Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.541
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(26): e2405553121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889144

RESUMO

The cytoplasm is a complex, crowded environment that influences myriad cellular processes including protein folding and metabolic reactions. Recent studies have suggested that changes in the biophysical properties of the cytoplasm play a key role in cellular homeostasis and adaptation. However, it still remains unclear how cells control their cytoplasmic properties in response to environmental cues. Here, we used fission yeast spores as a model system of dormant cells to elucidate the mechanisms underlying regulation of the cytoplasmic properties. By tracking fluorescent tracer particles, we found that particle mobility decreased in spores compared to vegetative cells and rapidly increased at the onset of dormancy breaking upon glucose addition. This cytoplasmic fluidization depended on glucose-sensing via the cyclic adenosine monophosphate-protein kinase A pathway. PKA activation led to trehalose degradation through trehalase Ntp1, thereby increasing particle mobility as the amount of trehalose decreased. In contrast, the rapid cytoplasmic fluidization did not require de novo protein synthesis, cytoskeletal dynamics, or cell volume increase. Furthermore, the measurement of diffusion coefficients with tracer particles of different sizes suggests that the spore cytoplasm impedes the movement of larger protein complexes (40 to 150 nm) such as ribosomes, while allowing free diffusion of smaller molecules (~3 nm) such as second messengers and signaling proteins. Our experiments have thus uncovered a series of signaling events that enable cells to quickly fluidize the cytoplasm at the onset of dormancy breaking.


Assuntos
Citoplasma , Schizosaccharomyces , Esporos Fúngicos , Trealose , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Citoplasma/metabolismo , Trealose/metabolismo , Glucose/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais
2.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906101

RESUMO

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Assuntos
Gametogênese , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Coenzima A Ligases/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Tomografia com Microscopia Eletrônica , Meiose , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína
3.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891082

RESUMO

Fusarium pseudograminearum causes destructive crown disease in wheat. The velvet protein family is a crucial regulator in development, virulence, and secondary metabolism of fungi. We conducted a functional analysis of FpVelB using a gene replacement strategy. The deletion of FpVelB decreased radial growth and enhanced conidial production compared to that of wild type. Furthermore, FpVelB modulates the fungal responses to abiotic stress through diverse mechanisms. Significantly, virulence decreased after the deletion of FpVelB in both the stem base and head of wheat. Genome-wide gene expression profiling revealed that the regulation of genes by FpVelB is associated with several processes related to the aforementioned phenotype, including "immune", "membrane", and "antioxidant activity", particularly with regard to secondary metabolites. Most importantly, we demonstrated that FpVelB regulates pathogen virulence by influencing deoxynivalenol production and modulating the expression of the PKS11 gene. In conclusion, FpVelB is crucial for plant growth, asexual development, and abiotic stress response and is essential for full virulence via secondary metabolism in F. pseudograminearum.


Assuntos
Proteínas Fúngicas , Fusarium , Regulação Fúngica da Expressão Gênica , Metabolismo Secundário , Fusarium/patogenicidade , Fusarium/genética , Fusarium/metabolismo , Metabolismo Secundário/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Virulência/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Estresse Fisiológico , Tricotecenos/metabolismo , Esporos Fúngicos/metabolismo
4.
World J Microbiol Biotechnol ; 40(8): 236, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850454

RESUMO

Alternaria alternata is a prevalent postharvest pathogen that generates diverse mycotoxins, notably alternariol (AOH) and alternariol monomethyl ether (AME), which are recurrent severe contaminants. Nitrogen sources modulate fungal growth, development, and secondary metabolism, including mycotoxin production. The GATA transcription factor AreA regulates nitrogen source utilization. However, little is known about its involvement in the regulation of nitrogen utilization in A. alternata. To examine the regulatory mechanism of AaAreA on AOH and AME biosynthesis in A. alternata, we analyzed the impact of diverse nitrogen sources on the fungal growth, conidiation and mycotoxin production. The use of a secondary nitrogen source (NaNO3) enhanced mycelial elongation and sporulation more than the use of a primary source (NH4Cl). NaNO3 favored greater mycotoxin accumulation than did NH4Cl. The regulatory roles of AaAreA were further clarified through gene knockout. The absence of AaAreA led to an overall reduction in growth in minimal media containing any nitrogen source except NH4Cl. AaAreA positively regulates mycotoxin biosynthesis when both NH4Cl and NaNO3 are used as nitrogen sources. Subcellular localization analysis revealed abundant nuclear transport when NaNO3 was the sole nitrogen source. The regulatory pathway of AaAreA was systematically revealed through comprehensive transcriptomic analyses. The deletion of AaAreA significantly impedes the transcription of mycotoxin biosynthetic genes, including aohR, pksI and omtI. The interaction between AaAreA and aohR, a pathway-specific transcription factor gene, demonstrated that AaAreA binds to the aohR promoter sequence (5'-GGCTATGGAAA-3'), activating its transcription. The expressed AohR regulates the expression of downstream synthase genes in the cluster, ultimately impacting mycotoxin production. This study provides valuable information to further understand how AreA regulates AOH and AME biosynthesis in A. alternata, thereby enabling the effective design of control measures for mycotoxin contamination.


Assuntos
Alternaria , Proteínas Fúngicas , Fatores de Transcrição GATA , Regulação Fúngica da Expressão Gênica , Lactonas , Micotoxinas , Nitrogênio , Alternaria/genética , Alternaria/metabolismo , Alternaria/crescimento & desenvolvimento , Micotoxinas/metabolismo , Micotoxinas/biossíntese , Fatores de Transcrição GATA/metabolismo , Fatores de Transcrição GATA/genética , Nitrogênio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lactonas/metabolismo , Esporos Fúngicos/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética
5.
Yeast ; 41(7): 448-457, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38874213

RESUMO

Smk1 is a MAPK homolog in the yeast Saccharomyces cerevisiae that controls the postmeiotic program of spore wall assembly. During this program, haploid cells are surrounded by a layer of mannan and then a layer of glucan. These inner layers of the spore wall resemble the vegetative cell wall. Next, the outer layers consisting of chitin/chitosan and then dityrosine are assembled. The outer layers are spore-specific and provide protection against environmental stressors. Smk1 is required for the proper assembly of spore walls. However, the protective properties of the outer layers have limited our understanding of how Smk1 controls this morphogenetic program. Mutants lacking the chitin deacetylases, Cda1 and Cda2, form spores that lack the outer layers of the spore wall. In this study, cda1,2∆ cells were used to demonstrate that Smk1 promotes deposition of the glucan layer of the spore wall through the partially redundant glucan synthases Gsc2 and Fks3. Although Gsc2 is localized to sites of spore wall assembly in the wild type, it is mislocalized in the mother cell cytoplasm in the smk1∆ mutant. These findings suggest that Smk1 controls assembly of the spore wall by regulating the localization of Gsc2 during sporogenesis.


Assuntos
Parede Celular , Glucanos , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Esporos Fúngicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Glucanos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas de Membrana
6.
Microbiol Res ; 285: 127779, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810485

RESUMO

Guanine nucleotide-binding proteins of the ADP ribosylation factor (Arf) family and their activating proteins (Arf-GAPs) are essential for diverse biological processes. Here, two homologous Arf-GAPs, Age1 (AoAge1) and Age2 (AoAge2), were identified in the widespread nematode-trapping fungus Arthrobotrys oligospora. Our results demonstrated that AoAge1, especially AoAge2, played crucial roles in mycelial growth, sporulation, trap production, stress response, mitochondrial activity, DNA damage, endocytosis, reactive oxygen species production, and autophagy. Notably, transcriptome data revealed that approximately 62.7% of the genes were directly or indirectly regulated by AoAge2, and dysregulated genes in Aoage2 deletion were enriched in metabolism, ribosome biogenesis, secondary metabolite biosynthesis, and autophagy. Furthermore, Aoage2 inactivation caused a substantial reduction in several compounds compared to the wild-type strain. Based on these results, a regulatory network for AoAge1 and AoAge2 was proposed and verified using a yeast two-hybrid assay. Based on our findings, AoAge1 and AoAge2 are essential for vegetative growth and mycelial development. Specifically, AoAge2 is required for sporulation and trapping morphogenesis. Our results demonstrated the critical functions of AoAge1 and AoAge2 in mycelial growth, diverse cellular processes, and pathogenicity, offering deep insights into the functions and regulatory mechanisms of Arf-GAPs in nematode-trapping fungi.


Assuntos
Ascomicetos , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Metabolismo Secundário , Esporos Fúngicos , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Autofagia , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Micélio/genética , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Transcriptoma , Virulência , Dano ao DNA , Perfilação da Expressão Gênica
7.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38691425

RESUMO

The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.


Assuntos
Rhizopus , Simbiose , Rhizopus/metabolismo , Rhizopus/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Flavinas/metabolismo , Sistemas CRISPR-Cas , Riboflavina/metabolismo
8.
Biomolecules ; 14(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785924

RESUMO

Cytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Stagonospora nodorum Berk. to synthesize three groups of hormones (CKs, ABA and auxins) and studied the effect of exogenous ABA and zeatin on the growth, sporulation and gene expression of necrotrophic effectors (NEs) and transcription factors (TFs) in them. Various isolates of S. nodorum synthesized different amounts of CKs, ABA and indoleacetic acid. Using exogenous ABA and zeatin, we proved that the effect of these hormones on the growth and sporulation of S. nodorum isolates can be opposite, depends on both the genotype of the isolate and on the concentration of the hormone and is carried out through the regulation of carbohydrate metabolism. ABA and zeatin regulated the expression of fungal TF and NE genes, but correlation analysis of these parameters showed that this effect depended on the genotype of the isolate. This study will contribute to our understanding of the role of the hormones ABA and CKs in the biology of the fungal pathogen S. nodorum.


Assuntos
Ácido Abscísico , Ascomicetos , Citocininas , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Ascomicetos/genética , Ascomicetos/efeitos dos fármacos , Virulência , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Zeatina/metabolismo , Zeatina/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
9.
PLoS Pathog ; 20(5): e1012215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701108

RESUMO

Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgß2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 µg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.


Assuntos
Actinas , Proteínas Fúngicas , Fungicidas Industriais , Fusarium , Microtúbulos , Doenças das Plantas , Triticum , Microtúbulos/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidade , Fusarium/genética , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Actinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Triticum/microbiologia , Fungicidas Industriais/farmacologia , Esporos Fúngicos/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Reprodução
10.
Fungal Genet Biol ; 171: 103877, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38447800

RESUMO

Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.


Assuntos
Aspergillus nidulans , Animais , Humanos , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Mensageiro , Quitina/genética
11.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542408

RESUMO

Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Septinas/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Citoesqueleto/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo , Regulação Fúngica da Expressão Gênica
12.
mBio ; 15(4): e0334423, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501872

RESUMO

Autophagy is a central biodegradation pathway critical in eliminating intracellular cargo to maintain cellular homeostasis and improve stress resistance. At the same time, the key component of the mitogen-activated protein kinase cascade regulating cell wall integrity signaling MoMkk1 has an essential role in the autophagy of the rice blast fungus Magnaporthe oryzae. Still, the mechanism of how MoMkk1 regulates autophagy is unclear. Interestingly, we found that MoMkk1 regulates the autophagy protein MoAtg9 through phosphorylation. MoAtg9 is a transmembrane protein subjected to phosphorylation by autophagy-related protein kinase MoAtg1. Here, we provide evidence demonstrating that MoMkk1-dependent MoAtg9 phosphorylation is required for phospholipid translocation during isolation membrane stages of autophagosome formation, an autophagic process essential for the development and pathogenicity of the fungus. In contrast, MoAtg1-dependent phosphorylation of MoAtg9 negatively regulates this process, also impacting growth and pathogenicity. Our studies are the first to demonstrate that MoAtg9 is subject to MoMkk1 regulation through protein phosphorylation and that MoMkk1 and MoAtg1 dichotomously regulate autophagy to underlie the growth and pathogenicity of M. oryzae.IMPORTANCEMagnaporthe oryzae utilizes multiple signaling pathways to promote colonization of host plants. MoMkk1, a cell wall integrity signaling kinase, plays an essential role in autophagy governed by a highly conserved autophagy kinase MoAtg1-mediated pathway. How MoMkk1 regulates autophagy in coordination with MoAtg1 remains elusive. Here, we provide evidence that MoMkk1 phosphorylates MoAtg9 to positively regulate phospholipid translocation during the isolation membrane or smaller membrane structures stage of autophagosome formation. This is in contrast to the negative regulation of MoAtg9 by MoAtg1 for the same process. Intriguingly, MoMkk1-mediated MoAtg9 phosphorylation enhances the fungal infection of rice, whereas MoAtg1-dependant MoAtg9 phosphorylation significantly attenuates it. Taken together, we revealed a novel mechanism of autophagy and virulence regulation by demonstrating the dichotomous functions of MoMkk1 and MoAtg1 in the regulation of fungal autophagy and pathogenicity.


Assuntos
Ascomicetos , Proteínas Fúngicas , Magnaporthe , Fosforilação , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Autofagia , Fosfolipídeos/metabolismo , Doenças das Plantas/microbiologia , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/metabolismo
13.
Toxicon ; 239: 107615, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38219915

RESUMO

Dielectric barrier discharge plasma (DBDP) displays strong against fungal spores, while its precise mechanism of spore inactivation remains inadequately understood. In this study, we applied morphological, in vivo and in vitro experiments, transcriptomics, and physicochemical detection to unveil the potential molecular pathways underlying the inactivation of Aspergillus flavus spores by DBDP. Our findings suggested that mycelium growth was inhibited as observed by SEM after 30 s treatment at 70 kV, meanwhile spore germination ceased and clustering occurred. It led to the release of cellular contents and subsequent spore demise by disrupting the integrity of spore membrane. Additionally, based on the transcriptomic data, we hypothesized that the induction of spore inactivation by DBDP might be associated with downregulation of genes related to cell membranes, organelles (mitochondria), oxidative phosphorylation, and the tricarboxylic acid cycle. Subsequently, we validated our transcriptomic findings by measuring the levels of relevant enzymes in metabolic pathways, such as superoxide dismutase, acetyl-CoA, total dehydrogenase, and ATP. These physicochemical indicators revealed that DBDP treatment resulted in mitochondrial dysfunction, redox imbalance, and inhibited energy metabolism pathways. These findings were consistent with the transcriptomic results. Hence, we concluded that DBDP accelerated spore rupture and death via ROS-mediated mitochondrial dysfunction, which does not depend on cell membranes.


Assuntos
Aspergillus flavus , Doenças Mitocondriais , Esporos Fúngicos/metabolismo , Membrana Celular , Perfilação da Expressão Gênica , Doenças Mitocondriais/metabolismo
14.
Microbiol Spectr ; 12(2): e0371723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179919

RESUMO

All life forms have evolved to respond appropriately to various environmental and internal cues. In the animal kingdom, the prototypical regulator class of such cellular responses is the Rel homology domain proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Fungi, the close relatives of animals, have also evolved with their own NF-κB-like regulators called velvet family proteins to govern cellular and chemical development. Here, we conducted a detailed investigation of the taxonomic broad presence of velvet proteins. We observed that velvet proteins are widely distributed in the fungal kingdom. Moreover, we have identified and characterized 21 major velvet clades in fungi. We have further revealed that the highly conserved velvet domain is composed of three distinct motifs and acts as an evolutionarily independent domain, which can be shuffled with various functional domains. Such rearrangements of the velvet domain have resulted in the functional and type diversity of the present velvet regulators. Importantly, our in-deep analyses of the primary and 3D structures of the various velvet domains showed that the fungal velvet domains can be divided into two major clans: the VelB and the VosA clans. The 3D structure comparisons revealed a close similarity of the velvet domain with many other eukaryotic DNA-binding proteins, including those of the Rel, Runt, and signal transducer and activator of transcription families, sharing a common ß-sandwich fold. Altogether, this study improves our understanding of velvet regulators in the fungal kingdom.IMPORTANCEFungi are the relatives of animals in Opisthokonta and closely associated with human life by interactive ways such as pathogenicity, food, and secondary metabolites including beneficial ones like penicillin and harmful ones like the carcinogenic aflatoxins. Similar to animals, fungi have also evolved with NF-κB-like velvet family regulators. The velvet proteins constitute a large protein family of fungal transcription factors sharing a common velvet domain and play a key role in coordinating fungal secondary metabolism, developmental and differentiation processes. Our current understanding on velvet regulators is mostly from Ascomycota fungi; however, they remain largely unknown outside Ascomycota. Therefore, this study performed a taxonomic broad investigation of velvet proteins across the fungal kingdom and conducted a detailed analysis on velvet distribution, structure, diversity, and evolution. The results provide a holistic view of velvet regulatory system in the fungal kingdom.


Assuntos
Proteínas Fúngicas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteínas Fúngicas/genética , Filogenia , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Esporos Fúngicos/metabolismo
15.
J Food Sci ; 89(2): 1167-1186, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193164

RESUMO

Reuterin is a natural antifungal agent derived from certain strains of Limosilactobacillus reuteri. Our previous study revealed that 6 mM reuterin inhibited completely the conidial germination of aflatoxigenic Aspergillus flavus. This study investigated the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination, which was pre-assumed that it correlated to the inhibition of some essential enzyme activity involved in conidial germination, specifically 1,3-ß-glucan synthase, chitin synthase, and catalases (catalase, bifunctional catalase-peroxidase, and spore-specific catalase). The complex of 1,3-ß-glucan synthase and chitin synthase with reuterin had a lower binding affinity than that with the substrate. Conversely, the complex of catalases with reuterin had a higher binding affinity than that with the substrate. It was suggested that 1,3-ß-glucan synthase and chitin synthase tended to bind the substrate rather than bind reuterin. In contrast, catalases tended to bind reuterin rather than bind the substrate. Therefore, reuterin could be a potential inhibitor of catalases but may not be an inhibitor of 1,3-ß-glucan synthase and chitin synthase. In this in silico study, we predicted that the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination was due to the inhibition of catalases activities by competitively binding to the enzymes active sites, thus resulting in the accumulation of reactive oxygen species in cells, leading to cells damage. PRACTICAL APPLICATION: This in silico study revealed that reuterin is a potential inhibitor of catalases in A. flavus, thereby interfering with the antioxidant system during conidial germination. This finding shows that reuterin can be used as an antifungal agent in food or agricultural products, inhibiting conidial germination completely.


Assuntos
Aspergillus flavus , Gliceraldeído/análogos & derivados , Propano , beta-Glucanas , Catalase/metabolismo , Esporos Fúngicos/metabolismo , Antifúngicos/química , Quitina Sintase/metabolismo
16.
Plant J ; 117(3): 909-923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953711

RESUMO

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Germinação/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dormência de Plantas/genética , Filogenia , Esporos Fúngicos/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Microbes Infect ; 26(3): 105261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37984735

RESUMO

Aspergillosis is a common fungal disease in avian species, causing high mortality in young chicks in agricultural farms and yards. It is caused by fungi belonging to the genus Aspergillus. Aspergillosis occurs by inhalation of fungal conidia, and in chickens, effective infection control relies on a rapid and large influx of heterophils to the lungs. Heterophils, upon different stimuli, release to the extracellular milieu their chromatin associated with several proteins that ensnare and kill different pathogens similarly to neutrophil extracellular traps. Here, we showed that Aspergillus fumigatus conidia and the peptidogalactomannan (PGM), isolated from the fungus cell wall, induce the release of DNA extracellular traps (DETs) in chicks' blood and lung heterophils. We demonstrated that reactive oxygen species, elastase and peptidyl arginine deiminase (PAD) were involved in DETs extrusion, the occurrence of DETs in the lungs of A. fumigatus-exposed chicks in vivo, and its role in chick survival. These results may contribute to developing more efficient tools for the therapeutic and diagnosis of aspergillosis.


Assuntos
Aspergilose , Armadilhas Extracelulares , Animais , Aspergillus fumigatus , Galinhas , Armadilhas Extracelulares/metabolismo , Esporos Fúngicos/metabolismo , Aspergilose/veterinária , Aspergilose/metabolismo , Aspergilose/microbiologia , DNA
18.
Microbiol Spectr ; 12(1): e0269923, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018974

RESUMO

IMPORTANCE: Aspergillus fumigatus can infect immunocompromised individuals and cause chronic and fatal invasive fungal infections. A better understanding of the molecular mechanisms of A. fumigatus-host interactions may provide new references for disease treatment. In this study, we demonstrated that the TRAF3 gene plays an important role in the early infection of A. fumigatus by regulating the resistance of lung epithelial cells to A. fumigatus. Macrophages are the most abundant innate immune cells in the alveoli; however, few studies have reported on the interactions between lung epithelial cells and macrophages in response to A. fumigatus invasion. In our study, it was demonstrated that the TRAF3 gene reduces migration to macrophages and cytokine production by negatively regulating lung epithelial cell adhesion and internalization of A. fumigatus spores. Together, our results provide new insights into lung epithelial cell-macrophage interactions during A. fumigatus infection.


Assuntos
Aspergillus fumigatus , Fator 3 Associado a Receptor de TNF , Humanos , Aspergillus fumigatus/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Pulmão/microbiologia , Macrófagos , Células Epiteliais/microbiologia , Esporos Fúngicos/metabolismo
19.
PLoS Pathog ; 19(12): e1011859, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38060601

RESUMO

Microsporidia are a group of obligate intracellular parasites that infect almost all animals, causing serious human diseases and major economic losses to the farming industry. Nosema bombycis is a typical microsporidium that infects multiple lepidopteran insects via fecal-oral and transovarial transmission (TOT); however, the underlying TOT processes and mechanisms remain unknown. Here, we characterized the TOT process and identified key factors enabling N. bombycis to invade the ovariole and oocyte of silkworm Bombyx mori. We found that the parasites commenced with TOT at the early pupal stage when ovarioles penetrated the ovary wall and were exposed to the hemolymph. Subsequently, the parasites in hemolymph and hemolymph cells firstly infiltrated the ovariole sheath, from where they invaded the oocyte via two routes: (I) infecting follicular cells, thereby penetrating oocytes after proliferation, and (II) infecting nurse cells, thus entering oocytes following replication. In follicle and nurse cells, the parasites restructured and built large vacuoles to deliver themselves into the oocyte. In the whole process, the parasites were coated with B. mori vitellogenin (BmVg) on their surfaces. To investigate the BmVg effects on TOT, we suppressed its expression and found a dramatic decrease of pathogen load in both ovarioles and eggs, suggesting that BmVg plays a crucial role in the TOT. Thereby, we identified the BmVg domains and parasite spore wall proteins (SWPs) mediating the interaction, and demonstrated that the von Willebrand domain (VWD) interacted with SWP12, SWP26 and SWP30, and the unknown function domain (DUF1943) bound with the SWP30. When disrupting these interactions, we found significant reductions of the pathogen load in both ovarioles and eggs, suggesting that the interplays between BmVg and SWPs were vital for the TOT. In conclusion, our study has elucidated key aspects about the microsporidian TOT and revealed the key factors for understanding the molecular mechanisms underlying this transmission.


Assuntos
Bombyx , Nosema , Animais , Humanos , Vitelogeninas/metabolismo , Esporos Fúngicos/metabolismo , Nosema/metabolismo , Bombyx/metabolismo
20.
Parasitol Res ; 123(1): 59, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112902

RESUMO

Nosema bombycis, an obligate intracellular parasite, is a single-celled eukaryote known to infect various tissues of silkworms, leading to the manifestation of pebrine. Trehalase, a glycosidase responsible for catalyzing the hydrolysis of trehalose into two glucose molecules, assumes a crucial role in thermal stress tolerance, dehydration, desiccation stress, and asexual development. Despite its recognized importance in these processes, the specific role of trehalase in N. bombycis remains uncertain. This investigation focused on exploring the functions of trehalase 3 in N. bombycis (NbTre3). Immunofluorescence analysis of mature (dormant) spores indicated that NbTre3 primarily localizes to the spore membrane or spore wall, suggesting a potential involvement in spore germination. Reverse transcription-quantitative polymerase chain reaction results indicated that the transcriptional level of NbTre3 peaked at 6 h post N. bombycis infection, potentially contributing to energy storage for proliferation. Throughout the life cycle of N. bombycis within the host cell, NbTre3 was detected in sporoplasm during the proliferative stage rather than the sporulation stage. RNA interference experiments revealed a substantial decrease in the relative transcriptional level of NbTre3, accompanied by a certain reduction in the relative transcriptional level of Nb16S rRNA. These outcomes suggest that NbTre3 may play a role in the proliferation of N. bombycis. The application of the His pull-down technique identified 28 proteins interacting with NbTre3, predominantly originating from the host silkworm. This finding implies that NbTre3 may participate in the metabolism of the host cell, potentially utilizing the host cell's energy resources.


Assuntos
Bombyx , Microsporidiose , Nosema , Animais , Trealase/genética , Trealase/metabolismo , Esporos Fúngicos/metabolismo , Nosema/genética , Bombyx/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...