Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.698
Filtrar
1.
Nat Commun ; 15(1): 6540, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095402

RESUMO

Foam cells in atheroma are engorged with lipid droplets (LDs) that contain esters of regulatory lipids whose metabolism remains poorly understood. LD-associated hydrolase (LDAH) has a lipase structure and high affinity for LDs of foam cells. Using knockout and transgenic mice of both sexes, here we show that LDAH inhibits atherosclerosis development and promotes stable lesion architectures. Broad and targeted lipidomic analyzes of primary macrophages and comparative lipid profiling of atheroma identified a broad impact of LDAH on esterified sterols, including natural liver X receptor (LXR) sterol ligands. Transcriptomic analyzes coupled with rescue experiments show that LDAH modulates the expression of prototypical LXR targets and leads macrophages to a less inflammatory phenotype with a profibrotic gene signature. These studies underscore the role of LDs as reservoirs and metabolic hubs of bioactive lipids, and suggest that LDAH favorably modulates macrophage activation and protects against atherosclerosis via lipolytic mobilization of regulatory sterols.


Assuntos
Aterosclerose , Gotículas Lipídicas , Receptores X do Fígado , Macrófagos , Camundongos Knockout , Animais , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/patologia , Receptores X do Fígado/metabolismo , Receptores X do Fígado/genética , Camundongos , Masculino , Ligantes , Feminino , Gotículas Lipídicas/metabolismo , Macrófagos/metabolismo , Esteróis/metabolismo , Células Espumosas/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Humanos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Ativação de Macrófagos , Esterol Esterase
2.
Sci Rep ; 14(1): 17998, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097621

RESUMO

In 1957 Abbott and Ballantine described a highly toxic activity from a dinoflagellate isolated from the English Channel in 1949 by Mary Park. From a culture maintained at Plymouth Laboratory since 1950, we have been able to isolate two toxic molecules (abbotoxin and 59-E-Chloro-abbotoxin), determine the planar structures by analysis of HRMS and 1D and 2D NMR spectra, and found them to be karlotoxin (KmTx) congeners. Both toxins kill larval zebrafish with symptoms identical to those described by Abbot and Ballantine for gobies (Gobius virescens). Using surface plasma resonance the sterol binding specificity of karlotoxins is shown to require desmethyl sterols. Our results with black lipid membranes indicate that karlotoxin forms large-conductance channels in the lipid membrane, which are characterized by large ionic conductance, poor ionic selectivity, and a complex gating behavior that exhibits strong voltage dependence and multiple gating patterns. In addition, we show that KmTx 2 pore formation is a highly targeted mechanism involving sterol-specificity. This is the first report of the functional properties of the membrane pores formed by karlotoxins and is consistent with the initial observations of Abbott and Ballantine from 1957.


Assuntos
Dinoflagellida , Esteróis , Peixe-Zebra , Dinoflagellida/metabolismo , Animais , Esteróis/química , Esteróis/metabolismo , Toxinas Marinhas/química , Toxinas Marinhas/metabolismo , Membrana Celular/metabolismo
3.
Mar Pollut Bull ; 205: 116680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981193

RESUMO

The sedimentation of organic carbon in the Ulleung Basin, in the southwestern East Sea (Japan Sea) was investigated using radiocarbon and sterols. The accumulation rates of organic carbon and the contents of brassicasterol and dinosterol were higher on the slope than in the central basin, reflecting the surface water productivity, whereas cholesterol showed similar or higher contents in the central basin. The coprostanol concentration in surface sediments reflected the dispersion of sewage dumped in this region. The vertical distribution showed that the coprostanol concentration was the highest in the top 5-cm layer near the Korea Strait, close to one of the two dumping sites. A high coprostanol concentration was also found near the coast further north, where the content peaked at ∼10 cm depth. The vertical distribution of coprostanol helped to estimate the sediment accumulation rate at sites where radiocarbon gradient was too small or the values were too variable.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Esgotos , Esteróis , Sedimentos Geológicos/química , Esgotos/química , Esteróis/análise , Oceanos e Mares , Japão , Poluentes Químicos da Água/análise
4.
Biomolecules ; 14(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062582

RESUMO

An Arabidopsis sterol mutant, smt2 smt3, defective in sterolmethyltransferase2 (SMT2), exhibits severe growth abnormalities. The loss of C-24 ethyl sterols, maintaining the biosynthesis of C-24 methyl sterols and brassinosteroids, suggests specific roles of C-24 ethyl sterols. We characterized the subcellular localizations of fluorescent protein-fused sterol biosynthetic enzymes, such as SMT2-GFP, and found these enzymes in the endoplasmic reticulum during interphase and identified their movement to the division plane during cytokinesis. The mobilization of endoplasmic reticulum-localized SMT2-GFP was independent of the polarized transport of cytokinetic vesicles to the division plane. In smt2 smt3, SMT2-GFP moved to the abnormal division plane, and unclear cell plate ends were surrounded by hazy structures from SMT2-GFP fluorescent signals and unincorporated cellulose debris. Unusual cortical microtubule organization and impaired cytoskeletal function accompanied the failure to determine the cortical division site and division plane formation. These results indicated that both endoplasmic reticulum membrane remodeling and cytokinetic vesicle transport during cytokinesis were impaired, resulting in the defects of cell wall generation. The cell wall integrity was compromised in the daughter cells, preventing the correct determination of the subsequent cell division site. We discuss the possible roles of C-24 ethyl sterols in the interaction between the cytoskeletal network and the plasma membrane.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocinese , Retículo Endoplasmático , Metiltransferases , Esteróis , Arabidopsis/genética , Arabidopsis/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Esteróis/metabolismo , Citocinese/genética , Retículo Endoplasmático/metabolismo , Divisão Celular/genética , Mutação , Microtúbulos/metabolismo , Parede Celular/metabolismo
5.
Gut Microbes ; 16(1): 2382336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39046079

RESUMO

Commensal microorganisms in the human gut produce numerous metabolites by using small molecules derived from the host or diet as precursors. Host or dietary lipid molecules are involved in energy metabolism and maintaining the structural integrity of cell membranes. Notably, gut microbes can convert these lipids into bioactive signaling molecules through their biotransformation and synthesis pathways. These microbiota-derived lipid metabolites can affect host physiology by influencing the body's immune and metabolic processes. This review aims to summarize recent advances in the microbial transformation and host immunomodulatory functions of these lipid metabolites, with a special focus on fatty acids and steroids produced by our gut microbiota.


Assuntos
Biotransformação , Ácidos Graxos , Microbioma Gastrointestinal , Esteróis , Humanos , Ácidos Graxos/metabolismo , Animais , Esteróis/metabolismo , Bactérias/metabolismo , Imunomodulação , Metabolismo dos Lipídeos
6.
Microbiol Res ; 286: 127815, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38944943

RESUMO

Saccharomyces cerevisiae is commonly used as a microbial cell factory to produce high-value compounds or bulk chemicals due to its genetic operability and suitable intracellular physiological environment. The current biosynthesis pathway for targeted products is primarily rewired in the cytosolic compartment. However, the related precursors, enzymes, and cofactors are frequently distributed in various subcellular compartments, which may limit targeted compounds biosynthesis. To overcome above mentioned limitations, the biosynthesis pathways are localized in different subcellular organelles for product biosynthesis. Subcellular compartmentalization in the production of targeted compounds offers several advantages, mainly relieving competition for precursors from side pathways, improving biosynthesis efficiency in confined spaces, and alleviating the cytotoxicity of certain hydrophobic products. In recent years, subcellular compartmentalization in targeted compound biosynthesis has received extensive attention and has met satisfactory expectations. In this review, we summarize the recent advances in the compartmentalized biosynthesis of the valuable compounds in S. cerevisiae, including terpenoids, sterols, alkaloids, organic acids, and fatty alcohols, etc. Additionally, we describe the characteristics and suitability of different organelles for specific compounds, based on the optimization of pathway reconstruction, cofactor supplementation, and the synthesis of key precursors (metabolites). Finally, we discuss the current challenges and strategies in the field of compartmentalized biosynthesis through subcellular engineering, which will facilitate the production of the complex valuable compounds and offer potential solutions to improve product specificity and productivity in industrial processes.


Assuntos
Vias Biossintéticas , Engenharia Metabólica , Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Engenharia Metabólica/métodos , Terpenos/metabolismo , Vias Biossintéticas/genética , Esteróis/metabolismo , Esteróis/biossíntese , Alcaloides/biossíntese , Alcaloides/metabolismo , Álcoois Graxos/metabolismo , Organelas/metabolismo , Redes e Vias Metabólicas/genética
7.
Plant Sci ; 346: 112168, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38914157

RESUMO

Secondary metabolites play multiple crucial roles in plants by modulating various regulatory networks. The biosynthesis of these compounds is unique to each species and is intricately controlled by a range of developmental and environmental factors. While light's role in certain secondary metabolites is evident, its impact on sterol biosynthesis remains unclear. Previous studies indicate that ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor, is pivotal in skotomorphogenesis to photomorphogenesis transition. Additionally, PHYTOCHROME INTERACTING FACTORs (PIFs), bHLH transcription factors, act as negative regulators. To unveil the light-dependent regulation of the mevalonic acid (MVA) pathway, a precursor for sterol biosynthesis, mutants of light signaling components, specifically hy5-215 and the pifq quadruple mutant (pif 1,3,4, and 5), were analyzed in Arabidopsis thaliana. Gene expression analysis in wild-type and mutants implicates HY5 and PIFs in regulating sterol biosynthesis genes. DNA-protein interaction analysis confirms their interaction with key genes like AtHMGR2 in the rate-limiting pathway. Results strongly suggest HY5 and PIFs' pivotal role in light-dependent MVA pathway regulation, including the sterol biosynthetic branch, in Arabidopsis, highlighting a diverse array of light signaling components finely tuning crucial growth pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Esteróis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Esteróis/metabolismo , Esteróis/biossíntese , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Mutação , Luz , Ácido Mevalônico/metabolismo
8.
Animal ; 18(7): 101205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38905779

RESUMO

Black soldier fly larvae (Hermetia illucens; BSFL) can transform organic wastes into nutritional biomass useful in animal feeding. The aim of this work was to study the effect of five diets (meat, fruit, vegetable substrates, a mix of them and control) on the profile of fatty acids (FAs) and sterols of BSFL. For a more exhaustive characterization of the nutritional properties, the profile of esterified FAs in the sn-2 position of the triglycerides, the most absorbed lipid component during animal digestion was evaluated. The dietary effect was estimated on two different Hermetia illucens populations (Greek - UTH and Italian - UNIPI). The diet affected all the lipid fractions examined. Regardless of diet, the fat was characterized mainly of lauric acid and other saturated FAs, which were found to be synthesized by the larvae, as it was not present in any of the five substrates. In general, UTH larvae contained a higher level of lipids (7.38 vs 2.48 g/100 g of larvae; P < 0.001) and saturated FAs (49.71 vs 36.10 g/100 g of Total Lipids; P < 0.001) and a lower percentage of monounsaturated FAs (14.74 vs 26.70 g/100 g of Total Lipids), C18:3n-3 (0.67 vs 1.13 g/100 g of Total Lipids; P < 0.001), and C18:2c9t11 (2.02 vs 2.80 g/100 g of Total Lipids; P < 0.001). Irrespective of the populations, BSFL reared on control and fruit substrates showed higher level of lipids (8.06 and 5.61 g/100 g of larvae, respectively), and saturated FA (38.99 and 71.19 g/100 g of Total Lipids, respectively), while the presence of meat increased the level of C20:4n-6, C20:5n-3 and C22:5n-3 (0.70, 0.13 and 0.45 g/100 g of Total Lipids, respectively). The results confirmed that BSFL accumulate phytosterols in their lipid fraction. The sterol profile was strongly influenced by the substrate on which the larvae were reared, with higher levels of cholesterol in the larvae of the meat group (38.55 mg/100 g of Total Lipids) and of stigmasterol and campesterol (9.04 and 15.23 mg/100 g of Total Lipids, respectively) in those of the vegetable group. The sterol content between the two populations was significantly different, with a higher percentage in UTH larvae (113.28 vs 34.03 mg/100 g of Total Lipids; P < 0.001). Finally, BSFLs showed a high plasticity of the lipid profile depending on both the substrate and the metabolism linked to the different populations. This variability allows the nutritional characteristics of the BSFL to be shaped by modifying the substrate, to adapt it to the technological and feeding needs to which the larvae are destined.


Assuntos
Ração Animal , Dieta , Ácidos Graxos , Larva , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Ácidos Graxos/análise , Dieta/veterinária , Ração Animal/análise , Dípteros/crescimento & desenvolvimento , Dípteros/fisiologia , Esteróis/análise , Frutas/química , Fenômenos Fisiológicos da Nutrição Animal , Carne/análise
9.
Biomed Pharmacother ; 177: 116934, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889639

RESUMO

There is an urgent need to provide immediate and effective options for the treatment of prostate cancer (PCa) to prevent progression to lethal castration-resistant PCa (CRPC). The mevalonate (MVA) pathway is dysregulated in PCa, and statin drugs commonly prescribed for hypercholesterolemia, effectively target this pathway. Statins exhibit anti-PCa activity, however the resulting intracellular depletion of cholesterol triggers a feedback loop that restores MVA pathway activity, thus diminishing statin efficacy and contributing to resistance. To identify drugs that block this feedback response and enhance the pro-apoptotic activity of statins, we performed a high-content image-based screen of a 1508 drug library, enriched for FDA-approved compounds. Two of the validated hits, Galeterone (GAL) and Quinestrol, share the cholesterol-related tetracyclic structure, which is also evident in the FDA-approved CRPC drug Abiraterone (ABI). Molecular modeling revealed that GAL, Quinestrol and ABI not only share structural similarity with 25-hydroxy-cholesterol (25HC) but were also predicted to bind similarly to a known protein-binding site of 25HC. This suggested GAL, Quinestrol and ABI are sterol-mimetics and thereby inhibit the statin-induced feedback response. Cell-based assays demonstrated that these agents inhibit nuclear translocation of sterol-regulatory element binding protein 2 (SREBP2) and the transcription of MVA genes. Sensitivity was independent of androgen status and the Fluva-GAL combination significantly impeded CRPC tumor xenograft growth. By identifying cholesterol-mimetic drugs that inhibit SREBP2 activation upon statin treatment, we provide a potent "one-two punch" against CRPC progression and pave the way for innovative therapeutic strategies to combat additional diseases whose etiology is associated with SREBP2 dysregulation.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias da Próstata , Proteína de Ligação a Elemento Regulador de Esterol 2 , Masculino , Humanos , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Animais , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Esteróis/farmacologia , Sinergismo Farmacológico , Camundongos Nus , Apoptose/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Morte Celular/efeitos dos fármacos
10.
Int Immunopharmacol ; 138: 112580, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38943970

RESUMO

Acute liver failure is mainly caused by the overdose of acetaminophen (APAP) globally. The traditional Chinese medicinal (TCM) herb, Taraxacum, contains Taraxasterol (TAX) as one of the active components. It is a pentacyclic-triterpene compound isolated from this herb. Present work aimed to investigate the in vitro and in vivo protection effect of TAX in APAP-induced acute liver injury, and determine the potential regulatory mechamisms. The liver injury caused by APAP is attenuated by TAX, as shown by the alleviated pathological changes of mice liver and the reduced serological indexes. TAX evidently controlled the oxidative stress and liver inflammation in mice liver. In vitro studies found that TAX reversed the decrease in LO2 cell viability induced by APAP, and protected LO2 cells from APAP-induced injury. In addition, TAX reduced the secretion of inflammatory factors in RAW264.7 macrophages as induced via APAP. Besides, TAX inhibited oxidative stress in LO2 cells induced by APAP in vitro. Noteworthy, TAX enhanced protein and mRNA expressions of Nrf2 in vivo, and knockdown of Nrf2 by using adeno-associated virus (AAV)-Nrf2-KO attenuated inhibitory impact of TAX in acute liver injury induced by APAP. Also, AAV-NRF2-KO weakened the inhibitory impact of TAX against APAP-triggered liver inflammation and oxidative stress of mice liver. Moreover, TAX activated the Nrf2 signaling in APAP-induced LO2 cells, as shown by the increased nuclear Nrf2 expression together with downstream HO-1 expression in vitro. Inhibition of Nrf2 by using ML-385, anNrf2inhibitor, weakened the inhibitory effect of TAX against APAP-induced oxidative stress and cell injury in LO2 cells. Moreover, inhibition of Nrf2 attenuated anti-inflammatory effect of TAX for APAP-induced RAW264.7 cells. Collectively, TAX could protect against APAP-triggered hepatotoxicitythrough suppression of liver oxidative stress and inflammatory response in mice.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Fígado/imunologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Esteróis
11.
Biophys J ; 123(13): 1896-1902, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38850024

RESUMO

The cell membrane must balance mechanical stability with fluidity to function as both a barrier and an organizational platform. Key to this balance is the ordering of hydrocarbon chains and the packing of lipids. Many eukaryotes synthesize sterols, which are uniquely capable of modulating the lipid order to decouple membrane stability from fluidity. Ancient sterol analogs known as hopanoids are found in many bacteria and proposed as ancestral ordering lipids. The juxtaposition of sterols and hopanoids in extant organisms prompts us to ask why both pathways persist, especially in light of their convergent ability to order lipids. In this work, simulations, monolayer experiments, and cellular assays show that hopanoids and sterols order unsaturated phospholipids differently based on the position of double bonds in the phospholipid acyl chain. We find that cholesterol and diplopterol's methyl group distributions lead to distinct effects on unsaturated lipids. In Mesoplasma florum, diplopterol's constrained ordering capacity reduces membrane resistance to osmotic stress, unlike cholesterol. These findings suggest that cholesterol's broader lipid-ordering ability may have facilitated the exploration of a more diverse lipidomic landscape in eukaryotic membranes.


Assuntos
Fosfolipídeos , Esteróis , Esteróis/química , Esteróis/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Triterpenos/química , Triterpenos/metabolismo , Colesterol/química , Colesterol/metabolismo
12.
Food Chem ; 453: 139640, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38762945

RESUMO

Gas chromatography with mass spectrometry (GC/MS) and fractionation steps were used to determine the sterol patterns of red goji berries in detail. Twenty-five sterols were detected in fresh berries of two species (Lycium barbarum and L. chinense) from bushes grown in the botanical garden of the University of Hohenheim, and 20 sterols were identified. The rarely occurring campesta-5,24(25)-dienol, ß-sitosterol, Δ5-avenasterol, campesterol, and cycloartenol represented >60 % of the total sterol content. Maturity and drying of fresh red goji berries caused small changes but did not affect the characteristic sterol pattern. This was confirmed by analyzing various commercial dried red goji berry samples from different sources. Separated flesh and seed samples revealed pronounced differences in the sterol pattern. A new method of merging GC/MS chromatograms showed that ∼75 % of the sterols were present in seeds and ∼25 % in flesh. The unique sterol profile may be exploited to authenticate red goji berries.


Assuntos
Frutas , Cromatografia Gasosa-Espectrometria de Massas , Lycium , Esteróis , Frutas/química , Esteróis/análise , Lycium/química , Fitosteróis/análise , Extratos Vegetais/química
13.
Bioessays ; 46(7): e2400073, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760877

RESUMO

Sterols and the reductant nicotinamide adenine dinucleotide phosphate (NADPH), essential for eukaryotic life, arose because of, and as an adaptation to, rising levels of molecular oxygen (O2). Hence, the NADPH and O2-intensive process of sterol biosynthesis is inextricably linked to redox status. In mammals, cholesterol biosynthesis is exquisitely regulated post-translationally by multiple E3 ubiquitin ligases, with membrane associated Really Interesting New Gene (RING) C3HC4 finger 6 (MARCHF6) degrading at least six enzymes in the pathway. Intriguingly, all these MARCHF6-dependent enzymes require NADPH. Moreover, MARCHF6 is activated by NADPH, although what this means for control of cholesterol synthesis is unclear. Indeed, this presents a paradox for how NADPH regulates this vital pathway, since NADPH is a cofactor in cholesterol biosynthesis and yet, low levels of NADPH should spare cholesterol biosynthesis enzymes targeted by MARCHF6 by reducing its activity. We speculate MARCHF6 helps mammalian cells adapt to oxidative stress (signified by low NADPH levels) by reducing degradation of cholesterogenic enzymes, thereby maintaining synthesis of protective cholesterol.


Assuntos
Colesterol , NADP , Estresse Oxidativo , Ubiquitina-Proteína Ligases , NADP/metabolismo , Colesterol/biossíntese , Colesterol/metabolismo , Humanos , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Oxirredução , Esteróis/metabolismo , Esteróis/biossíntese
14.
Food Funct ; 15(12): 6324-6334, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38726678

RESUMO

Dietary oxidized sterols (DOxS) are cholesterol-like molecules known to exert pro-inflammatory, pro-oxidant, and pro-apoptotic effects, among others. We present the FooDOxS database, a comprehensive compilation of DOxS content in over 1680 food items from 120 publications across 25 countries, augmented by data generated by our group. This database reports DOxS content in foods classified under the NOVA and What We Eat in America (WWEIA) systems, allowing a comprehensive and statistically robust summary of DOxS content in foods. Notably, we evaluated the efficacy of using NOVA and WWEIA classifications in capturing DOxS variations across food categories. Our findings provide insights into the strengths and limitations of these classification systems, enhancing their utility for assessing dietary components. This research contributes to the understanding of DOxS in food processing and suggests refinements for classification systems, holding promise for improved food safety and public health assessments.


Assuntos
Bases de Dados Factuais , Oxirredução , Esteróis , Esteróis/análise , Análise de Alimentos , Humanos , Fitosteróis/análise
15.
Chemosphere ; 361: 142335, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38754494

RESUMO

In Japanese agricultural lands, nitrate-nitrogen contamination of soil and groundwater often occurs due to the application of livestock excrements and compost. Therefore, rural soils in Japan were sampled and analyzed for nitrate-nitrogen leaching, heavy metal content, and sterols associated with livestock excrement and compost to calculate contamination risk indicators. The results were analyzed using self-organizing maps and cluster analysis. Nitrate-nitrogen content using water extraction was detected in most of the sampled soils. In addition, many samples from areas that were already severely contaminated with nitrate-nitrogen showed particularly high concentrations. Coprostanol, an indicator of fecal contamination, was detected in more than half of the samples. The main source of nitrate-nitrogen contamination in these areas is livestock excrement and compost. Self-organization maps showed that areas with high nitrate-nitrogen contamination also corresponded to areas with high copper and zinc soil contents. The self-organization maps and cluster analysis resulted in five clusters: a nitrate-contaminated group mainly originating from livestock excrement and compost, a heavy metal-contaminated group, a general group, a nitrate-contaminated group mainly originating from chemical fertilizers, and a contaminated group with potentially hazardous substances requiring attention. Authorities and decision-makers can use the results to prioritize areas requiring remediation.


Assuntos
Agricultura , Monitoramento Ambiental , Água Subterrânea , Metais Pesados , Nitratos , Poluentes do Solo , Solo , Esteróis , Poluentes do Solo/análise , Nitratos/análise , Metais Pesados/análise , Água Subterrânea/química , Solo/química , Japão , Esteróis/análise , Gado , Poluentes Químicos da Água/análise , Animais , Fertilizantes/análise , População do Leste Asiático
16.
Food Chem ; 452: 139566, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728892

RESUMO

Red pepper powder (RPP) made from ground dried red pepper (Capsicum annuum L.) is prone to adulteration with fungal-spoiled RPP to gain unfair profits in Korea. This study aimed to investigate the effects of fungal infection on the ergosterol and phytosterol content of RPP and evaluate the potential of the sterol content as a marker for identifying fungal-spoiled RPP. Ergosterol was detected only in fungal-spoiled RPP and not in unspoiled RPP [

Assuntos
Capsicum , Contaminação de Alimentos , Fungos , Esteróis , Capsicum/microbiologia , Capsicum/química , Contaminação de Alimentos/análise , Fungos/metabolismo , Fungos/isolamento & purificação , Esteróis/análise , Pós/química , Biomarcadores/análise , Fitosteróis/análise , Ergosterol/análise
17.
Chemistry ; 30(41): e202400778, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38770991

RESUMO

A ß-glucosyl sterol probe bearing a terminal alkyne moiety for fluorescent tagging enables the investigation of the neuronal and intracellular localization of this class of compounds involved in neurodegenerative diseases. The compound showed localization in the neuronal cells, with marked differences in the uptake and metabolism leading to enhanced persistence with respect to the un-glycosylated sterol analogue. In addition, a different impact was observed towards lysosomes, with the simple sterol probe showing the enlargement of the lysosome structures, while the ß-glucosyl sterol was less capable to alter the morphology of this specific organelle.


Assuntos
Corantes Fluorescentes , Lisossomos , Doenças Neurodegenerativas , Neurônios , Esteróis , Corantes Fluorescentes/química , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Lisossomos/metabolismo , Lisossomos/química , Esteróis/química , Humanos , Animais
18.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38713167

RESUMO

Follicular fluid meiosis-activating sterol (FF-MAS) is a small molecule compound found in FF, named for its ability to induce oocyte resumption of meiosis. Granulosa cells (GCs) within the follicle are typically located in a hypoxic environment under physiologic conditions due to limited vascular distribution. Previous research suggests that hypoxia-induced cell cycle arrest and apoptosis in GCs may be crucial triggering factors in porcine follicular atresia. However, the impact of FF-MAS on GCs within follicles has not been explored so far. In this study, we uncovered a novel role of FF-MAS in facilitating GC survival under hypoxic conditions by inhibiting STAT4 expression. We found that STAT4 expression was upregulated in porcine GCs exposed to 1% O2. Both gain and loss of function assays confirmed that STAT4 was required for cell apoptosis under hypoxia conditions, and that the GC apoptosis caused by hypoxia was markedly attenuated following FF-MAS treatment through inhibition of STAT4 expression. Correlation analysis in vivo revealed that GC apoptosis was associated with increased STAT4 expression, while the FF-MAS content in follicular fluid was negatively correlated with STAT4 mRNA levels and cell apoptosis. These findings elucidate a novel role of FF-MAS-mediated protection of GCs by inhibiting STAT4 expression under hypoxia, which might contribute to the mechanistic understanding of follicular development.


Granulosa cells (GCs) influence follicle growth and development, with their proliferation and differentiation promoting follicle development and ovulation, while their programmed cell death and degeneration trigger follicular atresia. In this study, to investigate the effect of FF-MAS on GCs of follicles, we performed gene expression profiling in the domestic pig (Sus scrofa). We discovered STAT4 is required for GC apoptosis under hypoxia conditions both in vitro and in vivo and FF-MAS prevents porcine ovarian granulosa cells from hypoxia-induced apoptosis via inhibiting STAT4 expression.


Assuntos
Apoptose , Líquido Folicular , Células da Granulosa , Meiose , Fator de Transcrição STAT4 , Animais , Células da Granulosa/efeitos dos fármacos , Feminino , Apoptose/efeitos dos fármacos , Suínos , Líquido Folicular/química , Meiose/efeitos dos fármacos , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT4/genética , Esteróis , Hipóxia/veterinária
19.
Biomolecules ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672427

RESUMO

Cholesterol is an essential molecule of life, and its synthesis can be inhibited by both genetic and nongenetic mechanisms. Hundreds of chemicals that we are exposed to in our daily lives can alter sterol biosynthesis. These also encompass various classes of FDA-approved medications, including (but not limited to) commonly used antipsychotic, antidepressant, antifungal, and cardiovascular medications. These medications can interfere with various enzymes of the post-lanosterol biosynthetic pathway, giving rise to complex biochemical changes throughout the body. The consequences of these short- and long-term homeostatic disruptions are mostly unknown. We performed a comprehensive review of the literature and built a catalogue of chemical agents capable of inhibiting post-lanosterol biosynthesis. This process identified significant gaps in existing knowledge, which fall into two main areas: mechanisms by which sterol biosynthesis is altered and consequences that arise from the inhibitions of the different steps in the sterol biosynthesis pathway. The outcome of our review also reinforced that sterol inhibition is an often-overlooked mechanism that can result in adverse consequences and that there is a need to develop new safety guidelines for the use of (novel and already approved) medications with sterol biosynthesis inhibiting side effects, especially during pregnancy.


Assuntos
Esteróis , Animais , Humanos , Vias Biossintéticas/efeitos dos fármacos , Colesterol/biossíntese , Colesterol/metabolismo , Lanosterol/metabolismo , Esteróis/biossíntese , Esteróis/metabolismo
20.
J Exp Zool A Ecol Integr Physiol ; 341(5): 627-641, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38567629

RESUMO

Adult workers of Western honey bees (Apis mellifera L.) acquire sterols from their pollen diet. These food sterols are transported by the hemolymph to peripheral tissues such as the mandibular and the hypopharyngeal glands in the worker bees' heads that secrete food jelly which is fed to developing larvae. As sterols are obligatory components of biological membranes and essential precursors for molting hormone synthesis in insects, they are indispensable to normal larval development. Thus, the study of sterol delivery to larvae is important for a full understanding of honey bee larval nutrition and development. Whereas hypopharyngeal glands only require sterols for their membrane integrity, mandibular glands add sterols, primarily 24-methylenecholesterol, to its secretion. For this, sterols must be transported through the glandular epithelial cells. We have analyzed for the first time in A. mellifera the expression of genes which are involved in intracellular movement of sterols. Mandibular and hypopharyngeal glands were dissected from newly emerged bees, 6-day-old nurse bees that feed larvae and 26-day-old forager bees. The expression of seven genes involved in intracellular sterol metabolism was measured with quantitative real-time PCR. Relative transcript abundance of sterol metabolism genes was significantly influenced by the age of workers and specific genes but not by gland type. Newly emerged bees had significantly more transcripts for six out of seven genes than older bees indicating that the bulk of the proteins needed for sterol metabolism are produced directly after emergence.


Assuntos
Homeostase , Proteínas de Insetos , Esteróis , Abelhas/genética , Animais , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Esteróis/metabolismo , Hipofaringe/metabolismo , Regulação da Expressão Gênica , Larva/metabolismo , Larva/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...