Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.120
Filtrar
1.
Plant Cell Rep ; 43(8): 198, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023775

RESUMO

KEY MESSAGE: Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review.


Assuntos
Plantas , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Transdução de Sinais , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Desenvolvimento Vegetal
2.
Sci Adv ; 10(28): eadn1745, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996026

RESUMO

Rapid drug clearance and off-target effects of therapeutic drugs can induce low bioavailability and systemic side effects and gravely restrict the therapeutic effects of inflammatory bowel diseases (IBDs). Here, we propose an amplifying targeting strategy based on orally administered gallium (Ga)-based liquid metal (LM) nano-agents to efficiently eliminate reactive oxygen and nitrogen species (RONS) and modulate the dysregulated microbiome for remission of IBDs. Taking advantage of the favorable adhesive activity and coordination ability of polyphenol structure, epigallocatechin gallate (EGCG) is applied to encapsulate LM to construct the formulations (LM-EGCG). After adhering to the inflamed tissue, EGCG not only eliminates RONS but also captures the dissociated Ga to form EGCG-Ga complexes for enhancive accumulation. The detained composites protect the intestinal barrier and modulate gut microbiota for restoring the disordered enteral microenvironment, thereby relieving IBDs. Unexpectedly, LM-EGCG markedly decreases the Escherichia_Shigella populations while augmenting the abundance of Akkermansia and Bifidobacterium, resulting in favorable therapeutic effects against the dextran sulfate sodium-induced colitis.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Doenças Inflamatórias Intestinais/tratamento farmacológico , Administração Oral , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Catequina/análogos & derivados , Catequina/química , Catequina/administração & dosagem , Catequina/farmacologia , Gálio/química , Gálio/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Colite/tratamento farmacológico , Humanos , Espécies Reativas de Nitrogênio/metabolismo
3.
Plant Cell Rep ; 43(8): 193, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008125

RESUMO

Soil salinity is a major constraint for sustainable agricultural productivity, which together with the incessant climate change may be transformed into a severe threat to the global food security. It is, therefore, a serious concern that needs to be addressed expeditiously. The overproduction and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the key events occurring during salt stress, consequently employing nitro-oxidative stress and programmed cell death in plants. However, very sporadic studies have been performed concerning different aspects of nitro-oxidative stress in plants under salinity stress. The ability of plants to tolerate salinity is associated with their ability to maintain the cellular redox equilibrium mediated by both non-enzymatic and enzymatic antioxidant defense mechanisms. The present review emphasizes the mechanisms of ROS and RNS generation in plants, providing a detailed evaluation of how redox homeostasis is conserved through their effective removal. The uniqueness of this article stems from its incorporation of expression analyses of candidate genes for different antioxidant enzymes involved in ROS and RNS detoxification across various developmental stages and tissues of rice, utilizing publicly available microarray data. It underscores the utilization of modern biotechnological methods to improve salinity tolerance in crops, employing different antioxidants as markers. The review also explores how various transcription factors contribute to plants' ability to tolerate salinity by either activating or repressing the expression of stress-responsive genes. In summary, the review offers a thorough insight into the nitro-oxidative homeostasis strategy for extenuating salinity stress in plants.


Assuntos
Homeostase , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Tolerância ao Sal , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Antioxidantes/metabolismo , Oxirredução , Plantas/metabolismo , Salinidade
4.
Int J Mol Sci ; 25(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39000432

RESUMO

Bitter taste receptors (TAS2Rs) are not only responsible for taste perception in the oral cavity, but are spread throughout the body, generating a widespread chemosensory system. In humans, 25 subtypes have been identified and are differentially expressed in tissues and organs, including in the immune system. In fact, several TAS2R subtypes have been detected in neutrophils, lymphocytes, B and T cells, NK cells, and monocytes/macrophages, in which they regulate various protective functions of the innate immune system. Given its recognized anti-inflammatory and antioxidant activity, and the generally protective role of bitter taste receptors, in this work, we studied TAS2R46's potential in the protection of human monocyte/macrophage DNA from stress-induced damage. Through both direct and indirect assays and a single-cell gel electrophoresis assay, we demonstrated that absinthin, a specific TAS2R46 agonist, counteracts the release of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and reduces DNA damage in both cell types. Even though the release of ROS from monocytes/macrophages is fundamental for contrast pathogen agents, supraphysiological ROS production impairs their function, finally leading to cell death. Our results highlight TAS2R46 as a novel player involved in the protection of monocytes and macrophages from oxidative stress damage, while simultaneously supporting their antimicrobial activity.


Assuntos
Macrófagos , Monócitos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Dano ao DNA , Espécies Reativas de Nitrogênio/metabolismo
5.
Plant Cell Rep ; 43(7): 185, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951279

RESUMO

The Oryza genus, containing Oryza sativa L., is quintessential to sustain global food security. This genus has a lot of sophisticated molecular mechanisms to cope with environmental stress, particularly during vulnerable stages like flowering. Recent studies have found key involvements and genetic modifications that increase resilience to stress, including exogenous application of melatonin, allantoin, and trehalose as well as OsSAPK3 and OsAAI1 in the genetic realm. Due to climate change and anthropogenic reasons, there is a rise in sea level which raises a concern of salinity stress. It is tackled through osmotic adjustment and ion homeostasis, mediated by genes like P5CS, P5CR, GSH1, GSH2, and SPS, and ion transporters like NHX, NKT, and SKC, respectively. Oxidative damage is reduced by a complex action of antioxidants, scavenging RONS. A complex action of genes mediates cold stress with studies highlighting the roles of OsWRKY71, microRNA2871b, OsDOF1, and OsICE1. There is a need to research the mechanism of action of proteins like OsRbohA in ROS control and the action of regulatory genes in stress response. This is highly relevant due to the changing climate which will raise a lot of environmental changes that will adversely affect production and global food security if certain countermeasures are not taken. Overall, this study aims to unravel the molecular intricacies of ROS and RNS signaling networks in Oryza plants under stress conditions, with the ultimate goal of informing strategies for enhancing stress tolerance and crop performance in this important agricultural genus.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Transdução de Sinais , Estresse Fisiológico , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Espécies Reativas de Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
6.
Planta ; 260(2): 51, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995415

RESUMO

MAIN CONCLUSION: Reactive nitrogen species mitigate the deteriorative effect of accelerated seed ageing by affecting the glutathione concentration and activities of GR and GPX-like. The treatment of apple (Malus domestica Borkh.) embryos isolated from accelerated aged seeds with nitric oxide-derived compounds increases their vigour and is linked to the alleviation of the negative effect of excessive oxidation processes. Reduced form of glutathione (GSH) is involved in the maintenance of redox potential. Glutathione peroxidase-like (GPX-like) uses GSH and converts it to oxidised form (GSSG), while glutathione reductase (GR) reduces GSSG into GSH. The aim of this work was to investigate the impact of the short-time NOx treatment of embryos isolated from apple seeds subjected to accelerated ageing on glutathione-related parameters. Apple seeds were subjected to accelerated ageing for 7, 14 or 21 days. Isolated embryos were shortly treated with NOx and cultured for 48 h. During ageing, in the axes of apple embryos, GSH and GSSG levels as well as half-cell reduction potential remained stable, while GR and GPX-like activities decreased. However, the positive effect of NOx in the vigour preservation of embryos isolated from prolonged aged seeds is linked to the increased total glutathione pool, and above all, higher GSH content. Moreover, NOx increased the level of transcripts encoding GPX-like and stimulated enzymatic activity. The obtained results indicate that high seed vigour related to the mode of action of NO and its derivatives is closely linked to the maintenance of higher GSH levels.


Assuntos
Glutationa , Malus , Sementes , Malus/genética , Malus/metabolismo , Sementes/metabolismo , Sementes/genética , Glutationa/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Glutationa Redutase/metabolismo , Glutationa Redutase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Oxirredução , Óxido Nítrico/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Mol Biol Rep ; 51(1): 834, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042272

RESUMO

Cold atmospheric plasma (CAP) has emerged as an innovative tool with broad medical applications, including ovarian cancer (OC) treatment. By bringing CAP in close proximity to liquids such as water or cell culture media, solutions containing reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated, called plasma-activated media (PAM). In this systematic review, we conduct an in-depth analysis of studies focusing on PAM interactions with biological substrates. We elucidate the diverse mechanisms involved in the activation of different media and the complex network of chemical reactions underlying the generation and consumption of the prominent reactive species. Furthermore, we highlight the promises of PAM in advancing biomedical applications, such as its stability for extended periods under appropriate storage conditions. We also examine the application of PAM as an anti-cancer and anti-metastatic treatment for OC, with a particular emphasis on its ability to induce apoptosis via distinct signaling pathways, inhibit cell growth, suppress cell motility, and enhance the therapeutic effects of chemotherapy. Finally, the future outlook of PAM therapy in biomedical applications is speculated, with emphasis on the safety issues relevant to clinical translation.


Assuntos
Neoplasias Ovarianas , Gases em Plasma , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Feminino , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
Talanta ; 277: 126374, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38878514

RESUMO

Reactive oxygen species (ROS), reactive sulfur species (RSS), metal ions, and nitrogen species (RNS) play important roles in a variety of biological processes, such as a signal transduction, inflammation, and neurodegenerative damage. These species, while essential for certain functions, can also induce stress-related diseases. The interrelation between ROS, RSS, Metal ions and RNS underscores the importance of quantifying their concentrations in live cells, tissues, and organisms. The review emphasizes the use of small-molecule-based fluorescent/chemodosimeter probes to effectively measure and map the species' distribution with high temporal and spatial precision, paying particular attention to in vitro and in vivo environments. These probes are recognized as valuable tools contributing to breakthroughs in modern redox biology. The review specifically addresses the relationship of HOCl/ClO‾ (hypochlorous acid/Hypochlorite) with other reactive species. (Dual sensing probes).


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Espécies Reativas de Oxigênio , Ácido Hipocloroso/análise , Ácido Hipocloroso/química , Corantes Fluorescentes/química , Humanos , Animais , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Nitrogênio/análise , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Nitrogênio/metabolismo
9.
Neuroscience ; 551: 307-315, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38851381

RESUMO

PURPOSE: We aimed to investigate early effects of exogenously administered adropin (AD) on neurological function, endothelial nitric oxide synthase (eNOS) expression, nitrite/nitrate levels, oxidative stress, and apoptosis in subarachnoid hemorrhage (SAH). METHODS: Following intracerebroventricular AD administration (10 µg/5 µl at a rate of 1 µl/min) SAH model was carried out in Sprague-Dawley rats by injection of autologous blood into the prechiasmatic cistern. The effects of AD were assessed 24 h following SAH. The modified Garcia score was employed to evaluate functional insufficiencies. Adropin and caspase-3 proteins were measured by ELISA, while nitrite/nitrate levels, total antioxidant capacity (TAC) and reactive oxygen/nitrogen species (ROS/RNS) were assayed by standard kits. eNOS expression and apoptotic neurons were detected by immunohistochemical analysis. RESULTS: The SAH group performed notably lower on the modified Garcia score compared to sham and SAH + AD groups. Adropin administration increased brain eNOS expression, nitrite/nitrate and AD levels compared to SHAM and SAH groups. SAH produced enhanced ROS/RNS generation and reduced antioxidant capacity in the brain. Adropin boosted brain TAC and diminished ROS/RNS production in SAH rats and no considerable change amongst SHAM and SAH + AD groups were detected. Apoptotic cells were notably increased in intensity and number after SAH and were reduced by AD administration. CONCLUSIONS: Adropin increases eNOS expression and reduces neurobehavioral deficits, oxidative stress, and apoptotic cell death in SAH model. Presented results indicate that AD provides protection in early brain injury associated with SAH.


Assuntos
Modelos Animais de Doenças , Fármacos Neuroprotetores , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo , Ratos Sprague-Dawley , Hemorragia Subaracnóidea , Animais , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/patologia , Fármacos Neuroprotetores/farmacologia , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Apoptose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Peptídeos/farmacologia , Nitritos/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nitratos/metabolismo , Antioxidantes/farmacologia , Proteínas Sanguíneas
10.
Sci Rep ; 14(1): 14535, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914585

RESUMO

The rapid perfusion of cerebral arteries leads to a significant increase in intracranial blood volume, exposing patients with traumatic brain injury to the risk of diffuse brain swelling or malignant brain herniation during decompressive craniectomy. The microcirculation and venous system are also involved in this process, but the precise mechanisms remain unclear. A physiological model of extremely high intracranial pressure was created in rats. This development triggered the TNF-α/NF-κB/iNOS axis in microglia, and released many inflammatory factors and reactive oxygen species/reactive nitrogen species, generating an excessive amount of peroxynitrite. Subsequently, the capillary wall cells especially pericytes exhibited severe degeneration and injury, the blood-brain barrier was disrupted, and a large number of blood cells were deposited within the microcirculation, resulting in a significant delay in the recovery of the microcirculation and venous blood flow compared to arterial flow, and this still persisted after decompressive craniectomy. Infliximab is a monoclonal antibody bound to TNF-α that effectively reduces the activity of TNF-α/NF-κB/iNOS axis. Treatment with Infliximab resulted in downregulation of inflammatory and oxidative-nitrative stress related factors, attenuation of capillary wall cells injury, and relative reduction of capillary hemostasis. These improved the delay in recovery of microcirculation and venous blood flow.


Assuntos
Hipertensão Intracraniana , Estresse Oxidativo , Animais , Ratos , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/tratamento farmacológico , Masculino , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Microcirculação , Circulação Cerebrovascular , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Infliximab/farmacologia , Infliximab/uso terapêutico , Modelos Animais de Doenças , Barreira Hematoencefálica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Microglia/metabolismo
11.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892290

RESUMO

Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.


Assuntos
Neoplasias da Mama , Ciclo-Oxigenase 2 , Progressão da Doença , Óxido Nítrico Sintase Tipo II , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ciclo-Oxigenase 2/metabolismo , Feminino , Óxido Nítrico Sintase Tipo II/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Óxido Nítrico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo
12.
ACS Nano ; 18(26): 16967-16981, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888082

RESUMO

Selective generation of sufficient pyroptosis inducers at the tumor site without external stimulation holds immense significance for a longer duration of immunotherapy. Here, we report a cascade-amplified pyroptosis inducer CSCCPT/SNAP that utilizes reactive nitrogen species (RNS), self-supplied from the diffusion-controlled reaction between reactive oxygen species (ROS) and nitric oxide (NO) to potentiate pyroptosis and immunotherapy, while both endogenous mitochondrial ROS stimulated by released camptothecin and released NO initiate pyroptosis. Mechanistically, cascade amplification of the antitumor immune response is prompted by the cooperation of ROS and NO and enhanced by RNS with a long lifetime, which could be used as a pyroptosis trigger to effectively compensate for the inherent drawbacks of ROS, resulting in long-lasting pyroptosis for favoring immunotherapy. Tumor growth is efficiently inhibited in mouse melanoma tumors through the facilitation of reactive oxygen/nitrogen species (RONS)-NO synergy. In summary, our therapeutic approach utilizes supramolecular engineering and nanotechnology to integrate ROS producers and NO donors of tumor-specific stimulus responses into a system that guarantees synchronous generation of these two reactive species to elicit pyroptosis-evoked immune response, while using self-supplied RNS as a pyroptosis amplifier. RONS-NO synergy achieves enhanced and sustained pyroptosis and antitumor immune responses for robust cancer immunotherapy.


Assuntos
Imunoterapia , Estresse Oxidativo , Piroptose , Espécies Reativas de Nitrogênio , Microambiente Tumoral , Piroptose/efeitos dos fármacos , Animais , Espécies Reativas de Nitrogênio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia
13.
Colloids Surf B Biointerfaces ; 239: 113961, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38749169

RESUMO

Breast cancer, the predominant malignancy afflicting women, continues to pose formidable challenges despite advancements in therapeutic interventions. This study elucidates the potential of phototherapy, comprising both photothermal and photodynamic therapy (PTT/PDT), as a novel and promising modality. To achieve this goal, we devised liposomes coated with macrophage cell membranes including macrophage-associated membrane proteins, which have demonstrated promise in biomimetic delivery systems for targeting tumors while preserving their inherent tumor-homing capabilities. This integrated biomimetic delivery system comprised IR780, NONOate, and perfluorocarbon. This strategic encapsulation aims to achieve a synergistic combination of photodynamic therapy (PDT) and reactive nitrogen species (RNS) therapy. Under near-infrared laser irradiation at 808 nm, IR780 demonstrates its ability to prolifically generate reactive oxygen species (ROS), including superoxide anion (O2•-), singlet oxygen, and hydroxyl radical (·OH). Simultaneously, NONOate releases nitric oxide (NO) gas upon the same laser irradiation, thereby engaging with IR780-induced ROS to facilitate the formation of peroxynitrite anion (ONOO-), ultimately inducing programmed cell death in cancer cells. Additionally, the perfluorocarbon component of our delivery system exhibits a notable affinity for oxygen and demonstrates efficient oxygen-carrying capabilities. Our results demonstrate that IR780-NO-PFH-Lip@M significantly enhances breast cancer cell toxicity, reducing proliferation and in vivo tumor growth through simultaneous heat, ROS, and RNS production. This study contributes valuable insights to the ongoing discourse on innovative strategies for advancing cancer therapeutics.


Assuntos
Neoplasias da Mama , Lipossomos , Macrófagos , Fotoquimioterapia , Espécies Reativas de Nitrogênio , Lipossomos/química , Feminino , Animais , Espécies Reativas de Nitrogênio/metabolismo , Camundongos , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Humanos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Proliferação de Células/efeitos dos fármacos , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Indóis/química , Indóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Camundongos Endogâmicos BALB C , Fototerapia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Propriedades de Superfície , Células RAW 264.7 , Tamanho da Partícula
14.
Environ Toxicol Pharmacol ; 108: 104465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734396

RESUMO

Malaria represents the greatest global health burden among all parasitic diseases, with drug resistance representing the primary obstacle to control efforts. Sodium metavanadate (NaVO3) exhibits antimalarial activity against the Plasmodium yoelii yoelii (Pyy), yet its precise antimalarial mechanism remains elusive. This study aimed to assess the antimalarial potential of NaVO3, evaluate its genotoxicity, and determine the production of reactive oxygen and nitrogen species (ROS/RNS) in Pyy. CD-1 mice were infected and divided into two groups: one treated orally with NaVO3 (10 mg/kg/day for 4 days) and the other untreated. A 50% decrease in parasitemia was observed in treated mice. All experimental days demonstrated DNA damage in exposed parasites, along with an increase in ROS and RNS on the fifth day, suggesting a possible parasitostatic effect. The results indicate that DNA is a target of NaVO3, but further studies are necessary to fully elucidate the mechanisms underlying its antimalarial activity.


Assuntos
Antimaláricos , Dano ao DNA , Plasmodium yoelii , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Vanadatos , Animais , Plasmodium yoelii/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Antimaláricos/toxicidade , Antimaláricos/farmacologia , Espécies Reativas de Nitrogênio/metabolismo , Vanadatos/toxicidade , Vanadatos/farmacologia , Malária/tratamento farmacológico , Masculino , Parasitemia , Feminino
15.
Chem Commun (Camb) ; 60(42): 5546-5549, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38700121

RESUMO

Airborne nanoplastics can enter alveolar cells and trigger intracellular oxidative stress primarily. Herein, taking advantage of the high electrochemical resolution of SiC@Pt nanoelectrodes, we achieved the quantitative discrimination of the major ROS/RNS within A549 cells, disclosed the sources of their precursors, and observed that the NO (RNS precursor) level significantly increased, whereas O2˙- (ROS precursor) remained relatively stable during the nanoplastics exposure. This establishes that iNOS or mitochondrion-targeted treatment may be a preventive or therapeutic strategy for nanoplastic-induced lung injury.


Assuntos
Técnicas Eletroquímicas , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Espécies Reativas de Nitrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Eletrodos
16.
Free Radic Res ; 58(5): 333-353, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767976

RESUMO

Non-thermal atmospheric plasma (NTAP) has been proven to be an effective anti-tumor tool, with various biological effects such as inhibiting tumor proliferation, metastasis, and promoting tumor cell apoptosis. At present, the main conclusion is that ROS and RNS are the main effector components of NTAP, but the mechanisms of which still lack systematic summary. Therefore, in this review, we first summarized the mechanism by which NTAP directly or indirectly causes an increase in intracellular RONS concentration, and the multiple pathways dysregulation (i.e. NRF2, PI3K, MAPK, NF-κB) induced by intracellular RONS. Then, we generalized the relationship between NTAP induced pathways dysregulation and the various biological effects it brought. The summary of the anti-tumor mechanism of NTAP is helpful for its further research and clinical transformation.


Non-thermal atmospheric plasma (NTAP) acts on NADPH oxidase and catalase.The feeding gas and parameters of NTAP affect its impacts on the signaling pathways.The impacts of NTAP and RONS on pathways are not always consistent.NTAP can trigger various anti-tumor biological effects.


Assuntos
Gases em Plasma , Transdução de Sinais , Humanos , Gases em Plasma/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Espécies Reativas de Nitrogênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Espécies Reativas de Oxigênio/metabolismo
17.
J Environ Manage ; 359: 121043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723497

RESUMO

Fertilizer-intensive agriculture leads to emissions of reactive nitrogen (Nr), posing threats to climate via nitrous oxide (N2O) and to air quality and human health via nitric oxide (NO) and ammonia (NH3) that form ozone and particulate matter (PM) downwind. Adding nitrification inhibitors (NIs) to fertilizers can mitigate N2O and NO emissions but may stimulate NH3 emissions. Quantifying the net effects of these trade-offs requires spatially resolving changes in emissions and associated impacts. We introduce an assessment framework to quantify such trade-off effects. It deploys an agroecosystem model with enhanced capabilities to predict emissions of Nr with or without the use of NIs, and a social cost of greenhouse gas to monetize the impacts of N2O on climate. The framework also incorporates reduced-complexity air quality and health models to monetize associated impacts of NO and NH3 emissions on human health downwind via ozone and PM. Evaluation of our model against available field measurements showed that it captured the direction of emission changes but underestimated reductions in N2O and overestimated increases in NH3 emissions. The model estimated that, averaged over applicable U.S. agricultural soils, NIs could reduce N2O and NO emissions by an average of 11% and 16%, respectively, while stimulating NH3 emissions by 87%. Impacts are largest in regions with moderate soil temperatures and occur mostly within two to three months of N fertilizer and NI application. An alternative estimate of NI-induced emission changes was obtained by multiplying the baseline emissions from the agroecosystem model by the reported relative changes in Nr emissions suggested from a global meta-analysis: -44% for N2O, -24% for NO and +20% for NH3. Monetized assessments indicate that on an annual scale, NI-induced harms from increased NH3 emissions outweigh (8.5-33.8 times) the benefits of reducing NO and N2O emissions in all agricultural regions, according to model-based estimates. Even under meta-analysis-based estimates, NI-induced damages exceed benefits by a factor of 1.1-4. Our study highlights the importance of considering multiple pollutants when assessing NIs, and underscores the need to mitigate NH3 emissions. Further field studies are needed to evaluate the robustness of multi-pollutant assessments.


Assuntos
Agricultura , Fertilizantes , Nitrificação , Óxido Nitroso , Fertilizantes/análise , Óxido Nitroso/análise , Poluentes Atmosféricos/análise , Ozônio/análise , Amônia/análise , Espécies Reativas de Nitrogênio/análise , Nitrogênio/análise , Poluição do Ar/análise
18.
Talanta ; 274: 126004, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564824

RESUMO

Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.


Assuntos
Corantes Fluorescentes , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Rodaminas , Corantes Fluorescentes/química , Rodaminas/química , Espécies Reativas de Nitrogênio/análise , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Imagem Óptica , Animais , Enxofre/química , Enxofre/análise
19.
Wound Repair Regen ; 32(4): 407-418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602090

RESUMO

An argon-based low-temperature plasma jet (LTPJ) was used to treat chronically infected wounds in Staphylococcus aureus-laden mice. Based on physicochemical property analysis and in vitro antibacterial experiments, the effects of plasma parameters on the reactive nitrogen and oxygen species (RNOS) content and antibacterial capacity were determined, and the optimal treatment parameters were determined to be 4 standard litre per minute and 35 W. Additionally, the plasma-treated activation solution had a bactericidal effect. Although RNOS are related to the antimicrobial effect of plasma, excess RNOS may be detrimental to wound remodelling. In vivo studies demonstrated that medium-dose LTPJ promoted MMP-9 expression and inhibited bacterial growth during the early stages of healing. Moreover, LTPJ increased collagen deposition, reduced inflammation, and restored blood vessel density and TGF-ß levels to normal in the later stages of wound healing. Therefore, when treating chronically infected wounds with LTPJ, selecting the medium dose of plasma is more advantageous for wound recovery. Overall, our study demonstrated that low-temperature plasma jets may be a potential tool for the treatment of chronically infected wounds.


Assuntos
Gases em Plasma , Staphylococcus aureus , Cicatrização , Infecção dos Ferimentos , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Gases em Plasma/farmacologia , Infecção dos Ferimentos/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Infecções Estafilocócicas , Masculino , Espécies Reativas de Nitrogênio/metabolismo
20.
Arch Toxicol ; 98(6): 1573-1580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573336

RESUMO

Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.


Assuntos
Adutos de DNA , Exposição Dietética , Dimetilnitrosamina , Nitrosaminas , Humanos , Medição de Risco , Nitrosaminas/toxicidade , Nitrosaminas/farmacocinética , Exposição Dietética/efeitos adversos , Dimetilnitrosamina/toxicidade , Contaminação de Alimentos , Inocuidade dos Alimentos , Animais , Nitritos/toxicidade , Nitratos/toxicidade , Nitratos/farmacocinética , Espécies Reativas de Nitrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...