA concentrations (85-120 mg/l) in the cascade system were noticeably less than those (100-170 mg/l) of the control, while the pH and VFA/alkalinity levels remained in a stable range. The cascade system achieved higher total solids (TS) content in the dewatered digestate (19.4-26.8%) than the control (17.4-22.1%), and E. coli log reductions (2.0-4.1 log MPN/g TS) were considerably higher (p < 0.05) than those in the control (1.3-2.9 log MPN/g TS). Overall, operating multiple CSTRs in cascade mode at typical SRTs and mixed sludge ratios enhanced the performance, stability digesters, and digestate quality of AD. PRACTITIONER POINTS: Enhanced digestion of mixed sludge digestion with cascade system. Increased hydrolysis rates in the cascade system compared to a reference CSTR. More stable conditions for methanogen growth at both steady and dynamic states. Improved dewaterability and E. coli reduction of digestate from the cascade system.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Águas Residuárias/química , Esgotos/química , Ácidos Graxos Voláteis/metabolismo , Purificação da Água/métodos
14.
Sci Rep ; 14(1): 16004, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992288

RESUMO

The formation of symbionts by using different combinations of endophytic bacteria, microalgae, and fungi to purify antibiotics-containing wastewater is an effective and promising biomaterial technology. As it enhances the mixed antibiotics removal performance of the bio-system, this technology is currently extensively studied. Using exogenous supplementation of various low concentrations of the phytohormone strigolactone analogue GR24, the removal of various antibiotics from simulated wastewater was examined. The performances of Chlorella vulgaris monoculture, activated sludge-C. vulgaris-Clonostachys rosea, Bacillus licheniformis-C. vulgaris-C. rosea, and endophytic bacteria (S395-2)-C. vulgaris-C. rosea co-culture systems were systematically compared. Their removal capacities for tetracycline, oxytetracycline, and chlortetracycline antibiotics from simulated wastewater were assessed. Chlorella vulgaris-endophytic bacteria-C. rosea co-cultures achieved the best performance under 0.25 mg L-1 antibiotics, which could be further enhanced by GR24 supplementation. This result demonstrates that the combination of endophytic bacteria with microalgae and fungi is superior to activated sludge-B. licheniformis-microalgae-fungi systems. Exogenous supplementation of GR24 is an effective strategy to improve the performance of antibiotics removal from wastewater.


Assuntos
Antibacterianos , Microalgas , Microalgas/metabolismo , Antibacterianos/farmacologia , Chlorella vulgaris/metabolismo , Técnicas de Cocultura , Lactonas/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Compostos Heterocíclicos com 3 Anéis/isolamento & purificação , Esgotos/microbiologia , Poluentes Químicos da Água , Biodegradação Ambiental , Purificação da Água/métodos
15.
BMC Microbiol ; 24(1): 252, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982378

RESUMO

The present study aimed to develop a system using a combination of enzymatic and microbial degradation techniques for removing phenol from contaminated water. In our prior research, the HRP enzyme extracted from horseradish roots was utilized within a core-shell microcapsule to reduce phenolic shock, serving as a monolayer column. To complete the phenol removal process, a second column containing degrading microorganisms was added to the last column in this research. Phenol-degrading bacteria were isolated from different microbial sources on a phenolic base medium. Additionally, encapsulated calcium peroxide nanoparticles were used to provide dissolved oxygen for the microbial population. Results showed that the both isolated strains, WC1 and CC1, were able to completely remove phenol from the contaminated influent water the range within 5 to 7 days, respectively. Molecular identification showed 99.8% similarity for WC1 isolate to Stenotrophomonas rizophila strain e-p10 and 99.9% similarity for CC1 isolate to Bacillus cereus strain IAM 12,605. The results also indicated that columns using activated sludge as a microbial source had the highest removal rate, with the microbial biofilm completely removing 100% of the 100 mg/L phenol concentration in contaminated influent water after 40 days. Finally, the concurrent use of core-shell microcapsules containing enzymes and capsules containing Stenotrophomonas sp. WC1 strain in two continuous column reactors was able to completely remove phenol from polluted water with a concentration of 500 mg/L for a period of 20 days. The results suggest that a combination of enzymatic and microbial degrading systems can be used as a new system to remove phenol from polluted streams with higher concentrations of phenol by eliminating the shock of phenol on the microbial population.


Assuntos
Biodegradação Ambiental , Fenol , Poluentes Químicos da Água , Fenol/metabolismo , Poluentes Químicos da Água/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/química , Purificação da Água/métodos , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Biofilmes/crescimento & desenvolvimento , Armoracia/metabolismo , Esgotos/microbiologia , Bacillus cereus/metabolismo , Bacillus cereus/isolamento & purificação , Bacillus cereus/enzimologia
16.
Braz J Biol ; 84: e277750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985067

RESUMO

The One Health concept recognizes that human health is clearly linked to the health of animals and the environment. Infections caused by bacteria resistant to carbapenem antibiotics have become a major challenge in hospitals due to limited therapeutic options and consequent increase in mortality. In this study, we investigated the presence of carbapenem-resistant Enterobacteriaceae in 84 effluent samples (42 from hospital and 42 from non-hospital) from Campo Grande, midwest Brazil. First, sewage samples were inoculated in a selective culture medium. Bacteria with reduced susceptibility to meropenem and ertapenem were then identified and their antimicrobial susceptibility was determined using the Vitek-2 system. The blaKPC genes were detected using PCR and further confirmed by sequencing. Carbapenem-resistant Enterobacteriaceae (CRE) were identified in both hospital (n=32) and non-hospital effluent (n=16), with the most common being Klebsiella pneumoniae and of the Enterobacter cloacae complex species. This is the first study to indicate the presence of the blaKPC-2 gene in carbapenem-resistant Enterobacteriaceae, classified as a critical priority by the WHO, in hospital sewage in this region. The dissemination of carbapenem antibiotic-resistant genes may be associated with clinical pathogens. Under favorable conditions and microbial loads, resistant bacteria and antimicrobial-resistance genes found in hospital sewage can disseminate into the environment, causing health problems. Therefore, sewage treatment regulations should be implemented to minimize the transfer of antimicrobial resistance from hospitals.


Assuntos
Antibacterianos , Enterobacteriáceas Resistentes a Carbapenêmicos , Farmacorresistência Bacteriana Múltipla , Hospitais , Testes de Sensibilidade Microbiana , Esgotos , Esgotos/microbiologia , Brasil , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , beta-Lactamases/genética , Reação em Cadeia da Polimerase , Proteínas de Bactérias/genética , Humanos
17.
Reproduction ; 168(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847770

RESUMO

Over the past 50 years, there has been a concerning decline in male reproductive health and an increase in male infertility which is now recognised as a major health concern globally. While male infertility can be linked to some genetic and lifestyle factors, these do not fully explain the rate of declining male reproductive health. Increasing evidence from human and animal studies suggests that exposure to chemicals found ubiquitously in the environment may in part play a role. Many studies on chemical exposure, however, have assessed the effects of exposure to individual environmental chemicals (ECs), usually at levels not relevant to everyday human exposure. There is a need for study models which reflect the 'real-life' nature of EC exposure. One such model is the biosolids-treated pasture (BTP) sheep model which utilises biosolids application to agricultural land to examine the effects of exposure to low-level mixtures of chemicals. Biosolids are the by-product of the treatment of wastewater from industrial and domestic sources and so their composition is reflective of the ECs to which humans are exposed. Over the last 20 years, the BTP sheep model has published multiple effects on offspring physiology including consistent effects on the male reproductive system in fetal, neonatal, juvenile, and adult offspring. This review focuses on the evidence from these studies which strongly suggests that low-level EC exposure during gestation can alter several components of the male reproductive system and highlights the BTP model as a more relevant model to study real-life EC exposure effects.


Assuntos
Exposição Ambiental , Reprodução , Masculino , Animais , Reprodução/efeitos dos fármacos , Humanos , Exposição Ambiental/efeitos adversos , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/etiologia , Ovinos , Feminino , Gravidez , Poluentes Ambientais/toxicidade , Esgotos/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal
18.
Ecotoxicol Environ Saf ; 281: 116597, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880005

RESUMO

The pervasive occurrence of emerging contaminants (ECs) in sewage sludge (SWS) poses significant safety challenges concerning the processing, disposal, and secure application, ultimately jeopardizing both human health and the ecological environment. To comprehensively comprehend the evolutionary trajectories, present state, and research advancements in the field of ECs in SWS, a systematic was conducted, scrutinizing the annual publication quantity, disciplinary distribution, core authors, involved nations/regions, pertinent keywords, and citation status of 2082 research publications related to ECs in SWS from 1990 to 2023. The results indicate a substantial upward trajectory in the research literature pertaining to ECs in SWS. The study of ECs in SWS encompasses 78 disciplines, including Environmental Sciences, Environmental Engineering, and Water Resources. China, Spain, and the USA ranked among the top three countries in terms of both total publications and citation frequency. The majority of publications were published in reputable high-impact journals such as Science of the Total Environment, Chemosphere, and Bioresource Technology. Based on high-frequency keywords, co-occurrence networks of keywords, and keywords burst analysis, it is found that the occurrence and environment behavior of ECs in SWS (ARGs, microplastics, PPCPs, and POPs), the detection and analytical methods, the impact on SWS treatment and disposal processes, and the accumulation and ecological risks in plants and soil during SWS land utilization, are the main research directions and hot topics in this field. In the future, the study of the impact of SWS treatment technologies on ECs removal is expected to receive increased research attention.


Assuntos
Bibliometria , Esgotos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Pesquisa , Eliminação de Resíduos Líquidos/métodos
19.
J Environ Manage ; 364: 121396, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38875981

RESUMO

Sewage sludge management is crucial for water utilities to move towards a circular valorisation of resources. The current literature focuses mainly on the technological aspects of sludge management strategies. However, the current discussion of these strategies does not consider possible pressures arising from the utilities' civil society stakeholders and from policymakers. To fill this gap, this paper develops a conceptual framework, based on the current literature, that identifies the utility's key decisions on sludge management strategies (valorisation route, overperformance and vertical integration), and links them to possible pressures arising from civil society and existing regulations. Subsequently, the study validates the framework through a multiple explanatory case study, investigating the empirical relevance of such pressures in six water utilities across Europe. The influence of citizens and municipalities is found to be crucial in the choice of sludge valorisation routes. Economic instruments, command and control instruments and, new to the literature, regulatory uncertainty are found to be key policy features influencing utilities' decisions on sludge management. The paper provides a first-of-its-kind investigation that highlights the mechanisms through which policymakers and civil society stakeholders shape utilities' sewage sludge management strategies. The results complement and extend existing theoretical knowledge on the role of institutional pressures in the implementation of sustainable environmental systems.


Assuntos
Esgotos , Europa (Continente) , Humanos , Pessoal Administrativo , Eliminação de Resíduos Líquidos/métodos
20.
J Environ Manage ; 363: 121315, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850910

RESUMO

The rising generation of waste activated sludge (WAS) demands a fundamental shift towards resource reuse and recovery. The conventional methodologies used to manage this by-product derived from wastewater treatment plants are increasingly constrained due to stringent regulatory measures aimed at mitigating its adverse impacts on the environment and public health. Therefore, this work evaluated a promising strategy for the efficient management of WAS, transforming it into a valuable renewable source to produce high-value-added compounds, such as lipids and a slow-release fertilizer (struvite). Wet oxidation (WO) was identified as a suitable technique for solubilising WAS while generating short-chain fatty acids (primarily acetic acid). It was found that conducting WO at 200 °C for 120 min resulted in a 65% reduction of the total suspended solids (TSS) content and 87% of the volatile suspended solids (VSS) content. Additionally, under these conditions, 4440 ± 105 mg/L and 593 ± 21 mg/L of acetic and propionic acid were obtained, respectively, which were assimilated by Yarrowia lipolytica to produce biolipids. Furthermore, the rupture of WAS flocs also led to the solubilisation of 980 ± 8 mg/L of ammonium. During the struvite precipitation stage, a NH4:PO4:Mg ratio of 1:1.5:1.5 was found to be the most effective for removing soluble ammonium (97.4 ± 0.8%), resulting in a high-purity struvite formation, and enhancing the carbon/nitrogen (C/N) ratio of the oxidised WAS from 3 to 105. This improvement in the C/N ratio raised the lipid content from 36 ± 1% to 49 ± 1% during the cultivation of Y. lipolytica. The application of the sequencing batch culture strategy further increased lipid content to 59 ± 1%, with 6.0 ± 0.3 g/L as the final concentration after the fifth cycle. The lipids produced, mainly monounsaturated fatty acids with 40% of oleic acid, offer potential as biodiesel feedstock. This lipid composition led to biodiesel properties, including cetane number, iodine value, kinematic viscosity and density that met international standards. Therefore, this research presents a promising alternative not only for WAS management but also for harnessing valuable resources, thereby establishing a basis for large-scale studies.


Assuntos
Lipídeos , Esgotos , Yarrowia , Yarrowia/metabolismo , Lipídeos/química , Eliminação de Resíduos Líquidos/métodos , Nutrientes/metabolismo , Fertilizantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...