Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.360
Filtrar
1.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274874

RESUMO

Activation of the Hedgehog (Hh) signaling pathway is often associated with the progression of various types of cancer. The purpose of study was to search for inhibitors of the Hh signaling pathway among eight compounds belonging to the group of isoxazolyl steroids. The evaluation of the effectiveness of the compounds was based on the analysis of their cytotoxicity, effect on the cell cycle, on the expression of key Hh-signaling-pathway genes (Ptch1, Smo, and Gli1) and putative target genes MMP-2 and MMP-9. Four compounds with the most pronounced cytotoxic effect were identified: compounds 1, 2 (HeLa cells) and 3, 4 (A549 cells). Compounds 1 and 2 significantly reduced the expression of the Ptch1, Smo, Gli1 genes, but had the opposite effect on MMP-2 gene expression: Compound 1 increased it, and compound 2 decreased it. Compounds 3 and 4 did not have a noticeable inhibitory effect on the expression of the Shh pathway receptors, but significantly inhibited MMP-2 and MMP-9 expression. Thus, it was shown that inhibition of the Shh signaling pathway by isoxazolyl steroids can have the opposite effect on MMPs gene expression, which is what should be taken into account in further studies of these compounds as therapeutic agents.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog , Transdução de Sinais , Esteroides , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Transdução de Sinais/efeitos dos fármacos , Esteroides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células A549 , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Linhagem Celular Tumoral , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Antineoplásicos/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/antagonistas & inibidores , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Ciclo Celular/efeitos dos fármacos
2.
J Transl Med ; 22(1): 762, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143486

RESUMO

BACKGROUND: Personalized disease models are crucial for evaluating how diseased cells respond to treatments, especially in case of innovative biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells (nKPCs). METHODS: EVs were isolated from nKPCs derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport syndrome patient podocytes were characterized and used to assess albumin permeability in response to nKPC-EVs or various drugs. RNA sequencing was conducted to identify commonly modulated pathways after nKPC-EV treatment. siRNA transfection was used to demonstrate the involvement of SUMO1 and SENP2 in the modulation of permeability. RESULTS: Treatment with the nKPC-EVs significantly reduced permeability across all the steroid-resistant patients-derived and Alport syndrome-derived podocytes. At variance, podocytes appeared unresponsive to standard pharmacological treatments, with the exception of one line, in alignment with the patient's clinical response at 48 months. By RNA sequencing, only two genes were commonly upregulated in nKPC-EV-treated genetically altered podocytes: small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2). SUMO1 and SENP2 downregulation increased podocyte permeability confirming the role of the SUMOylation pathway. CONCLUSIONS: nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocytes with genetic dysfunction, through modulation of SUMOylation, an important pathway for the stability of podocyte slit diaphragm proteins. Our findings also suggest the feasibility of developing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.


Assuntos
Vesículas Extracelulares , Síndrome Nefrótica , Podócitos , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Humanos , Síndrome Nefrótica/patologia , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Vesículas Extracelulares/metabolismo , Avaliação Pré-Clínica de Medicamentos , Modelos Biológicos , Células-Tronco/metabolismo , Esteroides/farmacologia , Rim/patologia , Rim/metabolismo , Resistência a Medicamentos , Recém-Nascido , Masculino
3.
J Steroid Biochem Mol Biol ; 244: 106597, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39127416

RESUMO

This research aimed to develop novel selective secosteroids that are highly active against hormone-dependent breast cancer. A simple and convenient approach to N'-acylated 13,17-secoestra-1,3,5(10)-trien-17-oic acid hydrazides was disclosed and these novel types of secosteroids were screened for cytotoxicity against the hormone-dependent human breast cancer cell line MCF7. Most secosteroid N'-benzoyl hydrazides have demonstrated high cytotoxicity against MCF7 cells with IC50 values below 5 µM, which are superior to that of the reference drug cisplatin. Hit compounds 2c, 2e and 2i were characterized by high cytotoxicity (IC50 = 1.6-1.9 µM) and very good selectivity towards MCF7 breast cancer cells. The lead secosteroids 2c, 2e and 2i also exhibit antiestrogenic effects and alter the expression of cell cycle regulating proteins. The effect of selected compounds on PARP (poly(ADP-ribose) polymerase) and Bcl-2 (B-cell CLL/lymphoma 2) indicates their proapoptotic potential. The synthesized secosteroids may be considered as new promising anti-breast cancer agents targeting ERα and apoptosis pathways.


Assuntos
Antineoplásicos , Neoplasias da Mama , Hidrazinas , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hidrazinas/farmacologia , Hidrazinas/química , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Células MCF-7 , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Esteroides/farmacologia , Esteroides/química , Ensaios de Seleção de Medicamentos Antitumorais
4.
Front Immunol ; 15: 1436653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211037

RESUMO

Introduction: Mesenchymal stromal cells (MSCs) have been extensively studied as a potential treatment for steroid refractory acute graft-versus-host disease (aGVHD). However, the majority of clinical trials have focused on bone marrow-derived MSCs. Methods: In this study, we report the outcomes of 86 patients with grade III-IV (82.6% grade IV) steroid refractory aGVHD who were treated with human umbilical cord-derived mesenchymal stromal cells (UC-MSCs). The patient cohort included 17 children and 69 adults. All patients received intravenous infusions of UC-MSCs at a dose of 1 × 106 cells per kg body weight, with a median of 4 infusions (ranging from 1 to 16). Results: The median time between the onset of aGVHD and the first infusion of UC-MSCs was 7 days (ranging from 3 to 88 days). At day 28, the overall response (OR) rate was 52.3%. Specifically, 24 patients (27.9%) achieved complete remission, while 21 (24.4%) exhibited partial remission. The estimated survival probability at 100 days was 43.7%. Following a median follow-up of 108 months (ranging from 61 to 159 months), the survival rate was approximately 11.6% (10/86). Patients who developed acute lower GI tract and liver GVHD exhibited poorer OR rates at day 28 compared to those with only acute lower GI tract GVHD (22.2% vs. 58.8%; p= 0.049). No patient experienced serious adverse events. Discussion: These finding suggest that UC-MSCs are safe and effective in both children and adults with steroid refractory aGVHD. UC-MSCs could be considered as a feasible treatment option for this challenging conditon. (NCT01754454).


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Cordão Umbilical , Adulto , Criança , Humanos , Doença Aguda , Seguimentos , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Esteroides/farmacologia , Esteroides/uso terapêutico , Resultado do Tratamento , Cordão Umbilical/citologia , Estudos de Viabilidade
5.
Mar Drugs ; 22(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057403

RESUMO

Three new monosulfated polyhydroxysteroid glycosides, spiculiferosides A (1), B (2), and C (3), along with new related unsulfated monoglycoside, spiculiferoside D (4), were isolated from an ethanolic extract of the starfish Henricia leviuscula spiculifera collected in the Sea of Okhotsk. Compounds 1-3 contain two carbohydrate moieties, one of which is attached to C-3 of the steroid tetracyclic core, whereas another is located at C-24 of the side chain of aglycon. Two glycosides (2, 3) are biosides, and one glycoside (1), unlike them, includes three monosaccharide residues. Such type triosides are a rare group of polar steroids of sea stars. In addition, the 5-substituted 3-OSO3-α-L-Araf unit was found in steroid glycosides from starfish for the first time. Cell viability analysis showed that 1-3 (at concentrations up to 100 µM) had negligible cytotoxicity against human embryonic kidney HEK293, melanoma SK-MEL-28, breast cancer MDA-MB-231, and colorectal carcinoma HCT 116 cells. These compounds significantly inhibited proliferation and colony formation in HCT 116 cells at non-toxic concentrations, with compound 3 having the greatest effect. Compound 3 exerted anti-proliferative effects on HCT 116 cells through the induction of dose-dependent cell cycle arrest at the G2/M phase, regulation of expression of cell cycle proteins CDK2, CDK4, cyclin D1, p21, and inhibition of phosphorylation of protein kinases c-Raf, MEK1/2, ERK1/2 of the MAPK/ERK1/2 pathway.


Assuntos
Antineoplásicos , Glicosídeos , Estrelas-do-Mar , Animais , Humanos , Estrelas-do-Mar/química , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Esteroides/farmacologia , Esteroides/química , Esteroides/isolamento & purificação , Proliferação de Células/efeitos dos fármacos
6.
Steroids ; 209: 109468, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959993

RESUMO

Steroidal alkaloids are secondary metabolites that are often found in plants, fungi and sponges. These compounds are considered as a source of bioactive compounds for the treatment of chronic diseases, such as neurological disorder like Alzheimer's disease (AD). Some examples of alkaloid derivatives currently used to treat AD symptoms include galantamine, huperzine A, and other alkaloids. AD is a multifactorial disease caused by multiple factors such as inflammation, oxidative stress, and protein aggregation. Based on the various important neuroprotective activities and different pharmacological effects of steroidal alkaloids with polypharmacological modulatory effects, they can lead to the development of new drugs for the treatment of AD. There are limited studies on the involvement of steroidal alkaloids in AD. Therefore, the mechanisms and neuroprotective abilities of these compounds are still poorly understood. The purpose of this review article is to provide an overview of the mechanism, toxicity and neuroprotective benefits of steroidal alkaloids and to discuss future possibilities to improve the application of steroidal alkaloids as anti-AD agents. The therapeutic value and limitations of the steroidal alkaloid are investigated to provide new perspectives for future clinical development studies.


Assuntos
Alcaloides , Doença de Alzheimer , Fármacos Neuroprotetores , Esteroides , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/uso terapêutico , Esteroides/química , Esteroides/farmacologia , Esteroides/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Animais
7.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000144

RESUMO

A growing body of experimental data indicates that ceragenins (CSAs), which mimic the physicochemical properties of the host's cationic antimicrobial peptide, hold promise for the development of a new group of broad-spectrum antimicrobials. Here, using a set of in vivo experiments, we assessed the potential of ceragenins in the eradication of an important etiological agent of nosocomial infections, Acinetobacter baumannii. Assessment of the bactericidal effect of ceragenins CSA-13, CSA-44, and CSA-131 on clinical isolates of A. baumannii (n = 65) and their effectiveness against bacterial cells embedded in the biofilm matrix after biofilm growth on abiotic surfaces showed a strong bactericidal effect of the tested molecules regardless of bacterial growth pattern. AFM assessment of bacterial cell topography, bacterial cell stiffness, and adhesion showed significant membrane breakdown and rheological changes, indicating the ability of ceragenins to target surface structures of A. baumannii cells. In the cell culture of A549 lung epithelial cells, ceragenin CSA-13 had the ability to inhibit bacterial adhesion to host cells, suggesting that it interferes with the mechanism of bacterial cell invasion. These findings highlight the potential of ceragenins as therapeutic agents in the development of antimicrobial strategies against bacterial infections caused by A. baumannii.


Assuntos
Acinetobacter baumannii , Aderência Bacteriana , Biofilmes , Esteroides , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Humanos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Esteroides/farmacologia , Esteroides/química , Aderência Bacteriana/efeitos dos fármacos , Células A549 , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia
8.
Steroids ; 210: 109475, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067611

RESUMO

Nitrogen-containing steroids are known as prostate cancer therapeutics. In this work, a series of pregnane derivatives bearing an imidazolium moiety were synthesized using Δ16-20-ketones as starting material. An improved approach for the construction of the 20-keto-21-heterocycle-substituted fragment involved the rearrangement of 16,17-epoxides with HCl, followed by reaction of the formed α-chloroketone with 1-substituted imidazoles. Binding affinity analysis of the imidazolium steroids and their synthetic intermediates to human CYP17A1 showed only type I (substrate-like) interactions. The strongest affinity was observed for 16α,17α-epoxy-5α-pregnan-20-on-3ß-ol (Kd = 0.66 ± 0.05 µM). The steroid derivatives have been evaluated for antitumor activity against a range of prostate cancer cells as well as against various other solid tumor and hematologic cancer cell lines. All 21-imidazolium salts were active against the hormone-dependent prostate cancer line LNCaP. The most pronounced cytotoxicity in solid tumor and hematologic cancer cell lines was observed for intermediate product, 21-chloro-5α-pregn-16-en-20-on-3ß-ol. Among the imidazolium salts, the derivatives with a single bond were more cytotoxic than their unsaturated congeners.


Assuntos
Antineoplásicos , Imidazóis , Humanos , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Sais/química , Sais/farmacologia , Sais/síntese química , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Esteroide 17-alfa-Hidroxilase/metabolismo , Esteroides/química , Esteroides/farmacologia , Esteroides/síntese química , Relação Estrutura-Atividade , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia
9.
Expert Opin Investig Drugs ; 33(8): 791-799, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973782

RESUMO

INTRODUCTION: Steroid-refractory acute graft-versus-host disease (SR-aGVHD) remains a formidable obstacle in the field of allogeneic hematopoietic cell transplantation (allo-HCT), significantly contributing to patient morbidity and mortality. The current therapeutic landscape for SR-aGVHD is limited, often yielding suboptimal results, thereby emphasizing the urgent need for innovative and effective treatments. AREAS COVERED: In light of the pivotal REACH2 trial, ruxolitinib phosphate, a Janus kinase inhibitor, has gained prominence as the standard treatment for SR-aGVHD. Nevertheless, a considerable number of patients either do not respond to or cannot tolerate this therapy. This review delves into emerging treatments for SR-aGVHD, including mesenchymal stromal cells (MSCs), fecal microbiota transplantation (FMT), CD3/CD7 blockade, neihulizumab, begelomab, tocilizumab, and vedolizumab. While some of these agents have shown encouraging results in early-phase trials, issues such as treatment-related toxicities and inconsistent responses in larger studies highlight the necessity for ongoing research. EXPERT OPINION: Current trials exploring new agents and combination therapies offer hope for fulfilling the unmet clinical needs in SR-aGVHD, potentially leading to more effective and precise treatment strategies.


Assuntos
Drogas em Investigação , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Drogas em Investigação/farmacologia , Drogas em Investigação/administração & dosagem , Doença Aguda , Animais , Desenvolvimento de Medicamentos , Transplante Homólogo , Esteroides/farmacologia , Esteroides/administração & dosagem
10.
J Infect Dis ; 230(1): e149-e158, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052707

RESUMO

BACKGROUND: Cytochrome bd complexes are respiratory oxidases found exclusively in prokaryotes that are important during infection for numerous bacterial pathogens. METHODS: In silico docking was employed to screen approved drugs for their ability to bind to the quinol site of Escherichia coli cytochrome bd-I. Respiratory inhibition was assessed with oxygen electrodes using membranes isolated from E. coli and methicillin-resistant Staphylococcus aureus strains expressing single respiratory oxidases (ie, cytochromes bd, bo', or aa3). Growth/viability assays were used to measure bacteriostatic and bactericidal effects. RESULTS: The steroid drugs ethinylestradiol and quinestrol inhibited E. coli bd-I activity with median inhibitory concentration (IC50) values of 47 ± 28.9 µg/mL (158 ± 97.2 µM) and 0.2 ± 0.04 µg/mL (0.5 ± 0.1 µM), respectively. Quinestrol inhibited growth of an E. coli "bd-I only" strain with an IC50 of 0.06 ± 0.02 µg/mL (0.2 ± 0.07 µM). Growth of an S. aureus "bd only" strain was inhibited by quinestrol with an IC50 of 2.2 ± 0.43 µg/mL (6.0 ± 1.2 µM). Quinestrol exhibited potent bactericidal effects against S. aureus but not E. coli. CONCLUSIONS: Quinestrol inhibits cytochrome bd in E. coli and S. aureus membranes and inhibits the growth of both species, yet is only bactericidal toward S. aureus.


Assuntos
Antibacterianos , Escherichia coli , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana , Esteroides/farmacologia , Esteroides/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Grupo dos Citocromos b , Citocromos/antagonistas & inibidores , Citocromos/metabolismo
11.
Bioorg Chem ; 151: 107654, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39029319

RESUMO

Cephalostatins and ritterazines represent fascinating classes of dimeric marine derived steroidal alkaloids with unique chemical structures and promising biological activities. Originally isolated from marine tube worms and the tunicate Ritterella tokioka collected off the coast of Japan, cephalostatins and ritterazines display potent anticancer effects by inducing apoptosis, disrupting cell cycle progression, and targeting multiple molecular pathways. This review covers the chemistry and bioactivities of 45 cephalostatins and ritterazines from 1988 to 2024, highlighting their complex structures and medicinal contributions. With insights into their structure activity relationships (SAR). Key structural elements, such as the pyrazine ring and 5/6 spiroketal moieties, are found crucial for their biological effects, suggesting interactions with lipid membranes or hydrophobic protein domains. Additionally, the formation of oxocarbenium ions from spiroketal cleavage may enhance their potency by covalently modifying DNA. The pharmacokinetics, ADMET and Drug likeness properties of these steroidal alkaloids are thoroughly addressed. Drug likeness analysis shows that these compounds fit well with the Rule of 4 (Ro4) for Protein-Protein Interaction Drugs (PPIDs), underscoring their potential in this area. Ten compounds (20, 27, 33, 34, 39, 40, 41, 42, 43, and 45) have demonstrated favourable pharmacokinetic and ADMET profiles, making them promising candidates for further research. Future efforts should focus on alternative administration routes, structural modifications, and innovative delivery systems, such as prodrugs and nanoparticles, to improve bioavailability and therapeutic effects. Advances in synthetic chemistry, mechanistic insights, and interdisciplinary collaborations will be essential for translating cephalostatins and ritterazines into effective anticancer therapies.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Humanos , Animais , Relação Estrutura-Atividade , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Estrutura Molecular , Pirazinas/química , Pirazinas/farmacologia , Pirazinas/isolamento & purificação , Esteroides/química , Esteroides/farmacologia , Esteroides/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Compostos de Espiro/isolamento & purificação , Organismos Aquáticos/química , Ensaios de Seleção de Medicamentos Antitumorais , Fenazinas
12.
J Nat Med ; 78(4): 807-827, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014276

RESUMO

Chemical investigations of higher plants, with particular attention paid to their steroidal glycosides, present a promising approach for generating anti-cancer agents from natural products. We conducted a systematic phytochemical investigation of nine higher plants-whole plants and rhizomes of Convallaria majalis, whole plants of Agave utahensis, roots of Adonis amurensis, seeds of Adonis aestivalis, bulbs of Bessera elegans, bulbs of Fritillaria meleagris, seeds of Digitalis purpurea, underground parts of Yucca glauca, and bulbs of Lilium pumilum-which led to the discovery of novel steroidal glycosides. The structures of these new constituents were determined based on spectroscopic data and chemical transformations. The identification of the monosaccharides including their absolute configurations was carried out by direct HPLC analysis of their hydrolysates using an optical rotation detector. Cytotoxicity of the isolated steroidal glycosides was evaluated against various tumor cells (A549, ACHN, HepG-2, HL-60, HSC-2, HSC-3, HSC-4, HSG, and SBC-3) and normal cells (Fa2 N-4, HK-2, and TIG-3 cells). Certain steroidal glycosides exhibit selective cytotoxicity and synergistic effects, making them potential lead compounds for use as anti-cancer agents. We document the isolation of 139 steroidal glycosides from higher plants and assessment their cytotoxic activities.


Assuntos
Antineoplásicos Fitogênicos , Glicosídeos , Esteroides , Glicosídeos/farmacologia , Glicosídeos/química , Humanos , Esteroides/química , Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química
13.
Bioorg Chem ; 151: 107619, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39024806

RESUMO

Two rare 8-hydroxysteroid glycosides (6-7), and their downstream metabolites (1-5) with an unprecedented 6/6/5/5/5-pentacyclic scaffold, together with seven known analogues (8-14) were isolated from the twigs and leaves of Strophanthus divaricatus. Their structures were fully assigned by analysis of the spectroscopic and ECD data, NMR calculations, X-ray crystallographic study, and chemical methods. In addition, the inhibitory effects of 1-14 on liver and lung cancer cell lines were evaluated, and preliminary structure-activity relationship was discussed. Data-independent acquisition (DIA)-based quantitative proteomic analysis and biological verification of H1299 cells suggested that this family of compounds may play an anticancer role by suppressing both DNA damage response (DDR) and mTOR/S6K signaling pathways.


Assuntos
Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Relação Estrutura-Atividade , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Dano ao DNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Esteroides/química , Esteroides/farmacologia , Esteroides/isolamento & purificação , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Quinases S6 Ribossômicas/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química
14.
Fitoterapia ; 177: 106134, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047844

RESUMO

Herein, six previously undescribed steroids (1-6), were isolated from leaves and twigs of Aphanamixis polystachya (Wall.) R. N. Parker (Meliaceae). Their structures were elucidated by comprehensive spectroscopic analysis, including HRESIMS, 1D and 2D NMR, UV, and IR. Antiviral activity of these compounds were evaluated. Compounds 1-6 showed varying degrees of inhibitory activity against the severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2 Mpro) at 200 µM.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Meliaceae , Folhas de Planta , SARS-CoV-2 , Esteroides , Antivirais/farmacologia , Antivirais/isolamento & purificação , Antivirais/química , Esteroides/farmacologia , Esteroides/isolamento & purificação , Esteroides/química , Folhas de Planta/química , Estrutura Molecular , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores , Meliaceae/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Humanos , Caules de Planta/química
15.
Sci Rep ; 14(1): 16270, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009650

RESUMO

Steroid-induced osteonecrosis of the femoral head (SONFH) is the predominant cause of non-traumatic osteonecrosis of the femoral head (ONFH). Impaired blood supply and reduced osteogenic activity of the femoral head are the key pathogenic mechanisms of SONFH. Fibroblast growth factor 23 (FGF23) levels are not only a biomarker for early vascular lesions caused by abnormal mineral metabolism, but can also act directly on the peripheral vascular system, leading to vascular pathology. The aim of this study was to observe the role of FGF23 on bone microarchitecture and vascular endothelium, and to investigate activation of pyroptosis in SONFH. Lipopolysaccharide (LPS) combined with methylprednisolone (MPS) was applied for SONFH mouse models, and adenovirus was used to increase or decrease the level of FGF23. Micro-CT and histopathological staining were used to observe the structure of the femoral head, and immunohistochemical staining was used to observe the vascular density. The cells were further cultured in vitro and placed in a hypoxic environment for 12 h to simulate the microenvironment of vascular injury during SONFH. The effect of FGF23 on osteogenic differentiation was evaluated using alkaline phosphatase staining, alizarin red S staining and expression of bone formation-related proteins. Matrigel tube formation assay in vitro and immunofluorescence were used to detect the ability of FGF23 to affect endothelial cell angiogenesis. Steroids activated the pyroptosis signaling pathway, promoted the secretion of inflammatory factors in SONFH models, led to vascular endothelial dysfunction and damaged the femoral head structure. In addition, FGF23 inhibited the HUVECs angiogenesis and BMSCs osteogenic differentiation. FGF23 silencing attenuated steroid-induced osteonecrosis of the femoral head by inhibiting the pyroptosis signaling pathway, and promoting osteogenic differentiation of BMSCs and angiogenesis of HUVECs in vitro.


Assuntos
Necrose da Cabeça do Fêmur , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Osteogênese , Piroptose , Piroptose/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23/metabolismo , Animais , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/metabolismo , Necrose da Cabeça do Fêmur/patologia , Camundongos , Fatores de Crescimento de Fibroblastos/metabolismo , Osteogênese/efeitos dos fármacos , Humanos , Cabeça do Fêmur/patologia , Cabeça do Fêmur/metabolismo , Modelos Animais de Doenças , Metilprednisolona/farmacologia , Masculino , Lipopolissacarídeos/toxicidade , Células Endoteliais da Veia Umbilical Humana/metabolismo , Diferenciação Celular , Esteroides/farmacologia
16.
Phytochemistry ; 225: 114172, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38834130

RESUMO

In total, 16 undescribed steroidal alkaloids (1-16), along with nine known ones (17-25), were isolated from the bulbs of Fritillaria ussuriensis Maxim. Among the undescribed compounds mentioned, compounds 1-6, 8 bearing an 16ß-hydroxy substituent, as well as compounds 13 and 14 exhibited an unusual seven-membered skeleton. Their structures were established based on extensive spectroscopic analyses, including HRESIMS and NMR (1D and 2D), and comparison with the data reported in the literature. Furthermore, all the compounds were evaluated for their anti-inflammatory effect on the NO production of LPS-stimulated RAW264.7 cells. Compounds 1, 4, 11, 15, 22 and 24 could significantly inhibit NO production with IC50 values below 10 µM.


Assuntos
Alcaloides , Anti-Inflamatórios , Fritillaria , Lipopolissacarídeos , Óxido Nítrico , Raízes de Plantas , Fritillaria/química , Camundongos , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Células RAW 264.7 , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Raízes de Plantas/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Estrutura Molecular , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Esteroides/química , Esteroides/farmacologia , Esteroides/isolamento & purificação , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
17.
Steroids ; 208: 109449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851553

RESUMO

Chemical investigation of the fungus Trichoderma asperellum SCNU-F0048 led to the discovery of two new steroids, ergosta-4,6,8 (14),22-tetraen-3-(3'-methyl-4'-hydroxyl-γ-butenolide) (1) and camphosterol B (2), as well as two known compounds, i.e. stigmasta-4,6,8(14),22-tetraen-3-one (3) and 4-hydroxy-17- methylincisterol (4). Their structures were elucidated by extensive nuclear mangnetic resonance, spectrum analysis and single crystal X-ray diffraction analysis. Bioassay disclosed that compound 1 showed strong cytotoxicity to a panel of tumor cell lines. Moreover, compounds 1 and 2 showed excellent antifungal activity against Penicillium italicum with IC50 values of 0.016 and 0.022 µM, respectively.


Assuntos
Esteroides , Trichoderma , Esteroides/química , Esteroides/farmacologia , Humanos , Trichoderma/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Penicillium/química , Conformação Molecular , Modelos Moleculares , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais
18.
Org Lett ; 26(27): 5794-5798, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38935544

RESUMO

Pyrrole alkaloids (PAs) are a diverse class of natural products with complex carbon frameworks and broad bioactivities that are usually derived from marine sponges. Stylissa massa and Pseudospongosorites suberitoides are two independent sponges collected from the South China Sea in 2013 and 2018, respectively. We discovered PAs are common constituents in both two sponges; more specifically, S. massa produces pyrrole-imidazole alkaloids, and P. suberitoides contains pyrrolidone alkaloids. In this study, three pyrrole steroid metabolites were obtained. Compounds 1 and 2 are a pair of epimers sharing a new 5/7/5/6/6 pentacyclic structural configuration, and compound 3 has a new rigid 5/6/6 tricyclic structure. Interestingly, their scaffolds all possess a 6/6 bicyclic system on the featured classic pyrrole/pyrrolidone skeletons, so-dubbed tagpyrrollins A and B (1 and 2, respectively) and tagpyrrollidone A (3). From a biosynthetic viewpoint, 4,5-dihydroxypent-2-enal probably plays a crucial role in constructing these pyrrole steroid analogues. Based on our previous study on the inhibitory activity of spongiacidin targeting AKR1B1, a drug target for the treatment of chronic diabetic complications, in this study we found that tagpyrrolin A (1) also exhibits an inhibitory effect against AKR1B1.


Assuntos
Poríferos , Pirróis , Pirróis/química , Pirróis/farmacologia , Poríferos/química , Animais , Estrutura Molecular , Esteroides/química , Esteroides/farmacologia , Humanos , Alcaloides/química , Alcaloides/farmacologia , Relação Estrutura-Atividade
19.
J Asian Nat Prod Res ; 26(10): 1254-1260, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38945154

RESUMO

A new steroid, 2a-oxa-2-oxo-5ß-hydroxy-3,4-dinor-24-methylcholesta-22E-ene (1), together with 10 known ones (2-11), was isolated from the marine sponge Cliona sp. The structures of these compounds were determined by the spectroscopic methods (UV, IR, MS, and NMR) and X-ray diffraction analysis. Compound 1 was the third example of 3,4-dinorsteroid with a hemiketal at C-5 that was isolated from the natural source. In addition, the antibacterial activities of these compounds were also evaluated. However, none of them exhibited significant inhibition effects.


Assuntos
Antibacterianos , Biologia Marinha , Poríferos , Animais , Poríferos/química , Estrutura Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Ressonância Magnética Nuclear Biomolecular , Esteroides/química , Esteroides/farmacologia , Esteroides/isolamento & purificação , Cristalografia por Raios X
20.
Phytochemistry ; 224: 114140, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750709

RESUMO

Eight previously undescribed cevanine-type steroidal alkaloids, cirrhosinones I-N and cirrhosinols A-B, along with five known analogs, were isolated from the bulbs of Fritillaria cirrhosa D. Don. Their structures were elucidated on the basis of comprehensive analysis of HRESIMS, 1D and 2D NMR spectroscopic data, and single-crystal X-ray diffraction analyses. All compounds revealed weak NO inhibitory activities in the LPS-stimulated NR8383 cells at the concentration of 20 µM, with inhibition ratios ranging from 5.1% to 14.3%.


Assuntos
Alcaloides , Fritillaria , Raízes de Plantas , Fritillaria/química , Raízes de Plantas/química , Estrutura Molecular , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Cevanas/química , Cevanas/farmacologia , Cevanas/isolamento & purificação , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Animais , Conformação Molecular , Cristalografia por Raios X , Linhagem Celular , Ratos , Esteroides/química , Esteroides/isolamento & purificação , Esteroides/farmacologia , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...