Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.455
Filtrar
1.
Mol Med ; 30(1): 75, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834947

RESUMO

BACKGROUND: Liver kinase B1 (LKB1) is frequently mutated in lung adenocarcinoma, and its loss contributes to tumor progression. METHODS: To identify LKB1 downstream genes that promote lung adenocarcinoma aggressiveness, we performed bioinformatical analysis using publicly available datasets. RESULTS: Rab3B was upregulated in LKB1-depleted lung adenocarcinoma cells and suppressed by LKB1 overexpression. CREB protein was enriched at the promoter of Rab3B in lung cancer cells. Silencing of CREB abrogated the upregulation of Rab3B upon LKB1 loss. Immunohistochemistry revealed the elevated expression of Rab3B in lung adenocarcinomas relative to adjacent normal tissues. Upregulation of Rab3B was significantly associated with lymph node metastasis, advanced tumor stage, and reduced overall survival in lung adenocarcinoma patients. Knockdown of Rab3B suppressed and overexpression of Rab3B promoted the proliferation, colony formation, and migration of lung adenocarcinoma cells in vitro. In a mouse xenograft model, Rab3B depletion restrained and Rab3B overexpression augmented the growth of lung adenocarcinoma tumors. Mechanistically, Rab3B interacted with DDX6 and enhanced its protein stability. Ectopic expression of DDX6 significantly promoted the proliferation, colony formation, and migration of lung adenocarcinoma cells. DDX6 knockdown phenocopied the effects of Rab3B depletion on lung adenocarcinoma cells. Additionally, DDX6 overexpression partially rescued the aggressive phenotype of Rab3B-depleted lung adenocarcinoma cells. CONCLUSION: LKB1 deficiency promotes Rab3B upregulation via a CREB-dependent manner. Rab3B interacts with and stabilizes DDX6 protein to accelerate lung adenocarcinoma progression. The Rab3B-DDX6 axis may be potential therapeutic target for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , RNA Helicases DEAD-box , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Humanos , Animais , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Movimento Celular/genética , Estabilidade Proteica , Feminino , Masculino , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP/genética
2.
Curr Microbiol ; 81(7): 211, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839629

RESUMO

This study aimed to obtain reliable high Vip3A production from Bacillus thuringiensis (Bt) by modifying Vip3A to acquire higher thermostability in a suitable host. Bt117 is a great host for Vip3A production due to protein production consistency, low protease activity in culture media, and large amounts of mostly full-length protein, but it produces Vip3A with lower thermostability (Vip3Aa35). The C-terminal region of Bt117 Vip3A was replaced with that of a Vip3A with higher thermostability (Vip3Aa64 from Bt294) to generate the recombinant Bt117-Vip3Aa64-C. Like the parental strain Bt117, this strain expressed mostly full-length protein and exhibited low protease activity and similar protein expression profiles in culture media but retained greater larvicidal activity upon 37 °C storage like Bt294 Vip3Aa64. Importantly, every culture batch of Bt117-Vip3Aa64-C yielded over 200 mg/l Vip3A, which is a notable improvement over the original Vip3Aa64-producing strain Bt294 where 45% of culture batches failed to produce Vip3A at the same level. Successfully, we combined the superior qualities of two Bt strains, Bt294, which produces thermostable Vip3A but at low and inconsistent levels, and Bt117, which produces Vip3A with low thermostability but at consistently high levels. Protein engineering of Vip3A in Bt117 ultimately yielded an improved strain producing a thermostable Vip3A with reliably high protein production.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias , Engenharia de Proteínas , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Larva/microbiologia , Estabilidade Proteica
3.
Nat Commun ; 15(1): 4703, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830868

RESUMO

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Estabilidade Proteica , Ubiquitinação , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Linhagem Celular Tumoral , Progressão da Doença , Proteólise , Camundongos Nus , Feminino , Peptidilprolil Isomerase de Interação com NIMA
4.
Cell Commun Signal ; 22(1): 303, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831321

RESUMO

BACKGROUND: While previous studies have primarily focused on Glucose transporter type 1 (GLUT1) related glucose metabolism signaling, we aim to discover if GLUT1 promotes tumor progression through a non-metabolic pathway. METHODS: The RNA-seq and microarray data were comprehensively analyzed to evaluate the significance of GLUT1 expression in lung adenocarcinoma (LUAD). The cell proliferation, colony formation, invasion, and migration were used to test GLUT1 's oncogenic function. Co-immunoprecipitation and mass spectrum (MS) were used to uncover potential GLUT1 interacting proteins. RNA-seq, DIA-MS, western blot, and qRT-PCR to probe the change of gene and cell signaling pathways. RESULTS: We found that GLUT1 is highly expressed in LUAD, and higher expression is related to poor patient survival. GLUT1 knockdown caused a decrease in cell proliferation, colony formation, migration, invasion, and induced apoptosis in LUAD cells. Mechanistically, GLUT1 directly interacted with phosphor-epidermal growth factor receptor (p-EGFR) and prevented EGFR protein degradation via ubiquitin-mediated proteolysis. The GLUT1 inhibitor WZB117 can increase the sensitivity of LUAD cells to EGFR-tyrosine kinase inhibitors (TKIs) Gefitinib. CONCLUSIONS: GLUT1 expression is higher in LUAD and plays an oncogenic role in lung cancer progression. Combining GLUT1 inhibitors and EGFR-TKIs could be a potential therapeutic option for LUAD treatment.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Receptores ErbB , Transportador de Glucose Tipo 1 , Neoplasias Pulmonares , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Fosforilação , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Ligação Proteica , Apoptose , Estabilidade Proteica
5.
Cell Mol Life Sci ; 81(1): 251, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847937

RESUMO

The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Instabilidade Genômica , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Domínios Proteicos , Estabilidade Proteica , Mutação , Linhagem Celular , DNA Helicases
6.
Food Res Int ; 186: 114332, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729715

RESUMO

The protein instability with haze formation represents one of the main faults occurring in white and rosé wines. Among the various solutions industrially proposed, aspergillopepsin I (AP-I) supplementation coupled with must heating (60-75 °C) has been recently approved by OIV and the European Commission for ensuring protein stability of wines. This study investigates the impact of AP-I either applied independently or in combination with flash pasteurization on the chemical composition of grape must and wines derived from Sauvignon Blanc and Gewürztraminer. The efficacy on protein stability of a complete treatment combining heat (70 °C) and AP-I (HP) was confirmed through heat test and bentonite requirement, although no differences were observed between must heating and HP treatments. However, high-performance liquid chromatography analysis of unstable pathogenesis-related proteins revealed that AP-I supplementation reduced chitinases and thaumatin-like proteins compared to the non-enzymed samples, with and without must heating. Amino acid increase was reported only in HP musts, particularly in Sauvignon Blanc. The concentration of yeast-derived aroma compounds in Gewürztraminer wines was increased by must heating; compared to controls, flash pasteurization rose the overall acetate esters content of 85 % and HP of 43 %, mostly due to isoamyl acetate. However, heat treatments -with or without AP-I- reduced terpenes up to 68 %. Despite the different aroma profiles, no differences were observed for any descriptor for both varieties in wine tasting, and only a slight decrease trend was observed for the floral intensity and the typicality descriptors in heated wines.


Assuntos
Temperatura Alta , Odorantes , Pasteurização , Vitis , Vinho , Vinho/análise , Pasteurização/métodos , Vitis/química , Odorantes/análise , Manipulação de Alimentos/métodos , Estabilidade Proteica
7.
Food Res Int ; 186: 114337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729718

RESUMO

A major concern for wineries is haze formation in white wines due to protein instability. Despite its prevalent use, the conventional bentonite method has shortcomings, including potential alteration of color and aroma, slow processing times, and notable wine wastage. Zirconium oxide (ZrO2) effectively removes proteins without affecting wine characteristics. However, producing cost-effective ZrO2 materials with efficient protein removal capabilities poses a significant challenge. This research aims to assess the viability of designing a porous material impregnated with zirconia to remove turbidity-causing proteins effectively. For this purpose, the support material alone (Al2O3) and the zirconia-impregnated support (ZrO2/Al2O3) were subjected to different calcination temperatures. It was observed that high-temperature treatments (750 °C) enhanced wine stability and protein adsorption capacity. The optimal adsorbent achieved a notable reduction in turbidity, decreasing the ΔNTU from 42 to 18, alongside a significant 44 % reduction in the total protein content, particularly affecting proteins in the molecular weight range of 10 to 70 kDa. This result is attributed to modifying the textural properties of ZrO2/Al2O3, characterized by the reduction of acidic sites, augmented pore diameters from 4.81 to 7.74 nm, and the emergence of zirconia clusters across the surface of the porous support. In summary, this study presents the first application of zirconia on the alumina support surface for protein stabilization in white wine. Combining ZrO2/Al2O3 and a high-temperature treatment emerges as a promising, cost-efficient, and environmentally sustainable strategy for protein removal in white wine.


Assuntos
Óxido de Alumínio , Vinho , Zircônio , Vinho/análise , Zircônio/química , Óxido de Alumínio/química , Adsorção , Estabilidade Proteica , Temperatura Alta , Manipulação de Alimentos/métodos
8.
Food Res Int ; 186: 114367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729727

RESUMO

Dry-cured hams contain abundant bioactive peptides with significant potential for the development of functional foods. However, the limited bioavailability of food-derived bioactive peptides has hindered their utilization in health food development. Moreover, there is insufficient regulatory information regarding bioactive peptides and related products globally. This review summarizes diverse bioactive peptides derived from dry-cured ham and by-products originating from various countries and regions. The bioactivity, preparation techniques, bioavailability, and metabolic stability of these bioactive peptides are described, as well as the legal and regulatory frameworks in various countries. The primary objectives of this review are to dig deeper into the functionality of dry-cured ham and provide theoretical support for the commercialization of bioactive peptides from food sources, especially the dry-cured ham.


Assuntos
Manipulação de Alimentos , Produtos da Carne , Peptídeos , Animais , Produtos da Carne/análise , Manipulação de Alimentos/métodos , Disponibilidade Biológica , Suínos , Humanos , Alimento Funcional , Estabilidade Proteica
9.
PLoS One ; 19(5): e0295735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696486

RESUMO

The stability of monoclonal antibodies (mAbs) is vital for their therapeutic success. Sorbitol, a common mAb stabilizer used to prevent aggregation, was evaluated for any potential adverse effects on the chemical stability of mAb X. An LC-MS/MS based analysis focusing on the post-translational modifications (PTMs) of mAb X was conducted on samples that had undergone accelerated aging at 40°C. Along with PTMs that are known to affect mAbs' structure function and stability (such as deamidation and oxidation), a novel mAb PTM was discovered, the esterification of glutamic acid by sorbitol. Incubation of mAb X with a 1:1 ratio of unlabeled sorbitol and isotopically labeled sorbitol (13C6) further corroborated that the modification was the consequence of the esterification of glutamic acid by sorbitol. Levels of esterification varied across glutamic acid residues and correlated with incubation time and sorbitol concentration. After 4 weeks of accelerated stability with isotopically labeled sorbitol, it was found that 16% of the total mAb possesses an esterified glutamic acid. No esterification was observed at aspartic acid sites despite the free carboxylic acid side chain. This study unveils a unique modification of mAbs, emphasizing its potential significance for formulation and drug development.


Assuntos
Anticorpos Monoclonais , Ácido Glutâmico , Sorbitol , Espectrometria de Massas em Tandem , Sorbitol/química , Esterificação , Espectrometria de Massas em Tandem/métodos , Anticorpos Monoclonais/química , Ácido Glutâmico/química , Cromatografia Líquida/métodos , Estabilidade Proteica , Processamento de Proteína Pós-Traducional , Estabilidade de Medicamentos , Espectrometria de Massa com Cromatografia Líquida
10.
Prog Nucl Magn Reson Spectrosc ; 140-141: 42-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705635

RESUMO

Most proteins perform their functions in crowded and complex cellular environments where weak interactions are ubiquitous between biomolecules. These complex environments can modulate the protein folding energy landscape and hence affect protein stability. NMR is a nondestructive and effective method to quantify the kinetics and equilibrium thermodynamic stability of proteins at an atomic level within crowded environments and living cells. Here, we review NMR methods that can be used to measure protein stability, as well as findings of studies on protein stability in crowded environments mimicked by polymer and protein crowders and in living cells. The important effects of chemical interactions on protein stability are highlighted and compared to spatial excluded volume effects.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Proteínas , Proteínas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Termodinâmica , Humanos , Dobramento de Proteína , Cinética , Espectroscopia de Ressonância Magnética/métodos
11.
Nat Commun ; 15(1): 4627, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821962

RESUMO

Stem cells in plants and animals are the source of new tissues and organs. In plants, stem cells are maintained in the central zone (CZ) of multicellular meristems, and large shoot meristems with an increased stem cell population hold promise for enhancing yield. The mobile homeodomain transcription factor WUSCHEL (WUS) is a central regulator of stem cell function in plant shoot meristems. Despite its central importance, the factors that directly modulate WUS protein stability have been a long-standing question. Here, we show that the peptidase DA1 physically interacts with and cleaves the WUS protein, leading to its destabilization. Furthermore, our results reveal that cytokinin signaling represses the level of DA1 protein in the shoot apical meristem, thereby increasing the accumulation of WUS protein. Consistent with these observations, loss of DA1 function results in larger shoot apical meristems with an increased stem cell population and also influences cytokinin-induced enlargement of shoot apical meristem. Collectively, our findings uncover a previously unrecognized mechanism by which the repression of DA1 by cytokinin signaling stabilizes WUS, resulting in the enlarged shoot apical meristems with the increased stem cell number during plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Meristema , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Citocininas/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Transdução de Sinais , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Estabilidade Proteica
12.
Protein Sci ; 33(6): e5003, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747380

RESUMO

Extremophile organisms have adapted to extreme physicochemical conditions. Halophilic organisms, in particular, survive at very high salt concentrations. To achieve this, they have engineered the surface of their proteins to increase the number of short, polar and acidic amino acids, while decreasing large, hydrophobic and basic residues. While these adaptations initially decrease protein stability in the absence of salt, they grant halophilic proteins remarkable stability in environments with extremely high salt concentrations, where non-adapted proteins unfold and aggregate. The molecular mechanisms by which halophilic proteins achieve this, however, are not yet clear. Here, we test the hypothesis that the halophilic amino acid composition destabilizes the surface of the protein, but in exchange improves the stability in the presence of salts. To do that, we have measured the folding thermodynamics of various protein variants with different degrees of halophilicity in the absence and presence of different salts, and at different pH values to tune the ionization state of the acidic amino acids. Our results show that halophilic amino acids decrease the stability of halophilic proteins under mesophilic conditions, but in exchange improve salt-induced stabilization and solubility. We also find that, in contrast to traditional assumptions, contributions arising from hydrophobic effect and preferential ion exclusion are more relevant for haloadaptation than electrostatics. Overall, our findings suggest a trade-off between folding thermodynamics and halophilic adaptation to optimize proteins for hypersaline environments.


Assuntos
Estabilidade Proteica , Eletricidade Estática , Termodinâmica , Dobramento de Proteína , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
13.
Protein Sci ; 33(6): e5000, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747401

RESUMO

G protein-coupled receptors (GPCRs) are one of the most important families of targets for drug discovery. One of the limiting steps in the study of GPCRs has been their stability, with significant and time-consuming protein engineering often used to stabilize GPCRs for structural characterization and drug screening. Unfortunately, computational methods developed using globular soluble proteins have translated poorly to the rational engineering of GPCRs. To fill this gap, we propose GPCR-tm, a novel and personalized structurally driven web-based machine learning tool to study the impacts of mutations on GPCR stability. We show that GPCR-tm performs as well as or better than alternative methods, and that it can accurately rank the stability changes of a wide range of mutations occurring in various types of class A GPCRs. GPCR-tm achieved Pearson's correlation coefficients of 0.74 and 0.46 on 10-fold cross-validation and blind test sets, respectively. We observed that the (structural) graph-based signatures were the most important set of features for predicting destabilizing mutations, which points out that these signatures properly describe the changes in the environment where the mutations occur. More specifically, GPCR-tm was able to accurately rank mutations based on their effect on protein stability, guiding their rational stabilization. GPCR-tm is available through a user-friendly web server at https://biosig.lab.uq.edu.au/gpcr_tm/.


Assuntos
Engenharia de Proteínas , Estabilidade Proteica , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Engenharia de Proteínas/métodos , Humanos , Aprendizado de Máquina , Mutação , Software , Modelos Moleculares
14.
Protein Sci ; 33(6): e5020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747397

RESUMO

Wheat germ agglutinin (WGA) demonstrates potential as an oral delivery agent owing to its selective binding to carbohydrates and its capacity to traverse biological membranes. In this study, we employed differential scanning calorimetry and molecular dynamics simulations to comprehensively characterize the thermal unfolding process of both the complete lectin and its four isolated domains. Furthermore, we present the nuclear magnetic resonance structures of three domains that were previously lacking experimental structures in their isolated forms. Our results provide a collective understanding of the energetic and structural factors governing the intricate unfolding mechanism of the complete agglutinin, shedding light on the specific role played by each domain in this process. The analysis revealed negligible interdomain cooperativity, highlighting instead significant coupling between dimer dissociation and the unfolding of the more labile domains. By comparing the dominant interactions, we rationalized the stability differences among the domains. Understanding the structural stability of WGA opens avenues for enhanced drug delivery strategies, underscoring its potential as a promising carrier throughout the gastrointestinal environment.


Assuntos
Simulação de Dinâmica Molecular , Estabilidade Proteica , Aglutininas do Germe de Trigo , Aglutininas do Germe de Trigo/química , Aglutininas do Germe de Trigo/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Varredura Diferencial de Calorimetria
15.
Commun Biol ; 7(1): 586, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755285

RESUMO

Bats serve as reservoirs for numerous zoonotic viruses, yet they typically remain asymptomatic owing to their unique immune system. Of particular significance is the MHC-I in bats, which plays crucial role in anti-viral response and exhibits polymorphic amino acid (AA) insertions. This study demonstrated that both 5AA and 3AA insertions enhance the thermal stability of the bat MHC-I complex and enrich the diversity of bound peptides in terms of quantity and length distribution, by stabilizing the 310 helix, a region prone to conformational changes during peptide loading. However, the mismatched insertion could diminish the stability of bat pMHC-I. We proposed that a suitable insertion may help bat MHC-I adapt to high body temperatures during flight while enhancing antiviral responses. Moreover, this site-specific insertions may represent a strategy of evolutionary adaptation of MHC-I molecules to fluctuations in body temperature, as similar insertions have been found in other lower vertebrates.


Assuntos
Quirópteros , Antígenos de Histocompatibilidade Classe I , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Estabilidade Proteica , Peptídeos/química , Peptídeos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Apresentação de Antígeno , Mutagênese Insercional
16.
J Transl Med ; 22(1): 465, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755664

RESUMO

Disturbance in mitochondrial homeostasis within proximal tubules is a critical characteristic associated with diabetic kidney disease (DKD). CaMKKß/AMPK signaling plays an important role in regulating mitochondrial homeostasis. Despite the downregulation of CaMKKß in DKD pathology, the underlying mechanism remains elusive. The expression of NEDD4L, which is primarily localized to renal proximal tubules, is significantly upregulated in the renal tubules of mice with DKD. Coimmunoprecipitation (Co-IP) assays revealed a physical interaction between NEDD4L and CaMKKß. Moreover, deletion of NEDD4L under high glucose conditions prevented rapid CaMKKß protein degradation. In vitro studies revealed that the aberrant expression of NEDD4L negatively influences the protein stability of CaMKKß. This study also explored the role of NEDD4L in DKD by using AAV-shNedd4L in db/db mice. These findings confirmed that NEDD4L inhibition leads to a decrease in urine protein excretion, tubulointerstitial fibrosis, and oxidative stress, and mitochondrial dysfunction. Further in vitro studies demonstrated that si-Nedd4L suppressed mitochondrial fission and reactive oxygen species (ROS) production, effects antagonized by si-CaMKKß. In summary, the findings provided herein provide strong evidence that dysregulated NEDD4L disturbs mitochondrial homeostasis by negatively modulating CaMKKß in the context of DKD. This evidence underscores the potential of therapeutic interventions targeting NEDD4L and CaMKKß to safeguard renal tubular function in the management of DKD.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Nefropatias Diabéticas , Regulação para Baixo , Homeostase , Mitocôndrias , Ubiquitina-Proteína Ligases Nedd4 , Animais , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Mitocôndrias/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Estresse Oxidativo , Dinâmica Mitocondrial , Estabilidade Proteica , Proteólise
17.
Protein Sci ; 33(6): e4991, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757381

RESUMO

The de novo design of miniprotein inhibitors has recently emerged as a new technology to create proteins that bind with high affinity to specific therapeutic targets. Their size, ease of expression, and apparent high stability makes them excellent candidates for a new class of protein drugs. However, beyond circular dichroism melts and hydrogen/deuterium exchange experiments, little is known about their dynamics, especially at the elevated temperatures they seemingly tolerate quite well. To address that and gain insight for future designs, we have focused on identifying unintended and previously overlooked heat-induced structural and chemical changes in a particularly stable model miniprotein, EHEE_rd2_0005. Nuclear magnetic resonance (NMR) studies suggest the presence of dynamics on multiple time and temperature scales. Transiently elevating the temperature results in spontaneous chemical deamidation visible in the NMR spectra, which we validate using both capillary electrophoresis and mass spectrometry (MS) experiments. High temperatures also result in greatly accelerated intrinsic rates of hydrogen exchange and signal loss in NMR heteronuclear single quantum coherence spectra from local unfolding. These losses are in excellent agreement with both room temperature hydrogen exchange experiments and hydrogen bond disruption in replica exchange molecular dynamics simulations. Our analysis reveals important principles for future miniprotein designs and the potential for high stability to result in long-lived alternate conformational states.


Assuntos
Temperatura Alta , Ressonância Magnética Nuclear Biomolecular , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/química , Estabilidade Proteica
18.
J Transl Med ; 22(1): 481, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773612

RESUMO

BACKGROUND: Tripartite motif-containing 26 (TRIM26), a member of the TRIM protein family, exerts dual function in several types of cancer. Nevertheless, the precise role of TRIM26 in clear cell renal cell carcinoma (ccRCC) has not been investigated. METHODS: The expression of TRIM26 in ccRCC tissues and cell lines were examined through the use of public resources and experimental validation. The impacts of TRIM26 on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process were determined via CCK-8, colony formation, EdU incorporation, wound healing, Transwell invasion, Western blot, and Immunofluorescence assays. RNA-seq followed by bioinformatic analyses were used to identify the downstream pathway of TRIM26. The interaction between TRIM26 and ETK was assessed by co-immunoprecipitation, qRT-PCR, Western blot, cycloheximide (CHX) chase, and in vivo ubiquitination assays. RESULTS: We have shown that TRIM26 exhibits a downregulation in both ccRCC tissues and cell lines. Furthermore, this decreased expression of TRIM26 is closely linked to unfavorable overall survival and diseases-free survival outcomes among ccRCC patients. Gain- and loss-of-function experiments demonstrated that increasing the expression of TRIM26 suppressed the proliferation, migration, invasion, and EMT process of ccRCC cells. Conversely, reducing the expression of TRIM26 had the opposite effects. RNA sequencing, coupled with bioinformatic analysis, revealed a significant enrichment of the mTOR signaling pathway in the control group compared to the group with TRIM26 overexpression. This finding was then confirmed by a western blot assay. Subsequent examination revealed that TRMI26 had a direct interaction with ETK, a non-receptor tyrosine kinase. This interaction facilitated the ubiquitination and degradation of ETK, resulting in the deactivation of the AKT/mTOR signaling pathway in ccRCC. ETK overexpression counteracted the inhibitory effects of TRIM26 overexpression on cell proliferation, migration, and invasion. CONCLUSION: Our results have shown a novel mechanism by which TRIM26 hinders the advancement of ccRCC by binding to and destabilizing ETK, thus leading to the deactivation of AKT/mTOR signaling. TRIM26 shows promise as both a therapeutic target and prognostic biomarker for ccRCC patients.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Neoplasias Renais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Ubiquitinação , Estabilidade Proteica , Invasividade Neoplásica , Feminino , Regulação para Baixo/genética , Pessoa de Meia-Idade , Animais
19.
Acta Pharm ; 74(2): 289-300, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815206

RESUMO

At present, society has embraced the fact apropos population aging and climate changes, that demand, amongst others, innovative pharmaceutical technologies, emphasising the development of patient-specific delivery systems and thus the provision of efficient and sustainable drugs. Protein drugs for subcutaneous administration, by allowing less frequent application, represent one of the most important parts of the pharmaceutical field, but their development is inevitably faced with obstacles in providing protein stability and suitable formulation viscosity. To gain further knowledge and fill the gaps in the already constructed data platform for the development of monoclonal antibody formulations, we designed a study that examines small model proteins, i.e., bovine serum albumin. The main aim of the presented work is to evaluate the effect of protein concentrations on critical quality attributes of both, pre-lyophilised liquid formulations, and lyophilised products. Through the study, the hypothesis that increasing protein concentration leads to higher viscosity and higher reconstitution time without affecting the stability of the protein was confirmed. The most important finding is that sucrose plays a key role in the lyophilisation of investigated protein, nevertheless, it can be predicted that, to ensure the beneficial effect of mannitol, its amount has to prevail over the amount of sucrose.


Assuntos
Composição de Medicamentos , Liofilização , Soroalbumina Bovina , Soroalbumina Bovina/química , Viscosidade , Composição de Medicamentos/métodos , Humanos , Sacarose/química , Estabilidade de Medicamentos , Química Farmacêutica/métodos , Excipientes/química , Manitol/química , Estabilidade Proteica
20.
Cell Rep ; 43(5): 114194, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38735043

RESUMO

Class switch recombination (CSR) diversifies the effector functions of antibodies and involves complex regulation of transcription and DNA damage repair. Here, we show that the deubiquitinase USP7 promotes CSR to immunoglobulin A (IgA) and suppresses unscheduled IgG switching in mature B cells independent of its role in DNA damage repair, but through modulating switch region germline transcription. USP7 depletion impairs Sα transcription, leading to abnormal activation of Sγ germline transcription and increased interaction with the CSR center via loop extrusion for unscheduled IgG switching. Rescue of Sα transcription by transforming growth factor ß (TGF-ß) in USP7-deleted cells suppresses Sγ germline transcription and prevents loop extrusion toward IgG CSR. Mechanistically, USP7 protects transcription factor RUNX3 from ubiquitination-mediated degradation to promote Sα germline transcription. Our study provides evidence for active transcription serving as an anchor to impede loop extrusion and reveals a functional interplay between USP7 and TGF-ß signaling in promoting RUNX3 expression for efficient IgA CSR.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Imunoglobulina A , Switching de Imunoglobulina , Ativação Transcricional , Peptidase 7 Específica de Ubiquitina , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Animais , Imunoglobulina A/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Ubiquitinação , Linfócitos B/metabolismo , Linfócitos B/imunologia , Imunoglobulina G/metabolismo , Imunoglobulina G/imunologia , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA