Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.749
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124942, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39128386

RESUMO

Long-term and excessive use of tetracycline hydrochloride (TC) can lead to its accumulation in the environment, which can cause water contamination, bacterial resistance, and food safety problems. 2,6-Pyridine dicarboxylic acid (DPA) is a major biomarker of Bacillus anthracis spores, and its rapid and sensitive detection is of great significance for disease prevention and counter-terrorism. A bifunctional ratiometric fluorescent nanoprobe has been fabricated to detect DPA and TC. 3,5-dicarboxyphenylboronic acid (BOP) was intercalated into layered europium hydroxide (LEuH) by the ion-exchange method and exfoliated into nanosheets as a fluorescent nanoprobe (PNP). DPA and TC could significantly enhance the red fluorescence of Eu3+ through the antenna effect under different excitation wavelengths, while the fluorescence of BOP can be used as a reference based on the constant emission intensity, realizing ratiometric detection. A low limit of detection (LOD) for the target (DPA: 9.7 nM, TC: 21.9 nM) can be achieved. In addition, visual detection of DPA and TC was realized using color recognition software based on the obvious color changes. This is the first ratiometric fluorescent nanoprobe based on layered rare-earth hydroxide (LRH) for the detection of DPA and TC simultaneously, which opens new ideas in the design of multifunctional probes.


Assuntos
Bacillus anthracis , Biomarcadores , Corantes Fluorescentes , Espectrometria de Fluorescência , Esporos Bacterianos , Tetraciclina , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Bacillus anthracis/isolamento & purificação , Biomarcadores/análise , Tetraciclina/análise , Limite de Detecção , Ácidos Picolínicos/análise , Antraz/diagnóstico
2.
Int J Food Microbiol ; 426: 110917, 2025 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-39293098

RESUMO

Bacillus cereus is a ubiquitous foodborne pathogen commonly found in various foods. Its ability to form spores, biofilms and diarrhoeal and/or emetic toxins further exacerbates the risk of food poisoning. Violacein is a tryptophan derivative with excellent antibacterial activity. However, the knowledge on the antibacterial action of violacein against B. cereus was lacking, and thus this study aimed to investigate the antibacterial activity and mechanism. The antibacterial results demonstrated that minimum inhibitory concentration and minimum bactericidal concentration of violacein were 3.125 mg/L and 12.50 mg/L, respectively. Violacein could effectively inhibit planktonic growth, spore germination and biofilm formation of B. cereus (P < 0.001). Meanwhile, violacein significantly downregulated the expression of toxin genes, including nheA (P < 0.05), nheB (P < 0.001), bceT (P < 0.01), cytK (P < 0.001), hblC (P < 0.001) and hblD (P < 0.001). Results of extracellular alkaline phosphatase, nucleotide and protein leakage assays and scanning and transmission electron microscopy observation tests showed violacein destroyed cell walls and membranes of B. cereus. In addition, 6.25 mg/kg of violacein could significantly inhibit B. cereus in grass carp fillets (P < 0.05). These results demonstrate that violacein has great potential as an effective natural antimicrobial preservative to control food contamination and poisoning events caused by B. cereus.


Assuntos
Antibacterianos , Bacillus cereus , Toxinas Bacterianas , Biofilmes , Carpas , Indóis , Testes de Sensibilidade Microbiana , Esporos Bacterianos , Indóis/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/metabolismo , Carpas/microbiologia , Conservação de Alimentos/métodos , Microbiologia de Alimentos , Plâncton/efeitos dos fármacos , Plâncton/crescimento & desenvolvimento
3.
Int J Food Microbiol ; 426: 110910, 2025 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-39303499

RESUMO

As a commercially available esterified compound derived from sucrose and palmitoyl acids, sucrose ester palmitic acid (SEPA) has been used as an emulsifier in food processing. It possesses antibacterial activity against vegetative and spore-forming bacteria, including Clostridium, Moorella, Bacillus, and Geobacillus species, prompting the food industry to use it as a food additive to achieve a desirable shelf life; however, the precise mechanism by which the compound affects the physiological processes of bacteria and how it inhibits bacterial growth remains unclear. In this study, we focused on the inhibitory effect of SEPA on the germination-to-outgrowth process of Clostridium perfringens SM101 spores, a strain widely used as a model of C. perfringens. When the isolated spores were exposed to ≧ 20 µg/ml of SEPA on brain heart infusion agar, bacterial colony formation was completely inhibited. Time-resolved phase-contrast microscopy was employed to visualize the effect of SEPA on the entire regrowth process of SM101 spores. SEPA did not affect the "germination stage," where each spore changes its optical density from phase-bright to phase-dark. In contrast, the presence of SEPA completely blocked the "outgrowth stage," in which the newly synthesized vegetative cell body emerges from the cracked spore shell. The results demonstrate that SEPA inhibits the revival process of the spores of a pathogenic strain of C. perfringens and that the site of its action is the "outgrowth stage" and not the "germination stage," as evidenced by single- cell analysis.


Assuntos
Clostridium perfringens , Ácido Palmítico , Esporos Bacterianos , Sacarose , Clostridium perfringens/efeitos dos fármacos , Clostridium perfringens/crescimento & desenvolvimento , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Ácido Palmítico/farmacologia , Sacarose/farmacologia , Antibacterianos/farmacologia , Microbiologia de Alimentos , Ésteres/farmacologia , Contagem de Colônia Microbiana
4.
Proc Natl Acad Sci U S A ; 121(43): e2414737121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39405354

RESUMO

Bacillus subtilis spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a sporulation-specific, forespore-localized putative chaperone from a distinct higher-order clade of AAA+ ATPases that promotes the peptidoglycan glycosyltransferase activity of MurG during sporulation, even though MurG does not normally require activation during vegetative growth. MurG redeploys to the forespore surface during sporulation, where we show that the local pH is reduced and propose that this change in cytosolic nanoenvironment abrogates MurG function. Further, we show that SpoVK participates in a developmental checkpoint in which improper spore surface assembly mis-localizes SpoVK, which leads to sporulation arrest. The AAA+ ATPase clade containing SpoVK includes specialized chaperones involved in secretion, cell envelope biosynthesis, and carbohydrate metabolism, suggesting that such fine-tuning might be a widespread feature of different subcellular nanoenvironments.


Assuntos
Adenosina Trifosfatases , Bacillus subtilis , Proteínas de Bactérias , Esporos Bacterianos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano Glicosiltransferase/genética , Esporos Bacterianos/metabolismo
5.
Sci Adv ; 10(42): eadq0791, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39423260

RESUMO

Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation nonuniformly to secure against the possibility that favorable growth conditions, which put sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway containing the proteins ShfA (YabQ) and ShfP (YvnB) that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early use a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay nonsporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Fenótipo , Transdução de Sinais , Esporos Bacterianos , Bacillus subtilis/fisiologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Esporos Bacterianos/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Comunicação Celular
6.
Microbiologyopen ; 13(5): e70001, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39404502

RESUMO

Clostridioides difficile is an anaerobic, spore-forming, Gram-positive pathogenic bacterium. This study aimed to analyze the effect of two samples of healthy fecal microbiota on C. difficile gene expression and growth using an in vitro coculture model. The inner compartment was cocultured with spores of the C. difficile polymerase chain reaction (PCR)-ribotype 078, while the outer compartment contained fecal samples from donors to mimic the microbiota (FD1 and FD2). A fecal-free plate served as a control (CT). RNA-Seq and quantitative PCR confirmation were performed on the inner compartment sample. Similarities in gene expression were observed in the presence of the microbiota. After 12 h, the expression of genes associated with germination, sporulation, toxin production, and growth was downregulated in the presence of the microbiota. At 24 h, in an iron-deficient environment, C. difficile activated several genes to counteract iron deficiency. The expression of genes associated with germination and sporulation was upregulated at 24 h compared with 12 h in the presence of microbiota from donor 1 (FD1). This study confirmed previous findings that C. difficile can use ethanolamine as a primary nutrient source. To further investigate this interaction, future studies will use a simplified coculture model with an artificial bacterial consortium instead of fecal samples.


Assuntos
Clostridioides difficile , Técnicas de Cocultura , Fezes , Regulação Bacteriana da Expressão Gênica , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , Fezes/microbiologia , Humanos , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Microbiota/genética
7.
Microb Cell Fact ; 23(1): 275, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402545

RESUMO

BACKGROUND: Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far. RESULTS: In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production. CONCLUSIONS: We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Streptomyces/metabolismo , Streptomyces/genética , Estresse Fisiológico , Esporos Bacterianos/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento
8.
Appl Environ Microbiol ; 90(10): e0166024, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39365039

RESUMO

Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores. Myxococcus xanthus are ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium, Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions.


Assuntos
Dessecação , Myxococcus xanthus , Esporos Bacterianos , Estresse Fisiológico , Raios Ultravioleta , Myxococcus xanthus/fisiologia , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/efeitos da radiação , Esporos Bacterianos/efeitos da radiação , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/fisiologia , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação
9.
Int J Mol Sci ; 25(20)2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39457067

RESUMO

Bacillus cereus, a foodborne pathogen, produces resilient endospores that are challenging to detect with conventional methods. This study presents a novel Flower-Shaped PCR Scaffold-based Lateral Flow Biosensor (FSPCRS-LFB), which employs an aptamer-integrated PCR scaffold as capture probes, replacing the traditional streptavidin-biotin (SA-Bio) approach. The FSPCRS-LFB demonstrates high sensitivity and cost-efficiency in detecting B. cereus endospores, with a limit of detection (LOD) of 4.57 endospores/mL a visual LOD of 102 endospores/mL, and a LOD of 6.78 CFU/mL for endospore-cell mixtures. In chicken and tea samples, the platform achieved LODs of 74.5 and 52.8 endospores/mL, respectively, with recovery rates of 82.19% to 97.88%. Compared to existing methods, the FSPCRS-LFB offers a 3.7-fold increase in sensitivity while reducing costs by 26% over the SA-Bio strategy and 87.5% over rolling circle amplification (RCA). This biosensor provides a rapid, sensitive and cost-effective solution for point-of-care testing (POCT) of B. cereus endospores, expanding detection capabilities and offering novel approaches for pathogen detection.


Assuntos
Bacillus cereus , Técnicas Biossensoriais , Limite de Detecção , Reação em Cadeia da Polimerase , Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Técnicas Biossensoriais/métodos , Reação em Cadeia da Polimerase/métodos , Esporos Bacterianos/genética , Esporos Bacterianos/isolamento & purificação , Microbiologia de Alimentos/métodos , Animais , Galinhas/microbiologia
10.
Mol Microbiol ; 122(4): 534-548, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39258427

RESUMO

YabG is a sporulation-specific protease that is conserved among sporulating bacteria. Clostridioides difficile YabG processes the cortex destined proteins preproSleC into proSleC and CspBA to CspB and CspA. YabG also affects synthesis of spore coat/exosporium proteins CotA and CdeM. In prior work that identified CspA as the co-germinant receptor, mutations in yabG were found which altered the co-germinants required to initiate spore germination. To understand how these mutations in the yabG locus contribute to C. difficile spore germination, we introduced these mutations into an isogenic background. Spores derived from C. difficile yabGC207A (a catalytically inactive allele), C. difficile yabGA46D, C. difficile yabGG37E, and C. difficile yabGP153L strains germinated in response to taurocholic acid alone. Recombinantly expressed and purified preproSleC incubated with E. coli lysate expressing wild type YabG resulted in the removal of the presequence from preproSleC. Interestingly, only YabGA46D showed any activity toward purified preproSleC. Mutation of the YabG processing site in preproSleC (R119A) led to YabG shifting its processing to R115 or R112. Finally, changes in yabG expression under the mutant promoters were analyzed using a SNAP-tag and revealed expression differences at early and late stages of sporulation. Overall, our results support and expand upon the hypothesis that YabG is important for germination and spore assembly and, upon mutation of the processing site, can shift where it cleaves substrates.


Assuntos
Proteínas de Bactérias , Clostridioides difficile , Mutação , Esporos Bacterianos , Clostridioides difficile/genética , Clostridioides difficile/fisiologia , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Proteínas de Transporte
11.
Molecules ; 29(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339301

RESUMO

Chitin is the second most prevalent polysaccharide found in nature, following cellulose. Amino-oligosaccharides, the byproducts of chitin degradation, exhibit favorable biological properties and potential for various uses. Chitinases play a crucial function in the breakdown of chitin, and their exceptionally effective production has garnered significant interest. Here, in this study, the exochitinase PbChiA, obtained from Paenibacillus barengoltzii, was recombinantly produced and immobilized using the CotG surface protein of Bacillus subtilis WB800N. The resulting strain Bacillus subtilis WB800N pHS-CotG-Chi exhibited exceptional heat stability and efficacy across various pH levels. The chitinolytic activity of the enzyme, which had been isolated and immobilized on the spore surface, was measured to be approximately 16.06 U/mL. Including Ni2+, Zn+2, and K+, and EDTA at various concentration levels in the reaction system, has significantly enhanced the activity of the immobilized enzyme. The immobilized exochitinase demonstrated a notable rate of recycling, as the recombinant spores sustained a relative enzyme activity of more than 70% after three cycles and 62.7% after four cycles. These findings established a basis for additional investigation into the role and practical use of the immobilized bacterial exochitinase in industry.


Assuntos
Bacillus subtilis , Quitinases , Estabilidade Enzimática , Proteínas Recombinantes , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Quitina/química , Quitina/metabolismo , Quitinases/metabolismo , Quitinases/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Paenibacillus/enzimologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Esporos Bacterianos/enzimologia , Temperatura
12.
Curr Microbiol ; 81(10): 339, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225833

RESUMO

Bacterial spores in materials and equipment pose significant biosecurity risks, making effective disinfection crucial. This study evaluated Ortho-phthalaldehyde (OPA) and a quaternary ammonia-glutaraldehyde solution (AG) for inactivating spores of Bacillus thuringiensis (BT), B. cereus (BC), and two strains of B. velezensis (BV1 and BV2). Spores of BV1 and BT were treated with 22.5 mg/m3 OPA by dry fumigation or 1 mg/mL AG by spray for 20 min, according to the manufacturer's recommendation. As no sporicidal effect was observed, OPA was tested at 112.5 mg/m3 for 40 min, showing effectiveness for BT but not for BV1. Minimum bactericidal concentration (MBC) tests revealed higher MBC values for glutaraldehyde, prompting an overnight test with 112.5 mg/m3 OPA by dry fumigation and 50 mg/mL AG by spray, using formaldehyde as a control. AG reduced all Bacillus strains, but with limited sporicidal effect. OPA was sporicidal for BT and BV1 but not for BC and BV2, indicating a strain-dependent effect. Formaldehyde performed better overall but did not completely inactivate BV2 spores. Our findings suggest that OPA and AG have potential as formaldehyde replacements in wet disinfection procedures.


Assuntos
Bacillus thuringiensis , Bacillus , Desinfetantes , Glutaral , Esporos Bacterianos , Desinfetantes/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Bacillus/efeitos dos fármacos , Bacillus/fisiologia , Glutaral/farmacologia , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/fisiologia , Testes de Sensibilidade Microbiana , o-Ftalaldeído/farmacologia , Bacillus cereus/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Desinfecção/métodos
13.
Nat Commun ; 15(1): 8091, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284816

RESUMO

Protein filaments are ubiquitous in nature and have diverse biological functions. Cryo-electron microscopy (cryo-EM) enables the determination of atomic structures, even from native samples, and is capable of identifying previously unknown filament species through high-resolution cryo-EM maps. In this study, we determine the structure of an unreported filament species from a cryo-EM dataset collected from Bacillus amyloiquefaciens biofilms. These filaments are composed of GerQ, a spore coat protein known to be involved in Bacillus spore germination. GerQ assembles into a structurally stable architecture consisting of rings containing nine subunits, which stacks to form filaments. Molecular dockings and model predictions suggest that this nine-subunit structure is suitable for binding CwlJ, a protein recruited by GerQ and essential for Ca2+-DPA induced spore germination. While the assembly state of GerQ within the spores and the direct interaction between GerQ and CwlJ have yet to be validated through further experiments, our findings provide valuable insights into the self-assembly of GerQ and enhance our understanding of its role in spore germination.


Assuntos
Bacillus , Proteínas de Bactérias , Microscopia Crioeletrônica , Esporos Bacterianos , Microscopia Crioeletrônica/métodos , Esporos Bacterianos/ultraestrutura , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Bacillus/metabolismo , Bacillus/genética , Simulação de Acoplamento Molecular , Biofilmes/crescimento & desenvolvimento , Ligação Proteica
14.
Environ Microbiol ; 26(9): e16678, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228067

RESUMO

Species within the Bacillus cereus sensu lato group, known for their spore-forming ability, are recognized for their significant role in food spoilage and food poisoning. The spores of B. cereus are adorned with numerous pilus-like appendages, referred to as S-ENAs and L-ENAs. These appendages are thought to play vital roles in self-aggregation, adhesion, and biofilm formation. Our study investigates the role of S-ENAs and L-ENAs, as well as the impact of various environmental factors on spore-to-spore contacts and the interaction between spores and vegetative cells, using both bulk and single-cell approaches. Our findings indicate that ENAs, especially their tip fibrillae, play a crucial role in spore self-aggregation, but not in the adhesion of spores to vegetative cells. The absence of L-BclA, which forms the L-ENA tip fibrillum, reduced spore aggregation mediated by both S-ENAs and L-ENAs, highlighting the interconnected roles of S-ENAs and L-ENAs. We also found that increased salt concentrations in the liquid environment significantly reduced spore aggregation, suggesting a charge dependency of spore-spore interactions. By shedding light on these complex interactions, our study offers valuable insights into spore dynamics. This knowledge can inform future studies on spore behaviour in environmental settings and assist in developing strategies to manage bacterial aggregation for beneficial purposes, such as controlling biofilms in food production equipment.


Assuntos
Bacillus cereus , Esporos Bacterianos , Bacillus cereus/fisiologia , Esporos Bacterianos/fisiologia , Esporos Bacterianos/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
15.
Nat Commun ; 15(1): 7733, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231950

RESUMO

Strains of the Bacillus cereus (Bc) group are sporulating bacteria commonly associated with foodborne outbreaks. Spores are dormant cells highly resistant to extreme conditions. Nevertheless, the pathological processes associated with the ingestion of either vegetative cells or spores remain poorly understood. Here, we demonstrate that while ingestion of vegetative bacteria leads to their rapid elimination from the intestine of Drosophila melanogaster, a single ingestion of spores leads to the persistence of bacteria for at least 10 days. We show that spores do not germinate in the anterior part of the intestine which bears the innate immune defenses. Consequently, spores reach the posterior intestine where they germinate and activate both the Imd and Toll immune pathways. Unexpectedly, this leads to the induction of amidases, which are negative regulators of the immune response, but not to antimicrobial peptides. Thereby, the local germination of spores in the posterior intestine dampens the immune signaling that in turn fosters the persistence of Bc bacteria. This study provides evidence for how Bc spores hijack the intestinal immune defenses allowing the localized birth of vegetative bacteria responsible for the digestive symptoms associated with foodborne illness outbreaks.


Assuntos
Bacillus cereus , Drosophila melanogaster , Esporos Bacterianos , Bacillus cereus/imunologia , Esporos Bacterianos/imunologia , Animais , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Intestinos/microbiologia , Intestinos/imunologia , Imunidade Inata , Proteínas de Drosophila/metabolismo , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/imunologia , Feminino
16.
J Food Prot ; 87(10): 100359, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39260571

RESUMO

Dipicolinic acid (DPA) is a major constituent of spores and reportedly provides protection against inactivation by various thermal processes; however, the relationship between DPA and resistance towards pressure-assisted thermal processing is not well understood. Thermal and pressure-assisted thermal inactivation studies of Clostridium botulinum nonproteolytic strains QC-B and 610-F, proteolytic strain Giorgio-A, and thermal surrogate Clostridium sporogenes PA3679 spores suspended in ACES buffer (0.05 M, pH 7.0) were performed to determine if a relationship exists between DPA release and log reduction of spores. Thermal inactivation at 80, 83, and 87 °C for nonproteolytic strains and 101, 105, and 108 °C for the proteolytic strain and thermal surrogate were conducted. Pressure-assisted thermal inactivation for nonproteolytic strains at 83 °C/600 MPa and for the proteolytic strain and thermal surrogate at 105 °C/600 MPa were performed. Surviving spores were enumerated by 5-tube MPN method for log reductions and analyzed for released DPA by liquid chromatography-tandem mass spectrometry. The correlation between MPN log reductions, released DPA, and D-values were calculated. A positive correlation between released DPA and log reduction of spores was observed for QC-B and 610-F at 80 and 83 °C (r = 0.6073 - 0.7755; P < 0.01). At 87 °C, a positive correlation was detected for 610-F (r = 0.4242, P < 0.05) and no correlation was observed for QC-B (r = 0.1641; P > 0.05). A strong, positive correlation (r = 0.8359 - 0.9284; P < 0.05) between released DPA and log reduction of spores was observed for Giorgio-A at 101, 105, and 108 °C, and a strong, positive correlation (r = 0.8402; P < 0.05) was observed for PA3679 at 101 °C. A positive correlation (r = 0.5646 - 0.6724; P < 0.01) was observed for QC-B, 610-F, and Giorgio-A after pressure-assisted thermal treatment. No correlation (r = 02494; P > 0.05) was found for PA3679 after pressure-assisted thermal treatment. These results suggest a correlation exists between DPA release and heat resistance; however, the level of correlation varied between strains and temperatures. The findings from this research may aid in the development of spore inactivation strategies targeting the thermal resistance profiles of various strains of C. botulinum spores.


Assuntos
Clostridium botulinum , Clostridium , Temperatura Alta , Ácidos Picolínicos , Esporos Bacterianos , Pressão , Manipulação de Alimentos/métodos
17.
BMC Microbiol ; 24(1): 351, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289639

RESUMO

BACKGROUND: Bacillus cereus is a Gram-positive, spore-forming bacterium that produces a spectrum of effectors integral to bacterial niche adaptation and the development of various infections. Among those is EsxA, whose secretion depends on the EssC component of the type VII secretion system (T7SS). EsxA's roles within the bacterial cell are poorly understood, although postulations indicate that it may be involved in sporulation. However, the T7SS repertoire in B. cereus has not been reported, and its functions are unestablished. METHODS: We used the type strain, B. cereus ATCC14579, to generate ΔessC mutant through homologous recombination using the homing endonuclease I-SceI mediated markerless gene replacement. Comparatively, we analyzed the culture supernatant of type strain and the ΔessC mutant through Liquid chromatography-tandem mass spectrometry (LC-MS/MS). We further generated T7SSb-specific gene mutations to explore the housekeeping roles of the T7SSb-dependent effectors. The sporulation process of B. cereus ATCC14579 and its mutants was observed microscopically through the classic Schaeffer-Fulton staining method. The spore viability of each strain in this study was established by enumerating the colony-forming units on LB agar. RESULTS: Through LC-MS/MS, we identified a pair of nearly identical (94%) effector proteins named EsxA belonging to the sagEsxA-like subfamily of the WXG100 protein superfamily in the culture supernatant of the wild type and none in the ΔessC mutant. Homology analysis of the T7SSb gene cluster among B. cereus strains revealed diversity from the 3' end of essC, encoding additional substrates. Deletions in esxA1 and esxA2 neither altered cellular morphology nor growth rate, but the ΔesxA1ΔesxA2 deletion resulted in significantly fewer viable spores and an overall slower sporulation process. Within 24 h culture, more than 80% of wild-type cells formed endospores compared to less than 5% in the ΔesxA1ΔesxA2 mutant. The maximum spore ratios for the wild type and ΔesxA1ΔesxA2 were 0.96 and 0.72, respectively. Altogether, these results indicated that EsxA1 and EsxA2 work cooperatively and are required for sporulation in B. cereus ATCC14567. CONCLUSION: B. cereus ATCC14579 possesses two nearly identical T7SSb-dependent effectors belonging to the sagEsxA-like proteins. Simultaneous deletion of genes encoding these effectors significantly delayed and reduced sporulation, a novel finding for EsxA.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Esporos Bacterianos , Sistemas de Secreção Tipo VII , Bacillus cereus/genética , Bacillus cereus/metabolismo , Bacillus cereus/fisiologia , Bacillus cereus/crescimento & desenvolvimento , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VII/genética , Sistemas de Secreção Tipo VII/metabolismo , Espectrometria de Massas em Tandem , Mutação , Cromatografia Líquida
18.
Food Res Int ; 195: 114975, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277241

RESUMO

As Bacillus cereus endospores exist in various vegetables grown in soil, the possibility of contamination in food products with high salt concentrations cannot be ignored. Recent studies revealed that harsh conditions affect the resistance of bacteria; thus, we investigated the developmental aspect of heat resistance of B. cereus after sporulation with high NaCl concentration. RNA sequencing was conducted for transcriptomic changes when B. cereus endospores formed at high salinity, and membrane fluidity and hydrophobicity were measured to verify the transcriptomic analysis. Our data showed that increasing NaCl concentration in sporulation media led to a decrease in heat resistance. Also, endospore hydrophobicity, membrane fluidity, and endospore density decreased with sporulation at higher NaCl concentrations. When the transcript changes of B. cereus sporulated at NaCl concentrations of 0.5 and 7% were analyzed by transcriptome analysis, it was confirmed that the NaCl 7% endospores had significantly lower expression levels (FDR<0.05) of genes related to sporulation stages 3 and 4, which led to a decrease in expression of spore-related genes such as coat proteins and small acid-soluble proteins. Our findings indicated that high NaCl concentrations inhibited sporulation stages 3 and 4, thereby preventing proper cell maturation in the forespores and adequate formation of the coat protein and cortex. This inhibition led to decreased endospore density and hydrophobicity, ultimately resulting in reduced heat resistance.resistanceWe expect that this study will be utilized as a baseline for further studies and enhance sterilization strategies.


Assuntos
Bacillus cereus , Esporos Bacterianos , Transcriptoma , Bacillus cereus/genética , Bacillus cereus/metabolismo , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/efeitos dos fármacos , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Cloreto de Sódio/farmacologia , Microbiologia de Alimentos , Interações Hidrofóbicas e Hidrofílicas , Regulação Bacteriana da Expressão Gênica , Temperatura Alta , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Fluidez de Membrana
19.
Rev Argent Microbiol ; 56(3): 232-240, 2024.
Artigo em Espanhol | MEDLINE | ID: mdl-39218718

RESUMO

Lysinibacillus sphaericus is a bacterium that, along with Bacillus thuringiensis var. israelensis, is considered the best biological insecticide for controlling mosquito larvae and an eco-friendly alternative to chemical insecticides. It depends on peptidic molecules such as N-acetylglucosamine to obtain carbon sources and possesses a phosphotransferase system (PTS) for their incorporation. Some strains carry S-layer proteins, whose involvement in metal retention and larvicidal activity against disease-carrying mosquitoes has been demonstrated. Alterations in the amino sugar incorporation system could affect the protein profile and functionality. Strain ASB13052 and the isogenic mutant in the ptsH gene, which is predominant in the PTS signaling pathway, were used in this study. For the first time, the presence of N-glycosylated S-layer proteins was confirmed in both strains, with a variation in their molecular weight pattern depending on the growth phase. In the exponential phase, an S-layer protein greater than 130 kDa was found in the ptsH mutant, which was absent in the wild-type strain. The mutant strain exhibited altered and incomplete low quality sporulation processes. Hemolysis analysis, associated with larvicidal activity, showed that the ptsH mutant has higher lytic efficiency, correlating with the high molecular weight protein. The results allow us to propose the potential effects that arise as a result of the absence of amino sugar transport on hemolytic activity, S-layer isoforms, and the role of N-acetylglucosamine in larvicidal activity.


Assuntos
Acetilglucosamina , Bacillaceae , Glicoproteínas de Membrana , Esporos Bacterianos , Bacillaceae/genética , Bacillaceae/metabolismo , Acetilglucosamina/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Hemólise/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico
20.
Appl Environ Microbiol ; 90(10): e0229923, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311577

RESUMO

The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration. IMPORTANCE: Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.


Assuntos
Bacillus subtilis , Nisina , Esporos Bacterianos , Nisina/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/fisiologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/fisiologia , Bacillus subtilis/crescimento & desenvolvimento , Esterilização/métodos , Antibacterianos/farmacologia , Bacillus amyloliquefaciens/fisiologia , Bacillus amyloliquefaciens/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Pressão Hidrostática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...