Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.028
Filtrar
1.
Sci Adv ; 10(38): eado8107, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303029

RESUMO

Polyamines, characterized by their polycationic nature, are ubiquitously present in all organisms and play numerous cellular functions. Among polyamines, spermidine stands out as the predominant type in both prokaryotic and eukaryotic cells. The PotD-PotABC protein complex in Escherichia coli, belonging to the adenosine triphosphate-binding cassette transporter family, is a spermidine-preferential uptake system. Here, we report structural details of the polyamine uptake system PotD-PotABC in various states. Our analyses reveal distinct "inward-facing" and "outward-facing" conformations of the PotD-PotABC transporter, as well as conformational changes in the "gating" residues (F222, Y223, D226, and K241 in PotB; Y219 and K223 in PotC) controlling spermidine uptake. Therefore, our structural analysis provides insights into how the PotD-PotABC importer recognizes the substrate-binding protein PotD and elucidates molecular insights into the spermidine uptake mechanism of bacteria.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Escherichia coli , Escherichia coli , Espermidina , Espermidina/metabolismo , Espermidina/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Transporte Biológico , Modelos Moleculares , Conformação Proteica , Ligação Proteica
2.
Int J Mol Sci ; 25(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39273631

RESUMO

Frailty is a vulnerable state that marks the transition to long-term care for older people. Early detection and prevention of sarcopenia, the main symptom of frailty, are important to ensure an excellent quality of life for older people. Recently, the relationship between frailty, sarcopenia, and oral function has been attracting attention. This study aimed to clarify the changes in metabolites and metabolic pathways due to aging in the masseter muscle of senescence-accelerated mouse-prone 8 (SAMP8) mice. A capillary electrophoresis-mass spectrometry metabolome analysis was performed on the masseter muscle of 12-week-old, 40-week-old, and 55-week-old mice. The expression of enzymes involved in metabolome pathways considered to be related to aging was confirmed using reverse transcription polymerase chain reaction. Clear metabolic fluctuations were observed between 12, 40-week-old, and 55-week-old SAMP8 mice. The extracted metabolic pathways were the glycolysis, polyamine metabolome, and purine metabolome pathways. Nine fluctuated metabolites were common among the groups. Spermidine and Val were increased, which was regarded as a characteristic change in the masseter muscle due to aging. In conclusion, the age-related metabolic pathways in SAMP8 mice were the glycolysis, polyamine metabolome, and purine metabolome pathways. The increased spermidine and Val levels in the masseter muscle compared with the lower limbs are characteristic changes.


Assuntos
Envelhecimento , Músculo Masseter , Metaboloma , Animais , Camundongos , Músculo Masseter/metabolismo , Envelhecimento/metabolismo , Masculino , Metabolômica/métodos , Espermidina/metabolismo , Redes e Vias Metabólicas , Sarcopenia/metabolismo , Glicólise , Purinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(39): e2404781121, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39284055

RESUMO

Systemic inflammation elicits sickness behaviors and fever by engaging a complex neuronal circuitry that begins in the preoptic area of the hypothalamus. Ectotherms such as teleost fish display sickness behaviors in response to infection or inflammation, seeking warmer temperatures to enhance survival via behavioral fever responses. To date, the hypothalamus is the only brain region implicated in sickness behaviors and behavioral fever in teleosts. Yet, the complexity of neurobehavioral manifestations underlying sickness responses in teleosts suggests engagement of higher processing areas of the brain. Using in vivo models of systemic inflammation in rainbow trout, we find canonical pyrogenic cytokine responses in the hypothalamus whereas in the telencephalon and the optic tectum il-1b and tnfa expression is decoupled from il-6 expression. Polyamine metabolism changes, characterized by accumulation of putrescine and decreases in spermine and spermidine, are recorded in the telencephalon but not hypothalamus upon systemic injection of bacteria. While systemic inflammation causes canonical behavioral fever in trout, blockade of bacterial polyamine metabolism prior to injection abrogates behavioral fever, polyamine responses, and telencephalic but not hypothalamic cytokine responses. Combined, our work identifies the telencephalon as a neuronal substrate for brain responses to systemic inflammation in teleosts and uncovers the role of polyamines as critical chemical mediators in sickness behaviors.


Assuntos
Inflamação , Oncorhynchus mykiss , Poliaminas , Telencéfalo , Animais , Telencéfalo/metabolismo , Poliaminas/metabolismo , Inflamação/metabolismo , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/imunologia , Neurônios/metabolismo , Hipotálamo/metabolismo , Espermina/metabolismo , Putrescina/metabolismo , Comportamento de Doença/fisiologia , Espermidina/metabolismo
4.
Sci Transl Med ; 16(766): eadn1285, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321266

RESUMO

Acute myeloid leukemia (AML) is a devastating disease initiated and maintained by a rare subset of cells called leukemia stem cells (LSCs). LSCs are responsible for driving disease relapse, making the development of new therapeutic strategies to target LSCs urgently needed. The use of mass spectrometry-based metabolomics profiling has enabled the discovery of unique and targetable metabolic properties in LSCs. However, we do not have a comprehensive understanding of metabolite differences between LSCs and their normal counterparts, hematopoietic stem and progenitor cells (HSPCs). In this study, we used an unbiased mass spectrometry-based metabolomics analysis to define differences in metabolites between primary human LSCs and HSPCs, which revealed that LSCs have a distinct metabolome. Spermidine was the most enriched metabolite in LSCs compared with HSPCs. Pharmacological reduction of spermidine concentrations decreased LSC function but spared normal HSPCs. Polyamine depletion also decreased leukemic burden in patient-derived xenografts. Mechanistically, spermidine depletion induced LSC myeloid differentiation by decreasing eIF5A-dependent protein synthesis, resulting in reduced expression of a select subset of proteins. KAT7, a histone acetyltransferase, was one of the top candidates identified to be down-regulated by spermidine depletion. Overexpression of KAT7 partially rescued polyamine depletion-induced decreased colony-forming ability, demonstrating that loss of KAT7 is an essential part of the mechanism by which spermidine depletion targets AML clonogenic potential. Together, we identified and mechanistically dissected a metabolic vulnerability of LSCs that has the potential to be rapidly translated into clinical trials to improve outcomes for patients with AML.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Espermidina , Animais , Humanos , Camundongos , Acetiltransferases , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Metaboloma , Metabolômica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Espermidina/metabolismo
5.
Biochem J ; 481(18): 1241-1253, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230569

RESUMO

The only known pathway for biosynthesis of the polyamine norspermidine starts from aspartate ß-semialdehyde to form the diamine 1,3-diaminopropane, which is then converted to norspermidine via a carboxynorspermidine intermediate. This pathway is found primarily in the Vibrionales order of the γ-Proteobacteria. However, norspermidine is also found in other species of bacteria and archaea, and in diverse single-celled eukaryotes, chlorophyte algae and plants that do not encode the known norspermidine biosynthetic pathway. We reasoned that products of polyamine catabolism could be an alternative route to norspermidine production. 1,3-diaminopropane is formed from terminal catabolism of spermine and spermidine, and norspermidine can be formed from catabolism of thermospermine. We found that the single-celled chlorophyte alga Chlamydomonas reinhardtii thermospermine synthase (CrACL5) did not aminopropylate exogenously-derived 1,3-diaminopropane efficiently when expressed in Escherichia coli. In contrast, it completely converted all E. coli native spermidine to thermospermine. Co-expression in E. coli of the polyamine oxidase 5 from lycophyte plant Selaginella lepidophylla (SelPAO5), together with the CrACL5 thermospermine synthase, converted almost all thermospermine to norspermidine. Although CrACL5 was efficient at aminopropylating norspermidine to form tetraamine norspermine, SelPAO5 oxidizes norspermine back to norspermidine, with the balance of flux being inclined fully to norspermine oxidation. The steady-state polyamine content of E. coli co-expressing thermospermine synthase CrACL5 and polyamine oxidase SelPAO5 was an almost total replacement of spermidine by norspermidine. We have recapitulated a potential hybrid biosynthetic-catabolic pathway for norspermidine production in E. coli, which could explain norspermidine accumulation in species that do not encode the known aspartate ß-semialdehyde-dependent pathway.


Assuntos
Espermidina , Espermidina/metabolismo , Espermidina/análogos & derivados , Espermidina/biossíntese , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Vias Biossintéticas , Escherichia coli/metabolismo , Escherichia coli/genética , Espermina/metabolismo , Espermina/análogos & derivados
6.
BMC Plant Biol ; 24(1): 786, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39160481

RESUMO

BACKGROUND: Rice is a staple crop for over half of the global population, but soil salinization poses a significant threat to its production. As a type of polyamine, spermidine (Spd) has been shown to reduce stress-induced damage in plants, but its specific role and mechanism in protecting rice roots under salt stress require further investigation. RESULTS: This study suggested spermidine (Spd) mitigates salt stress on rice root growth by enhancing antioxidant enzyme activity and reducing peroxide levels. Transcriptomic analysis showed that salt stress caused 333 genes to be upregulated and 1,765 to be downregulated. However, adding Spd during salt treatment significantly altered this pattern: 2,298 genes were upregulated and 844 were downregulated, which indicated Spd reverses some transcriptional changes caused by salt stress. KEGG pathway analysis suggested that Spd influenced key signaling pathways, including MAPK signaling, plant hormone signal transduction, and phenylalanine metabolism. Additionally, the bZIP transcription factor OsbZIP73 was upregulated after Spd treatment, which is confirmed by Western blot. Further insights into the interaction between OsbZIP73 and Spd were gained through fluorescence polarization experiments, showing that Spd enhances protein OsbZIP73's affinity for RNA. Functional enrichment analyses revealed that OsPYL1, OsSPARK1, and various SAUR family genes involved in Spd-affected pathways. The presence of G/A/C-box elements in these genes suggests they are potential targets for OsbZIP73. CONCLUSIONS: Our findings suggest a strategy of using spermidine as a chemical alleviator for salt stress and provide insights into the regulatory function of OsbZIP73 in mitigating salt stress in rice roots.


Assuntos
Oryza , Proteínas de Plantas , Raízes de Plantas , Estresse Salino , Espermidina , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Oryza/fisiologia , Espermidina/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(8): 159560, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39181440

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a prominent cause of chronic liver disease worldwide. Spermidine (SPD), a naturally occurring polyamine, has shown potential in alleviating the accumulation of hepatic lipids and reducing NAFLD symptoms in overweight mice. Nonetheless, the specific mechanisms through which SPD exerts its effects remain largely unknown. This study seeks to explore the protective effects of SPD on NAFLD and to clarify the underlying mechanisms. An in vitro model of NAFLD was established by inducing steatosis in AML-12 cells through the use of free fatty acids (FFAs). Our experimental results demonstrate that SPD significantly reduces NAFLD development induced by FFAs. This reduction is primarily achieved through the inhibition of cellular ferroptosis, as evidenced by decreased levels of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS). Additionally, SPD was found to enhance cellular activity and ameliorate mitochondrial dysfunction and oxidative stress caused by FFA exposure. Further mechanistic studies have revealed that SPD upregulates the expression of solute transporter family 7a member 11 (SLC7A11), glutamate-cysteine ligase modifier subunit (GCLM), and glutathione peroxidase (GPX4). This upregulation is mediated by the activation of activating transcription factor 4 (ATF4). Knockdown experiments of ATF4 confirmed that its inhibition reverses the upregulation of SLC7A11, GCLM, and GPX4, thereby negating the protective effects of SPD. In conclusion, our findings suggest that SPD mitigates NAFLD by modulating the ATF4/SLC7A11/GCLM/GPX4 signaling pathway, resulting in the suppression of ferroptosis and the improvement of cellular health. These insights provide a novel molecular mechanism and identify potential therapeutic targets for the treatment of NAFLD.


Assuntos
Fator 4 Ativador da Transcrição , Sistema y+ de Transporte de Aminoácidos , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Espermidina , Ferroptose/efeitos dos fármacos , Espermidina/farmacologia , Espermidina/metabolismo , Animais , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Transdução de Sinais/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/genética , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos
8.
Nat Cell Biol ; 26(9): 1571-1584, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117797

RESUMO

Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.


Assuntos
Autofagia , Caenorhabditis elegans , Restrição Calórica , Jejum , Longevidade , Espermidina , Autofagia/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Espermidina/metabolismo , Espermidina/farmacologia , Animais , Humanos , Caenorhabditis elegans/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fator de Iniciação de Tradução Eucariótico 5A , Drosophila melanogaster/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL
9.
Int J Biol Macromol ; 278(Pt 4): 135098, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197612

RESUMO

The importance of synergy has been underscored in recent medical research for augmenting the efficacy of therapeutic interventions, targeting multiple biological pathways simultaneously. Our prior research elucidated that Dendrobium officinale polysaccharide (DOP) has the potential to prolong the lifespan of Caenorhabditis elegans (C. elegans) via regulating gut microbiota. Concurrently, spermidine (Spd), as a mimicking caloric restriction, facilitates autophagy and exerts a pronounced anti-aging effect. To enhance the anti-aging capabilities of DOP, we conducted a comprehensive study examining the combined effects of DOP and Spd in C. elegans, incorporating metabolomics analysis to investigate the underlying mechanisms. A combination of 250 mg/L DOP and 29.0 mg/L Spd yielded the most favorable outcomes in lifespan extension, evidencing a synergistic effect with a combination index (CI) of 0.65. In oxidative and heat stress tolerance assays, the observed CIs were 0.50 and 0.33, respectively. Metabolomic analysis highlighted significant alterations in metabolites related to lipid, nucleotide and energy metabolism, notably regulating glycerol 3-phosphate, linoleoyl glycerol, docosapentaenoic acid and ß-nicotinamide mononucleotide, nicotinamide adenine dinucleotide. The effects of DS on lipid metabolism were further validated using Oil Red O staining and triglyceride level in C. elegans. The results indicated that DS may primarily be via modulating lipid metabolism. To further confirm these findings, a high-fat diet-induced mouse model was employed. Consequently, it can be inferred that the synergistic anti-aging impact of DOP and Spd is likely mediated primarily through alterations in lipid metabolic processes.


Assuntos
Caenorhabditis elegans , Dendrobium , Metabolismo Energético , Metabolismo dos Lipídeos , Metabolômica , Polissacarídeos , Espermidina , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Dendrobium/química , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Metabolômica/métodos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Espermidina/farmacologia , Espermidina/metabolismo , Camundongos , Sinergismo Farmacológico , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Longevidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
10.
Int J Biol Macromol ; 278(Pt 1): 134654, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128748

RESUMO

In this paper the effects on the interaction of highly positively charged substitution-inert platinum polynuclear complexes (SI-PPCs) with negatively charged DNA and heparin are examined and compared by theoretical chemistry methods. Electrostatic and hydrogen bonding interactions contribute to the overall effects on the biomolecule. Root Mean Square (RMS) deviation, Solvent Accessible Surface, RMS fluctuation, and interaction analysis all confirm similar effects on both biomolecules, dictated predominantly by the total positive charge and total number of hydrogen bonds formed. Especially, changes in structural parameters suggesting condensation and reduction of available surface area will reduce or prevent normal protein recognition and may thus potentially inhibit biological mechanisms related to apoptosis (DNA) or reduced vascularization viability (HEP). Thermodynamic analyses supported these findings with favourable interaction energies. The comparison of DNA and heparin confirms the general intersectionality between the two biomolecules and confirms the intrinsic dual-nature function of this chemotype. The distinction between the two-limiting mode of actions (HS or DNA-centred) could reflect an intriguing balance between extracellular (GAG) and intracellular (DNA) binding and affinities. The results underline the need to fully understand GAG-small molecule interactions and their contribution to drug pharmacology and related therapeutic modalities. This report contributes to that understanding.


Assuntos
DNA , Simulação de Dinâmica Molecular , Espermidina , Espermina , Espermina/química , DNA/química , DNA/metabolismo , Espermidina/química , Espermidina/metabolismo , Heparina/química , Heparina/metabolismo , Termodinâmica , Ligação de Hidrogênio , Eletricidade Estática
11.
Bull Exp Biol Med ; 177(3): 307-312, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39123088

RESUMO

We studied the effects of some nitrogen-containing, heterocyclic, and cyclic compounds on the rate of oxidative deamination of polyamines and putrescine in tissues with a high proliferation rate. For this purpose, the specific activities of the main enzymes of polyamine oxidative degradation - spermine oxidase (SMO), polyamine oxidase (PAO), and diamine oxidase (DAO) were determined using a cell-free test system from regenerating rat liver. The compounds methyl 2-(5-formylfuran-2-yl)benzoate and 2,7-bis-[2-(diethylamino)ethoxy]-9H-fluoren-9-one (and in the form of dihydrochloride) showed mainly activating effect on oxidative degradation of putrescine, spermidine, and spermine, which indirectly indicates their antiproliferative effect. Nitrogen-free compounds inhibited this process, thus exhibiting potentially carcinogenic properties. Correlations were calculated for activity of DAO, PAO, and SMO with 5 topological indices: Wiener (W), Rouvray (R), Balaban (J) in the Trinaistich modification, detour (Ip), and electropy (Ie). The highest dependence was noted for DAO and the Balaban index (R=-0.55), for PAO and the detour index (R=0.78), and for SMO and the electropy index (R=0.53). The remaining dependencies showed insignificant correlation strength.


Assuntos
Amina Oxidase (contendo Cobre) , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Ratos , Oxirredução/efeitos dos fármacos , Desaminação , Amina Oxidase (contendo Cobre)/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Poliamina Oxidase , Putrescina/metabolismo , Putrescina/farmacologia , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Sistema Livre de Células , Fígado/metabolismo , Fígado/efeitos dos fármacos , Poliaminas/metabolismo , Espermina/metabolismo , Espermina/farmacologia , Espermidina/metabolismo , Masculino , Nitrogênio/metabolismo , Ratos Wistar
12.
PLoS One ; 19(7): e0304658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052628

RESUMO

Polyamines (PAs) including putrescine (PUT), spermidine (SPD) and spermine (SPM) are small, versatile molecules with two or more positively charged amino groups. Despite their importance for almost all forms of life, their specific roles in molecular and cellular biology remain partly unknown. The molecular structures of PAs suggest two presumable biological functions: (i) as potential buffer systems and (ii) as interactants with poly-negatively charged molecules like nucleic acids. The present report focuses on the question, whether the molecular structures of PAs are essential for such functions, or whether other simple molecules like small peptides with closely spaced positively charged side chains might be suitable as well. Consequently, we created titration curves for PUT, SPD, and SPM, as well as for oligolysines like tri-, tetra-, and penta-lysine. None of the molecules provided substantial buffering capacity at physiological intracellular pH values. Apparently, the most important mechanism for intracellular pH homeostasis in neurons is not a buffer system but is provided by the actions of the sodium-hydrogen and the bicarbonate-chloride antiporters. In a similar approach we investigated the interaction with DNA by following the extinction at 260 nm when titrating DNA with the above molecules. Again, PUT and tri-lysine were not able to interact with herring sperm DNA, while SPD and SPM were. Obviously, the presence of several positively charged groups on its own is not sufficient for the interaction with nucleic acids. Instead, the precise spacing of these groups is necessary for biological activity.


Assuntos
DNA , Peptídeos , Poliaminas , RNA , Concentração de Íons de Hidrogênio , DNA/química , DNA/metabolismo , Soluções Tampão , RNA/química , RNA/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Animais , Espermidina/química , Espermidina/metabolismo , Espermina/química , Espermina/metabolismo , Putrescina/química , Putrescina/metabolismo
13.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000081

RESUMO

Spermidine is well known to accumulate in plants exposed to drought, but the regulatory network associated with its biosynthesis and accumulation and the underlying molecular mechanisms remain unclear. Here, we demonstrated that the Trifolium repens TrMYB33 relayed the ABA signal to modulate drought-induced spermidine production by directly regulating the expression of TrSAMS1, which encodes an S-adenosylmethionine synthase. This gene was identified by transcriptome and expression analysis in T. repens. TrSAMS1 overexpression and its pTRV-VIGS-mediated silencing demonstrated that TrSAMS1 is a positive regulator of spermidine synthesis and drought tolerance. TrMYB33 was identified as an interacting candidate through yeast one-hybrid library screening with the TrSAMS1 promoter region as the bait. TrMYB33 was confirmed to bind directly to the predicted TAACCACTAACCA (the TAACCA MYB binding site is repeated twice in tandem) within the TrSAMS1 promoter and to act as a transcriptional activator. Additionally, TrMYB33 contributed to drought tolerance by regulating TrSAMS1 expression and modulating spermidine synthesis. Additionally, we found that spermidine accumulation under drought stress depended on ABA and that TrMYB33 coordinated ABA-mediated upregulation of TrSAMS1 and spermidine accumulation. This study elucidated the role of a T. repens MYB33 homolog in modulating spermidine biosynthesis. The further exploitation and functional characterization of the TrMYB33-TrSAMS1 regulatory module can enhance our understanding of the molecular mechanisms responsible for spermidine accumulation during drought stress.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Espermidina , Trifolium , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Trifolium/genética , Trifolium/metabolismo , Espermidina/metabolismo , Espermidina/biossíntese , Regiões Promotoras Genéticas , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transdução de Sinais , Resistência à Seca
14.
Eur J Pharmacol ; 979: 176823, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032763

RESUMO

Autophagy is an abnormal protein degradation and recycling process that is impaired in various neurological diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. Spermidine is a natural polyamine found in various plant- and meat-based diets that can induce autophagy, and is decreased in various neurodegenerative diseases. It acts on epigenetic enzymes like E1A-binding protein p300, HAT enzymes like Iki3p and Sas3p, and α-tubulin acetyltransferase 1 that modulate autophagy. Histone modifications like acetylation, phosphorylation, and methylation could influence autophagy. Autophagy is epigenetically regulated in various neurodegenerative disorders with many epigenetic enzymes and miRNAs. Polyamine regulation plays an essential role in the disease pathogenesis of AD and PD. Therefore, in this review, we discuss various enzymes and miRNAs involved in the epigenetic regulation of autophagy in neurodegenerative disorders and the role of spermidine as an autophagy enhancer. The alterations in spermidine-mediated regulation of Beclin-1, LC3-II, and p62 genes in AD and other PD-associated enzymes could impact the process of autophagy in these neurodegenerative diseases. With the ever-growing data and such promising effects of spermidine in autophagy, we feel it could be a promising target in this area and worth further detailed studies.


Assuntos
Autofagia , Epigênese Genética , Doenças Neurodegenerativas , Espermidina , Espermidina/farmacologia , Espermidina/metabolismo , Humanos , Autofagia/efeitos dos fármacos , Autofagia/genética , Epigênese Genética/efeitos dos fármacos , Animais , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo
15.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928162

RESUMO

Polyamine (PA) spermidine (SPD) plays a crucial role in aging. Since SPD accumulates in glial cells, particularly in Müller retinal cells (MCs), the expression of the SPD-synthesizing enzyme spermidine synthase (SpdS) in Müller glia and age-dependent SpdS activity are not known. We used immunocytochemistry, Western blot (WB), and image analysis on rat retinae at postnatal days 3, 21, and 120. The anti-glutamine synthetase (GS) antibody was used to identify glial cells. In the neonatal retina (postnatal day 3 (P3)), SpdS was expressed in almost all progenitor cells in the neuroblast. However, by day 21 (P21), the SpdS label was pronouncedly expressed in multiple neurons, while GS labels were observed only in radial Müller glial cells. During early cell adulthood, at postnatal day 120 (P120), SpdS was observed solely in ganglion cells and a few other neurons. Western blot and semi-quantitative analyses of SpdS labeling showed a dramatic decrease in SpdS at P21 and P120 compared to P3. In conclusion, the redistribution of SpdS with aging indicates that SPD is first synthesized in all progenitor cells and then later in neurons, but not in glia. However, MCs take up and accumulate SPD, regardless of the age-associated decrease in SPD synthesis in neurons.


Assuntos
Células Ependimogliais , Retina , Espermidina Sintase , Animais , Ratos , Espermidina Sintase/metabolismo , Espermidina Sintase/genética , Retina/metabolismo , Células Ependimogliais/metabolismo , Envelhecimento/metabolismo , Espermidina/metabolismo , Neuroglia/metabolismo , Animais Recém-Nascidos
16.
PLoS One ; 19(6): e0304831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38923971

RESUMO

This study investigated the mitigating effects of spermidine on salinity-stressed yarrow plants (Achillea millefolium L.), an economically important medicinal crop. Plants were treated with four salinity levels (0, 30, 60, 90 mM NaCl) and three spermidine concentrations (0, 1.5, 3 µM). Salinity induced electrolyte leakage in a dose-dependent manner, increasing from 22% at 30 mM to 56% at 90 mM NaCl without spermidine. However, 1.5 µM spermidine significantly reduced leakage across salinities by 1.35-11.2% relative to untreated stressed plants. Photosynthetic pigments (chlorophyll a, b, carotenoids) also exhibited salinity- and spermidine-modulated responses. While salinity decreased chlorophyll a, both spermidine concentrations increased chlorophyll b and carotenoids under most saline conditions. Salinity and spermidine synergistically elevated osmoprotectants proline and total carbohydrates, with 3 µM spermidine augmenting proline and carbohydrates up to 14.4% and 13.1% at 90 mM NaCl, respectively. Antioxidant enzymes CAT, POD and APX displayed complex regulation influenced by treatment factors. Moreover, salinity stress and spermidine also influenced the expression of linalool and pinene synthetase genes, with the highest expression levels observed under 90 mM salt stress and the application of 3 µM spermidine. The findings provide valuable insights into the responses of yarrow plants to salinity stress and highlight the potential of spermidine in mitigating the adverse effects of salinity stress.


Assuntos
Achillea , Clorofila , Estresse Salino , Espermidina , Espermidina/farmacologia , Espermidina/metabolismo , Achillea/metabolismo , Achillea/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Carotenoides/metabolismo , Prolina/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Salinidade , Antioxidantes/metabolismo , Cloreto de Sódio/farmacologia , Clorofila A/metabolismo
17.
Cell Death Dis ; 15(5): 333, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740758

RESUMO

Precise polyamine metabolism regulation is vital for cells and organisms. Mutations in spermine synthase (SMS) cause Snyder-Robinson intellectual disability syndrome (SRS), characterized by significant spermidine accumulation and autophagy blockage in the nervous system. Emerging evidence connects polyamine metabolism with other autophagy-related diseases, such as Tauopathy, however, the functional intersection between polyamine metabolism and autophagy in the context of these diseases remains unclear. Here, we altered SMS expression level to investigate the regulation of autophagy by modulated polyamine metabolism in Tauopathy in Drosophila and human cellular models. Interestingly, while complete loss of Drosophila spermine synthase (dSms) impairs lysosomal function and blocks autophagic flux recapitulating SRS disease phenotype, partial loss of dSms enhanced autophagic flux, reduced Tau protein accumulation, and led to extended lifespan and improved climbing performance in Tauopathy flies. Measurement of polyamine levels detected a mild elevation of spermidine in flies with partial loss of dSms. Similarly, in human neuronal or glial cells, partial loss of SMS by siRNA-mediated knockdown upregulated autophagic flux and reduced Tau protein accumulation. Importantly, proteomics analysis of postmortem brain tissue from Alzheimer's disease (AD) patients showed a significant albeit modest elevation of SMS level. Taken together, our study uncovers a functional correlation between polyamine metabolism and autophagy in AD: SMS reduction upregulates autophagy, suppresses Tau accumulation, and ameliorates neurodegeneration and cell death. These findings provide a new potential therapeutic target for AD.


Assuntos
Autofagia , Espermina Sintase , Proteínas tau , Animais , Proteínas tau/metabolismo , Humanos , Espermina Sintase/metabolismo , Espermina Sintase/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Espermidina/metabolismo , Modelos Animais de Doenças , Lisossomos/metabolismo , Drosophila/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X
18.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792079

RESUMO

Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.


Assuntos
Amida Sintases , Glutationa , NADH NADPH Oxirredutases , Trypanosoma , NADH NADPH Oxirredutases/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , Humanos , Amida Sintases/metabolismo , Amida Sintases/antagonistas & inibidores , Trypanosoma/efeitos dos fármacos , Trypanosoma/metabolismo , Glutationa/metabolismo , Glutationa/análogos & derivados , Animais , Espermidina/análogos & derivados , Espermidina/metabolismo , Leishmania/efeitos dos fármacos , Leishmania/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Leishmaniose/tratamento farmacológico , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Trypanosomatina/metabolismo , Trypanosomatina/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo
19.
FEBS J ; 291(16): 3665-3685, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38808914

RESUMO

Polyamines are ubiquitous biomolecules with a number of established functions in eukaryotic cells. In plant cells, polyamines have previously been linked to abiotic and biotic stress tolerance, as well as to the modulation of programmed cell death (PCD), with contrasting reports on their pro-PCD and pro-survival effects. Here, we used two well-established platforms for the study of plant PCD, Arabidopsis thaliana suspension cultures cells and the root hair assay, to examine the roles of the polyamines spermine and spermidine in the regulation of PCD. Using these systems for precise quantification of cell death rates, we demonstrate that both polyamines can trigger PCD when applied exogenously at higher doses, whereas at lower concentrations they inhibit PCD induced by both biotic and abiotic stimuli. Furthermore, we show that concentrations of polyamines resulting in inhibition of PCD generated a transient ROS burst in our experimental system, and activated the expression of oxidative stress- and pathogen response-associated genes. Finally, we examined PCD responses in existing Arabidopsis polyamine synthesis mutants, and identified a subtle PCD phenotype in Arabidopsis seedlings deficient in thermo-spermine. The presented data show that polyamines can have a role in PCD regulation; however, that role is dose-dependent and consequently they may act as either inhibitors, or inducers, of PCD in Arabidopsis.


Assuntos
Apoptose , Arabidopsis , Espécies Reativas de Oxigênio , Espermidina , Espermina , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Espermidina/farmacologia , Espermidina/metabolismo , Espermina/farmacologia , Espermina/metabolismo , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Células Cultivadas
20.
J Gastroenterol ; 59(8): 682-698, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38695904

RESUMO

BACKGROUND: Spermidine suppress oxidative stress and is involved in various disease pathogenesis including ulcerative colitis (UC). Arginase 2 (ARG2) plays a central role in the synthesis of spermidine. This study aimed to clarify the effect of endogenously produced spermidine on colitis. METHODS: The physiological role of ARG2 and spermidine was investigated using Arg2-deficient mice with reduced spermidine. Immunohistochemical staining of the rectum was used to analyze ARG2 expression and spermidine levels in healthy controls and UC patients. RESULTS: In mice with dextran sulfate sodium-induced colitis, ARG2 and spermidine levels were increased in the rectal epithelium. Spermidine protects colonic epithelial cells from oxidative stress and Arg2 knockdown cells reduced antioxidant activity. Organoids cultured from the small intestine and colon of Arg2-deficient mice both were more susceptible to oxidative stress. Colitis was exacerbated in Arg2-deficient mice compared to wild-type mice. Supplementation with spermidine result in comparable severity of colitis in both wild-type and Arg2-deficient mice. In the active phase of UC, rectal ARG2 expression and spermidine accumulation were increased compared to remission. ARG2 and spermidine levels were similar in healthy controls and UC remission patients. CONCLUSIONS: ARG2 produces spermidine endogenously in the intestinal epithelium and has a palliative effect on ulcerative colitis. ARG2 and spermidine are potential novel therapeutic targets for UC.


Assuntos
Antioxidantes , Arginase , Colite Ulcerativa , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Espermidina , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Animais , Espermidina/farmacologia , Espermidina/metabolismo , Humanos , Camundongos , Antioxidantes/farmacologia , Arginase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos Knockout , Modelos Animais de Doenças , Feminino , Colo/metabolismo , Colo/patologia , Colo/efeitos dos fármacos , Pessoa de Meia-Idade , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...