Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.851
Filtrar
1.
J Chromatogr A ; 1735: 465341, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39241408

RESUMO

In the field of nuclear toxicology, the knowledge of the interaction of actinides (An) with biomolecules is of prime concern in order to elucidate their toxicity mechanism and to further develop selective decorporating agents. In this work, we demonstrated the great potential of hydrophilic interaction liquid chromatography (HILIC) to separate polar thorium (Th) biomimetic peptide complexes, as a key starting point to tackle these challenges. Th4+ was used as plutonium (Pu4+) analogue and pS16 and pS1368 as synthetic di- and tetra-phosphorylated peptides capable of mimicking the interaction sites of these An in osteopontin (OPN), a hyperphosphorylated protein. The objective was to determine the relative affinity of pS16 and pS1368 towards Th4+, and to evaluate the pS1368 selectivity when Th4+ was in competition complexation reaction with UO22+ at physiological pH. To meet these aims, HILIC was simultaneously coupled to electrospray ionization mass spectrometry (ESI-MS) and inductively coupled plasma mass spectrometry (ICP-MS), which allowed to identify online the molecular structure of the separated complexes and quantify them, in a single step. Dedicated HILIC conditions were firstly set up to separate the new dimeric Th2(peptide)2 complexes with good separation resolution (peptide = pS16 or pS1368). By adding pS16 and pS1368 in different proportions relatively to Th4+, we found that lower or equal proportions of pS16 with respect to pS1368 were not sufficient to displace pS1368 from Th2pS13682 and pS16 proportion higher than pS1368 led to the formation of a predominant ternary complex Th2(pS16)(pS1368), demonstrating preferential Th4+ binding to the tetra-phosphorylated peptide. Finally, online identification and quantification of the formed complexes when Th4+ and UO22+ were mixed in equimolar ratio relatively to pS1368 showed that in spite of pS1368 has been specifically designed to coordinate UO22+, pS1368 is also Th4+-selective and exhibits stronger affinity for this latter than for UO22+. Hence, the results gathered through this approach highlight the impact of Th4+ coordination chemistry on its interaction with pS1368 and more widely to its affinity for biomolecules.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Peptídeos , Tório , Tório/química , Cromatografia Líquida/métodos , Fosforilação , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Osteopontina/química , Osteopontina/metabolismo , Compostos de Urânio/química , Materiais Biomiméticos/química , Plutônio/química
2.
J Chromatogr A ; 1735: 465323, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39244911

RESUMO

Plastic additives are introduced in plastic material formulations, along with organic polymers, to offer different properties such as stability, plasticity or color. However, plastic additives may migrate from the plastic material to the content (in case of plastic containers) or to the material in contact with the plastic, like human skin. In the case of plastic medical devices, this migration is of particular interest, as plastic additives may be deleterious to health. In the present paper, we examined the interest of combining supercritical fluid extraction (SFE) to supercritical fluid chromatography (SFC) hyphenated to mass spectrometry (MS) in an online system to characterize plastic additives in laboratory gloves, taken as samples of medical devices. A set of target compounds comprising 18 plasticizers, 4 antioxidants and 2 lubricants was defined and their detectability with MS was examined, where it appeared that electrospray ionization (ESI) provided better detectability than atmospheric pressure chemical ionization (APCI). After examining possible stationary phases with the help of Derringer desirability function, an isocratic chromatographic method (CO2:methanol 95:5) was developed on Shim-pack UC Phenyl column. The extraction method was examined with a 3-level full factorial design of experiments to optimize the extraction temperature (40 °C) and pressure (200 bar). The online SFE-SFC-MS method was compared to offline methods where the samples were extracted with liquid solvents at atmospheric pressure or high pressure then analysed with SFC-MS. In all cases, offline methods showed significant contaminants (like the oleamide lubricant) issuing from laboratory plastic materials as nitrogen drying station, syringes and filters, while the online method allowed a complete elimination of laboratory contaminations. Furthermore, the online method saved time, solvents and laboratory consumables. It will also show that transferring a compressible fluid from a loading loop is favourable to high efficiency, as the resulting chromatographic peaks are much thinner than when transferring a liquid. Compared to injecting liquid heptane, the efficiency increase was 3.4-fold, while compared to injecting liquid methanol (a common practice in SFC), the efficiency increase was 13-fold. Finally, the additive composition of different laboratory gloves was compared.


Assuntos
Cromatografia com Fluido Supercrítico , Plásticos , Cromatografia com Fluido Supercrítico/métodos , Plásticos/química , Espectrometria de Massas/métodos , Plastificantes/análise , Luvas Protetoras , Antioxidantes/análise , Antioxidantes/química , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273579

RESUMO

Proteins, saccharides, and low molecular organic compounds in the blood, urine, and saliva could potentially serve as biomarkers for diseases related to diet, lifestyle, and the use of illegal drugs. Lifestyle-related diseases (LSRDs) such as diabetes mellitus (DM), non-alcoholic steatohepatitis, cardiovascular disease, hypertension, kidney disease, and osteoporosis could develop into life-threatening conditions. Therefore, there is an urgent need to develop biomarkers for their early diagnosis. Advanced glycation end-products (AGEs) are associated with LSRDs and may induce/promote LSRDs. The presence of AGEs in body fluids could represent a biomarker of LSRDs. Urine samples could potentially be used for detecting AGEs, as urine collection is convenient and non-invasive. However, the detection and identification of AGE-modified proteins in the urine could be challenging, as their concentrations in the urine might be extremely low. To address this issue, we propose a new analytical approach. This strategy employs a method previously introduced by us, which combines slot blotting, our unique lysis buffer named Takata's lysis buffer, and a polyvinylidene difluoride membrane, in conjunction with electrospray ionization-mass spectrometry (ESI)/matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). This novel strategy could be used to detect AGE-modified proteins, AGE-modified peptides, and free-type AGEs in urine samples.


Assuntos
Biomarcadores , Produtos Finais de Glicação Avançada , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Produtos Finais de Glicação Avançada/urina , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Biomarcadores/urina , Espectrometria de Massas por Ionização por Electrospray/métodos
4.
Rapid Commun Mass Spectrom ; 38(21): e9905, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39223901

RESUMO

RATIONALE: Elastin-like polypeptides (ELPs) are elastic and thermoresponsive biopolymers composed of VPGXG repeats (X can be any amino acid except proline), used in biomedical applications, for example, tissue engineering and drug delivery. As different variants of ELP are mostly produced fermentatively, there is a need for the development of analysis methods that allow for absolute protein quantification in both complex matrices and purified samples and MW determination of the final products. METHODS: ELPs were intracellularly expressed in Escherichia coli quantified after cell lysis and enzymatic digestion using a proline-specific protease ProAlanase (Promega) at acidic conditions. Resulting peptides were separated by liquid chromatography, and mass spectrometry analysis was conducted by electrospray ionization high-resolution mass spectrometry using an Orbitrap mass spectrometer. The addition of a stable isotopically labeled internal standard enabled quantification in complex matrices. Prior to intact mass analysis, ELPs were purified from fermentation broth by inverse temperature cycling. Intact protein analysis was performed using reversed-phase liquid chromatography, and mass spectrometry analysis was conducted by electrospray ionization high-resolution mass spectrometry using a time-of-flight mass spectrometer. RESULTS: Absolute quantification of ELPs was achieved by utilizing ELP-specific properties, that is, proline-rich, soluble at low pH and low temperature. The repetitive nature of ELPs allows for sensitivity increase and use of higher dilution factors to minimize the matrix effects. Despite the lack of amino acids with charged side chains (Arg, His, Lys, Asp, and Glu) in ELP, we demonstrated successful intact protein analysis using reversed-phase LC coupled to electrospray ionization TOF MS. Moreover, truncated protein forms could be chromatographically separated and characterized as well as N-terminal modifications. CONCLUSIONS: Both methods combined enabled quantitative and qualitative characterization of fermentatively produced ELPs.


Assuntos
Elastina , Escherichia coli , Peptídeos , Elastina/química , Escherichia coli/química , Peptídeos/química , Peptídeos/análise , Concentração de Íons de Hidrogênio , Espectrometria de Massas por Ionização por Electrospray/métodos , Temperatura Baixa , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Polipeptídeos Semelhantes à Elastina
5.
Toxins (Basel) ; 16(9)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39330837

RESUMO

Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and may even be fatal. Understanding the chemical and biological properties of individual snake venom toxins is of great importance when developing a newer generation of safer and more effective snakebite treatments. Two main approaches to ionizing toxins prior to mass spectrometry (MS) analysis are electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In the present study, we investigated the use of both ESI-MS and MALDI-MS as complementary techniques for toxin characterization in venom research. We applied nanofractionation analytics to separate crude elapid venoms using reversed-phase liquid chromatography (RPLC) and high-resolution fractionation of the eluting toxins into 384-well plates, followed by online LC-ESI-MS measurements. To acquire clear comparisons between the two ionization approaches, offline MALDI-MS measurements were performed on the nanofractionated toxins. For comparison to the LC-ESI-MS data, we created so-called MALDI-MS chromatograms of each toxin. We also applied plasma coagulation assaying on 384-well plates with nanofractionated toxins to demonstrate parallel biochemical profiling within the workflow. The plotting of post-column acquired MALDI-MS data as so-called plotted MALDI-MS chromatograms to directly align the MALDI-MS data with ESI-MS extracted ion chromatograms allows the efficient correlation of intact mass toxin results from the two MS-based soft ionization approaches with coagulation bioassay chromatograms. This facilitates the efficient correlation of chromatographic bioassay peaks with the MS data. The correlated toxin masses from ESI-MS and/or MALDI-MS were all around 6-8 or 13-14 kDa, with one mass around 20 kDa. Between 24 and 67% of the toxins were observed with good intensity from both ionization methods, depending on the venom analyzed. All Naja venoms analyzed presented anticoagulation activity, whereas pro-coagulation was only observed for the Pseudonaja textillis venom. The data of MALDI-MS can provide complementary identification and characterization power for toxin research on elapid venoms next to ESI-MS.


Assuntos
Venenos Elapídicos , Elapidae , Naja , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Venenos Elapídicos/toxicidade , Venenos Elapídicos/química , Venenos Elapídicos/análise , Coagulação Sanguínea/efeitos dos fármacos , Cromatografia de Fase Reversa , Ophiophagus hannah
6.
Chemosphere ; 364: 143269, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39241838

RESUMO

Alkylnaphthalene lubricating oils are synthetic Group V base oils that are utilized in wide-ranging industrial applications and which are composed of polyalkyl chain-alkylated naphthalenes. Identification of alkylnaphthalene biotransformation products and determination of their mass spectrometry (MS) fragmentation signatures provides valuable information for predicting their environmental fates and for development of analytical methods to monitor their biodegradation. In this work, laboratory-based environmental petroleomics was applied to investigate the catabolism of the alkylnaphthalene, 1-butylnaphthalene (1-BN), by liquid chromatography electrospray ionization MS data mapping and targeted collision-induced dissociation (CID) analyses. Comparative mapping revealed that numerous catabolites were produced from soil bacterium, Sphingobium barthaii KK22. Targeted CID showed unique patterns of production of even-valued deprotonated fragments that were found to originate from specific classes of bacterial catabolites. Based upon results of CID analyses of catabolites and authentic standards, MS signatures were proposed to occur through formation of distonic radical anions from bacterially-produced alkylphenol biotransformation products. Finally, spectra interpretation was guided by CID results to propose chemical structures for twenty-two 1-BN catabolites resulting in construction of 1-BN biotransformation pathways. Multiple pathways were identified that included aromatic ring-opening, alkyl chain-shortening and production of α,ß-unsaturated aldehydes from alkylated phenols. Until now, α,ß-unsaturated aldehydes have not been a class of compounds much reported from alkylated polycyclic aromatic hydrocarbon (APAH) and PAH biotransformation. This work provides a new understanding of alkylnaphthalene biotransformation and proposes MS markers applicable to monitoring APAH biotransformation in the form of alkylated phenols, and by extension, α,ß-unsaturated aldehydes, and toxic potential during spilled oil biodegradation.


Assuntos
Biodegradação Ambiental , Biotransformação , Naftalenos , Espectrometria de Massas por Ionização por Electrospray , Naftalenos/metabolismo , Naftalenos/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Lubrificantes/metabolismo , Lubrificantes/química , Bactérias/metabolismo , Sphingomonadaceae/metabolismo
7.
Nat Commun ; 15(1): 7709, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231934

RESUMO

Electrospray ionization is widely used to generate vapor phase ions for analysis by mass spectrometry in proteomics research. However, only a small fraction of the analyte enters the mass spectrometer due to losses that are fundamentally linked to the use of a background gas to stimulate the generation of ions from electrosprayed droplets. Here we report a nanopore ion source that delivers ions directly into high vacuum from aqueous solutions. The ion source comprises a pulled quartz pipette with a sub-100 nm opening. Ions escape an electrified meniscus by ion evaporation and travel along collisionless trajectories to the ion detector. We measure mass spectra of 16 different amino acid ions, post-translationally modified variants of glutathione, and the peptide angiotensin II, showing that these analytes can be emitted as desolvated ions. The emitted current is composed of ions rather than charged droplets, and more than 90% of the current can be recovered in a distant collector.


Assuntos
Aminoácidos , Íons , Nanoporos , Peptídeos , Espectrometria de Massas por Ionização por Electrospray , Vácuo , Aminoácidos/química , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Proteômica/métodos , Angiotensina II/química
8.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39273243

RESUMO

Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. (ES) has gained popularity for its adaptogenic, immunostimulant, and anti-inflammatory properties. Because of overexploitation of the roots, the species is considered to be endangered and has been put on the Red List in some countries (e.g., the Republic of Korea). Therefore, the fruits of E. senticosus might be explored as a new sustainable source of compounds with adaptogenic activity. This study aimed to assess the chemical composition and the safety profile (hepatotoxicity, blood morphology, biochemical parameters of blood plasma) of E. senticosus fruit intractum in Balb/c mice after oral administration of 750 and 1500 mg/kg b.w. UHPLC analysis coupled with DAD and MS detectors was used to quantify the metabolites. For the first time, oleanolic and ursolic acids were quantified in the intractum (16.01 ± 1.3 and 2.21 ± 0.17 µg/g of oleanolic and ursolic acids, respectively). Regarding polyphenols, chlorogenic acid (0.92 mg/g of dried extract), caffeic acid (0.43 mg/g), dicaffeoylquinic acids (in total: 1.27 mg/g), and an unidentified caffeic acid ester (0.81 mg/g) were identified. The results in Balb/c mice revealed that the intractum does not cause significant variations in red blood cells parameters. In turn, a significant decrease in the total number of leukocytes was observed (5.8 × 103 µL), with a percentage increase in lymphocytes among the groups (80.2, 81.8, and 82.6). The ability of the intractum to decrease alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels may indicate its anti-inflammatory activity. Our observations justify that the fruits of E. senticosus are safe in the doses used and do not cause significant changes in the activity of the liver enzymes or in blood parameters.


Assuntos
Eleutherococcus , Frutas , Camundongos Endogâmicos BALB C , Extratos Vegetais , Animais , Eleutherococcus/química , Frutas/química , Camundongos , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fígado/metabolismo , Fígado/efeitos dos fármacos , Compostos Fitoquímicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Masculino
9.
Rapid Commun Mass Spectrom ; 38(24): e9918, 2024 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-39327714

RESUMO

RATIONALE: Hypoxen is a medication known for providing individuals with a "second wind," by lowering the threshold for muscle fatigue and enhancing the body's efficiency under challenging conditions. Athletes who have used this medication report enhanced training outcomes and increased physical endurance. It is crucial to emphasize that hypoxen is not categorized as a prohibited substance as yet and is thus assumed safe for use in competitive sports. However, the polymeric nature of hypoxen presents challenges in detection and identification. METHODS: To prevent the potential misuse of this substance as a doping agent, doping control laboratories must therefore develop a detection method. This study aimed to address this gap by developing a comprehensive detection method for the polymeric mixtures within hypoxen, employing liquid chromatography-electrospray ionization-mass spectrometry. RESULTS: Among the different columns tested, the Accucore and Syncronis HILIC columns demonstrated exceptional performance, yielding excellent separation with high-quality results. The study found that the hypoxen consisted of between 1 and 6 repetitions of 2,4-dihydroxyphenylene units. It was crucial to highlight that each unit contained multiple isomers due to the incorporation of the sulfonic acid group at both the -SH and -OH positions. CONCLUSIONS: The results of this study will significantly contribute to the precise identification of hypoxen use, thereby aiding in the scrutiny of its abuse in competitive sports.


Assuntos
Dopagem Esportivo , Cromatografia Líquida de Alta Pressão/métodos , Dopagem Esportivo/prevenção & controle , Espectrometria de Massas por Ionização por Electrospray/métodos , Polímeros/química , Polímeros/análise , Humanos , Detecção do Abuso de Substâncias/métodos , Espectrometria de Massas/métodos
10.
J Mass Spectrom ; 59(10): e5090, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39328006

RESUMO

The study of metal ion's role in the biological processes of Alzheimer's disease has spurred investigations into the coordination chemistry of amyloid beta peptide and its fragments. Nano-electrospray ionization mass spectrometry (nESI-MS) has been utilized to examine the stabilization of bound anions on multiprotein complexes without bulk solvent. However, the effects of anions on metal ion binding interactions with amyloid beta peptide have not been explored. This study directly examined metal-peptide complexes using nESI-MS and investigated the effects of various anions on the binding ratio and stability of these complexes from ammonium salt solutions. The results indicate that different anions have distinct effects on the binding ratio and stability of various metal-peptide complexes. Of these, the bicarbonate ion exhibits the highest binding ratios for metal-peptide complexes, while binding ratios for these complexes in phosphate are comparatively low. Our results suggest that acetate, formate, bicarbonate, and phosphate have weak affinities and act as weak stabilizers of the metal-peptide complex structure in the gas phase. Intriguingly, chloride and sulfate act as stabilizers of the metal-peptide complex in the gas phase. The rank order determined from these data is substantially different from the Hofmeister salt series in solution. Although this outcome was anticipated due to the reduced influence of anions and water solvation, our findings correlate well with expected anion binding in solution and emphasize the importance of both hydration layer and anion-metal-peptide binding effects for Hofmeister-type stabilization in solution. This approach proved useful in examining the interactions between metal ions and amyloid beta peptide, which are relevant to Alzheimer's disease, using direct ESI-MS.


Assuntos
Peptídeos beta-Amiloides , Ânions , Espectrometria de Mobilidade Iônica , Espectrometria de Massas por Ionização por Electrospray , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Ânions/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Mobilidade Iônica/métodos , Ligação Proteica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Metais/química , Metais/metabolismo , Humanos
11.
Mar Drugs ; 22(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39330273

RESUMO

A chemical investigation of the extracts from the soft coral Litophyton brassicum led to the isolation and identification of four new meroterpenes, brassihydroxybenzoquinone A and B (1 and 2) and brassinaphthoquinone A and B (3 and 4), along with two known related meroterpenes (5 and 6). Their structures were elucidated using high-resolution electrospray ionization mass spectrometry (HRESIMS), nuclear magnetic resonance (NMR) spectroscopy, and a comparison with the literature data. All compounds were evaluated for antibacterial activity against six pathogenic bacterial strains and for cytotoxic activity against three cancer cell lines. In the cytotoxic assay, all compounds were inactive at 10 µM against the A549, HeLa, and MDA-MB-231 cell lines. In the antibacterial assay, compounds 1 and 2 exhibited moderate inhibitory activity with minimum inhibitory concentrations (MIC) ranging from 8 to 64 µg/mL.


Assuntos
Antozoários , Antibacterianos , Testes de Sensibilidade Microbiana , Terpenos , Antozoários/química , Animais , Humanos , Linhagem Celular Tumoral , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , China , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Células HeLa , Espectrometria de Massas por Ionização por Electrospray , Estrutura Molecular
12.
Anal Chim Acta ; 1324: 343068, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218570

RESUMO

BACKGROUND: Live single-cell metabolomic studies encounter inherent difficulties attributed to the limited sample volume, minimal compound quantity, and insufficient sensitivity in the Mass Spectrometry (MS) method used to obtain single-cell data. However, understanding cellular heterogeneity, functional diversity, and metabolic processes within individual cells is essential. Exploring how individual cells respond to stimuli, including drugs, environmental changes, or signaling molecules, offers insights into biology, oncology, and drug discovery. Efficient release of cell contents (lysis) is vital for accurate metabolite detection at the single-cell level. Despite this, traditional approaches in live single cell metabolomics methods do not emphasize efficient lysis to prevent sample dilution. Instead, current live single cell metabolomics methods use direct infusion to introduce the cell into the mass spectrometry without prior chromatographic separation or a lysis step, which adversely affects sensitivity and metabolic coverage. RESULTS: To address this, we developed an integrated single-cell electrical lysis and nano spray (SCEL-nS) platform coupled to an Orbitrap MS capable of efficiently lysing a single cell after being sampled with specially manufactured micropipettes. Lysis efficiency was validated by comparing live cell stain fluorescent intensities of intact and electrically lysed cells through microscopy imaging. The SCEL-nS platform successfully induced the breakdown of a single cell, significantly reducing the live cell stain's fluorescent intensity indicating cell membrane breakdown. Additionally, SCEL-nS was validated by measuring single cells spiked with the anti-cancer drug tamoxifen by MS. SCEL-nS use resulted in statistically significant increase in the peak measured by the method compared to the traditional non-lysis method. SIGNIFICANCE: Overall, our results demonstrate that the newly incorporated SCEL-nS platform achieved higher sensitivities compared to traditional live single cell analysis methods.


Assuntos
Análise de Célula Única , Espectrometria de Massas por Ionização por Electrospray , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Nanotecnologia , Metabolômica/métodos
13.
Nihon Yakurigaku Zasshi ; 159(5): 321-326, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-39218679

RESUMO

In recent years, various trace bioanalysis methods have been developed, including single-cell transcriptome analysis methods. As the sample volume and amount of biomolecules contained therein are extremely limited, development of new single-cell analysis methods require extremely high-level techniques. It is necessary to design an appropriate analysis system that integrates a highly sensitive detection system and a pretreatment protocol for minimizing sample loss, where separation method is especially important for analyzing diverse mixtures of biomolecules. Among them, capillary electrophoresis (CE) can separate biomolecules in nanoliter-scale solutions with high resolution, making it highly compatible with trace samples such as single cells. By combining with highly sensitive nano-electrospray ionization-mass spectrometry (MS), it is possible to detect nanomolar to sub-nanomolar biomolecules, which can be further improved by using online sample preconcentration methods. These highly sensitive analytical techniques have made it possible to analyze trace amounts of metabolites, proteins, lipids, etc. This review paper summarizes the research on CE-MS trace bioanalysis that has been reported to date, with a focus on single-cell analysis.


Assuntos
Eletroforese Capilar , Eletroforese Capilar/métodos , Humanos , Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Animais , Proteínas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Lipídeos/análise
14.
Inorg Chem ; 63(38): 17785-17796, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39264738

RESUMO

Investigating the speciation of vanadium complexes in the presence of potential biomolecular targets under physiological conditions remains challenging, and further experimental techniques are needed to better understand the mechanism of action of potential metallodrugs. The interaction of two model peptides (angiotensin I and angiotensin II) with three well-known oxidovanadium(IV) compounds with antidiabetic and/or anticancer activity, [VIVO(pic)2(H2O)], [VIVO(ma)2], and [VIVO(dhp)2] (where pic, ma, and dhp are picolinate, maltolate, and 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate anions, respectively), was investigated by ESI-MS/MS (electrospray ionization tandem mass spectrometry) and complemented by EPR (electron paramagnetic resonance) spectroscopy measurements and theoretical calculations at the DFT (density functional theory) level. The results demonstrated that vanadium-peptide bonds are preserved after HCD (higher energy collisional dissociation) fragmentation, allowing for the identification of binding sites through a detailed analysis of the fragmentation spectra. Angiotensin I (AT1) and angiotensin II (AT2) exhibited different coordination behaviors. AT1, with two His residues (His6, His9), prefers to form [AT1 + VOL] adducts with both histidine residues coordinated to the metal ion, while AT2, which has only His6, can bind the metal in a monodentate fashion, forming also [AT2 + VOL2] adducts. Insights from this study pave the way to ESI-MS/MS investigations of more complex systems, including target proteins and further development of vanadium-based drugs.


Assuntos
Complexos de Coordenação , Vanádio , Vanádio/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Angiotensina II/química , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Peptídeos/química , Modelos Moleculares , Compostos de Vanádio/química
15.
J Pharm Biomed Anal ; 251: 116446, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39197207

RESUMO

In traditional Chinese medicinal practices, Gegen (GG) and Tianma (TM) are widely utilized for headache relief, but their material basis has not been comprehensively characterized. This research utilized ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) for precise determination of Gegen-Tianma's (GGTM) material composition, and employed desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) to pinpoint the brain-absorbed components and various metabolites post oral administration to rats. A total of 80 chemical constituents were identified from GGTM, 11 prototypes and 18 metabolites were identified from plasma. The brain tissue was identified in total 4 prototypes and 5 metabolites, these constituents were basically located in the prefrontal cortex and thalamus. The absorption patterns of components in the rat brain aligned with the varied distribution of metabolites within the brain. This study provides a solid theoretical basis for in-depth exploration of potential drug targets and elucidation of the specific mechanism of action of GGTM in the treatment of migraine.


Assuntos
Encéfalo , Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray , Animais , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Ratos , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Encéfalo/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Administração Oral , Córtex Pré-Frontal/metabolismo , Distribuição Tecidual
16.
J Pharm Biomed Anal ; 251: 116421, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39208650

RESUMO

In India, ginger is highly valued for cultural and medicinal purposes. Besides traditional uses, ginger has been proven for its efficacy in cancer, chemotherapy-induced nausea, bacterial infections, neuroinflammation, and oxidative stress. This study focuses on Zingiber sianginensis, a rare ginger species in the Siang region of Arunachal Pradesh, India. This study studied pharmacognostical evaluation, phytometabolomics analysis, and its effect on oxidative stress biomarkers. Microscopic and chemical tests were employed for pharmacognostical evaluation, revealing distinctive characteristics of Zingiber sianginensis, such as non-close collateral vascular bundles and unique cork layers. Chemical tests, including the phloroglucinol and hydrochloric acid test, differentiated Zingiber sianginensis from Zingiber officinale Roscoe. Phytometabolomics analysis, using Gas Chromatography-Mass Spectrometry (GC/MS) and Liquid Chromatography-Electrospray Ionisation-Quadrupole Time of Flight-Mass Spectrometry (LC-ESI-QTOF-MS/MS) techniques, identified a diverse range of metabolites in Zingiber sianginensis, including polyphenols, monoterpenoids, diterpenoids, sesquiterpenoids, and organic compounds. The LC-ESI-QTOF-MS/MS analysis revealed 158 compounds, verified through cross-referencing with established databases. Heavy metal analysis by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) confirmed that Zingiber sianginensis complies with safety standards, showing concentrations of heavy metals within acceptable limits. The isolation and characterization of compounds from Zingiber sianginensis identified natural products such as (R)-(-)- alpha-Curcumene (1), 1-Dehydro-[10]-gingerdione (2), 6-Shogaol (3), and 6-Gingerol (4). Quantification of 6-gingerol revealed that Zingiber sianginensis contains approximately twice the amount compared to Zingiber officinale Roscoe's, suggesting its potential as a source for higher 6-gingerol content. The hydroalcoholic extract of Zingiber sianginensis exhibited antioxidant properties, reducing oxidative stress biomarkers in human dermal fibroblast cells treated with rotenone. Allantoin and 3-bromotyrosine levels significantly decreased, indicating the extract's potential in combating oxidative stress-related disorders. Overall, this comprehensive study provides valuable insights into the pharmacognostical, phytometabolomic, and safety aspects of Zingiber sianginensis, highlighting its potential as a source of bioactive compounds with health benefits.


Assuntos
Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Estresse Oxidativo , Extratos Vegetais , Espectrometria de Massas em Tandem , Zingiber officinale , Biomarcadores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metabolômica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Zingiber officinale/química , Índia , Zingiberaceae/química , Antioxidantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Humanos , Cromatografia Líquida/métodos
17.
Anal Chem ; 96(36): 14332-14338, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39178331

RESUMO

The development of a highly specific recognition electrospray ionization source presents a major challenge for achieving rapid ambient mass spectrometry (AMS) detection of trace harmful substances in complex samples. In this study, we constructed a molecular imprinting nanofiber electrospinning membrane-coated steel substrate (MINMCS) based on the electrospinning strategy. This was designed as a highly specific recognition and enrichment electrospray ionization source module for AMS, where the molecular imprinting nanofiber membrane served as an excellent extraction and enrichment layer. The prepared ionization source demonstrated a sufficient loading capacity for three bioamines (BAs): histamine (HIS), tyramine (TYR), and tryptamine (TRY). With simplified sample pretreatment, this ionization source exhibited sensitivity comparable to that of high performance liquid chromatography-mass spectrometry (HPLC-MS/MS). Moreover, the entire analysis process could be completed within 1 min with acceptable recoveries (83.21-101.80%). In brief, this study introduces a new integrated recognition and enrichment electrospray ionization source for the detection of harmful substances such as bioamines, showcasing significant commercial potential for the rapid detection of foodborne harmful compounds.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Tiramina/análise , Tiramina/química , Histamina/análise , Triptaminas/análise , Triptaminas/química , Nanofibras/química , Impressão Molecular
18.
Anal Chem ; 96(36): 14382-14392, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39189425

RESUMO

The mass-to-charge ratio serves as a critical parameter in peptide identification via mass spectrometry, enabling the precise determination of peptide masses and facilitating their differentiation based on unique charge characteristics, especially when peptides are ionized by tools like electrospray ionization, which produces multiply charged ions. We developed a neural network called CPred, which can accurately predict the charge state distribution from +1 to +7 for the modified and unmodified peptides. CPred was trained on the large-scale synthetic training data, consisting of tryptic and non-tryptic peptides, and various fragmentation methods. The model was further evaluated on independent, external test data sets. Results were evaluated through the Pearson correlation coefficient and showed high correlations of up to 0.9997117 between the predicted and acquired charge state distributions. The effect of specifying modifications in the neural network and feature importance was further investigated, revealing the value of modifications and vital peptide properties in holding on to protons. CPreds' accurate predictions of the charge state distribution can play an essential role in boosting confidence in peptide identifications during rescoring as a novel feature.


Assuntos
Redes Neurais de Computação , Peptídeos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeos/química , Peptídeos/análise
19.
Anal Bioanal Chem ; 416(23): 5191-5203, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39095616

RESUMO

The widespread application of enzymes in industrial chemical synthesis requires efficient process control to maintain high yields and purity. Flow injection analysis-electrospray ionization-mass spectrometry (FIA-ESI-MS) offers a promising solution for real-time monitoring of these enzymatic processes, particularly when handling challenging compounds like sugars and glycans, which are difficult to quickly analyze using liquid chromatography-mass spectrometry due to their physical properties or the requirement for a derivatization step beforehand. This study compares the performance of FIA-MS with traditional hydrophilic interaction liquid chromatography (HILIC)-ultra high-performance liquid chromatography (UHPLC)-mass spectrometry (MS) setups for the monitoring of the enzymatic synthesis of N-acetyllactosamine (LacNAc) using beta-1,4-galactosyltransferase. Our results show that FIA-MS, without prior chromatographic separation or derivatization, can quickly generate accurate mass spectrometric data within minutes, contrasting with the lengthy separations required by LC-MS methods. The rapid data acquisition of FIA-MS enables effective real-time monitoring and adjustment of the enzymatic reactions. Furthermore, by eliminating the derivatization step, this method offers the possibility of being directly coupled to a continuously operated reactor, thus providing a rapid on-line methodology for glycan synthesis as well.


Assuntos
Análise de Injeção de Fluxo , Glicosiltransferases , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Injeção de Fluxo/métodos , Cromatografia Líquida de Alta Pressão/métodos , Glicosiltransferases/metabolismo , Amino Açúcares/análise
20.
J Chromatogr A ; 1733: 465276, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39154498

RESUMO

Sunitinib, N-desmethyl imatinib, dasatinib, imatinib, and bosutinib are tyrosine kinase inhibitors (TKIs) that are commonly employed in the treatment of a multitude of cancers. However, the inappropriate concentrations of TKIs can result in ineffective treatment or the emergence of multiple adverse effects. Consequently, the development of a rapid and sensitive analytical method for TKIs is of paramount importance for the safe administration of drugs. In this work, solid-phase microextraction (SPME) probe combined with an electrospray ionization mass spectrometry (ESI-MS) coupling platform was constructed for rapid and sensitive determination of TKIs. The covalent organic frameworks (COFs) coated SPME probe was made of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2,5-dibutoxyterephthalaldehyde (DBTA) by in-situ layer-by-layer chemical bonding synthesis strategy. The TAPT-DBTA-SPME probe exhibited several advantageous properties which rendered it suitable for the enrichment of TKIs. Under the optimal conditions, the developed analytical method demonstrated a broad linear range (0.05-500.00 µg/L), a low limit of detection (0.02 µg/L) and a high enrichment factor (51-203) for TKIs. The developed analytical method was successfully applied to a pharmacokinetic study of TKIs in mouse plasma and tissue matrix, demonstrating that the proposed analytical method has promise for clinical applications and metabolic monitoring.


Assuntos
Limite de Detecção , Inibidores de Proteínas Quinases , Microextração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Microextração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Camundongos , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/sangue , Estruturas Metalorgânicas/química , Aço Inoxidável/química , Triazinas/análise , Triazinas/química , Triazinas/sangue , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...