Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.557
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38949929

RESUMO

Approximately one third of the population is prone to motion sickness (MS), which is associated with the dysfunction in the integration of sensory inputs. Transcranial alternating current stimulation (tACS) has been widely used to modulate neurological functions by affecting neural oscillation. However, it has not been applied in the treatment of motion sickness. This study aims to investigate changes in brain oscillations during exposure to MS stimuli and to further explore the potential impact of tACS with the corresponding frequency and site on MS symptoms. A total of 19 subjects were recruited to be exposed to Coriolis stimuli to complete an inducing session. After that, they were randomly assigned to tACS stimulation group or sham stimulation group to complete a stimulation session. Electroencephalography (EEG), electrocardiogram, and galvanic skin response were recorded during the experiment. All the subjects suffering from obvious MS symptoms after inducing session were observed that alpha power of four channels of parieto-occipital lobe significantly decreased (P7: t =3.589, p <0.001; P8: t =2.667, p <0.05; O1: t =3.556, p <0.001; O2: t =2.667, p <0.05). Based on this, tACS group received the tACS stimulation at 10Hz from Oz to CPz. Compared to sham group, tACS stimulation significantly improved behavioral performance and entrained the alpha oscillation in individuals whose alpha power decrease during the inducing session. The findings show that parieto-occipital alpha oscillation plays a critical role in the integration of sensory inputs, and alpha tACS on parieto-occipital can become a potential method to mitigate MS symptoms.


Assuntos
Ritmo alfa , Eletroencefalografia , Resposta Galvânica da Pele , Enjoo devido ao Movimento , Lobo Occipital , Lobo Parietal , Estimulação Transcraniana por Corrente Contínua , Humanos , Enjoo devido ao Movimento/prevenção & controle , Enjoo devido ao Movimento/fisiopatologia , Masculino , Lobo Occipital/fisiologia , Feminino , Lobo Parietal/fisiologia , Adulto , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto Jovem , Resposta Galvânica da Pele/fisiologia , Eletrocardiografia
2.
Zhonghua Yi Xue Za Zhi ; 104(25): 2289-2295, 2024 Jul 02.
Artigo em Chinês | MEDLINE | ID: mdl-38951101

RESUMO

Neuromodulation techniques have gradually evolved from electrical or chemical methods to various physical stimulation techniques including electricity, magnetism, sound, light, heat, and more. However, the clinical efficacy and mechanisms of each stimulation technique or paradigm vary greatly. To facilitate the understanding of the therapeutic effects and mechanisms of different neuromodulation techniques, combined with current clinical practice, the author takes the classification of non-invasive transcranial electrical stimulation as an example and proposes the idea of using energy magnitude as the primary classification and different media/stimulation routes as the secondary classification. This classification emphasizes the energy essence of various physical stimuli, followed by the transmission carriers of physical stimuli. This classification method helps to guide and design neuromodulation paradigms for different target symptoms in various brain disorders, which is beneficial for better serving clinical diagnosis and treatment. The Expert Forum also discusses the advantages and disadvantages of various neuromodulation technologies and their clinical applications.


Assuntos
Encéfalo , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Encefalopatias/terapia
3.
Brain Behav ; 14(7): e3620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38989886

RESUMO

BACKGROUND: Research has shown that visual perceptual learning (VPL) is related to modifying neural activity in higher level decision-making regions. However, the causal roles of the prefrontal and visual cortexes in VPL are still unclear. Here, we investigated how anodal transcranial direct current stimulation (tDCS) of the prefrontal and visual cortices modulates VPL in the early and later phases and the role of multiple brain regions. METHODS: Perceptual learning on the coherent motion direction identification task included early and later stages. After early training, participants needed to continuously train to reach a plateau; once the plateau was reached, participants entered a later stage. Sixty participants were randomly divided into five groups. Regardless of the training at the early and later stages, four groups received multitarget tDCS over the right dorsolateral prefrontal cortex (rDLPFC) and right middle temporal area (rMT), single-target tDCS over the rDLPFC, and single-target tDCS over the rMT or sham stimulation, and one group was stimulated at the ipsilateral brain region (i.e., left MT). RESULTS: Compared with sham stimulation, multitarget and two single-target tDCS over the rDLPFC or rMT improved posttest performance and accelerated learning during the early period. However, multitarget tDCS and two single-target tDCS led to equivalent benefits for VPL. Additionally, these beneficial effects were absent when anodal tDCS was applied to the ipsilateral brain region. For the later period, the above facilitating effects on VPL induced by multitarget or single-target tDCS disappeared. CONCLUSIONS: This study suggested the causal role of the prefrontal and visual cortices in visual motion perceptual learning by anodal tDCS but failed to find greater beneficial effects by simultaneously stimulating the prefrontal and visual cortices. Future research should investigate the functional associations between multiple brain regions to further promote VPL.


Assuntos
Aprendizagem , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Córtex Visual , Percepção Visual , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Córtex Visual/fisiologia , Feminino , Córtex Pré-Frontal/fisiologia , Adulto Jovem , Aprendizagem/fisiologia , Adulto , Percepção Visual/fisiologia , Percepção de Movimento/fisiologia
4.
Physiother Res Int ; 29(3): e2109, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961771

RESUMO

INTRODUCTION: Long COVID occurs when numerous symptoms begin 3 weeks after acute infection and last for 12 months or more. High-definition transcranial direct current stimulation (HD-tDCS) has been tested in patients with COVID-19; however, previous studies did not investigate the HD-tDCS use combined with inspiratory muscle training (IMT) for respiratory sequelae of long COVID. CASE PRESENTATION: Six individuals (four women and two men) aged between 29 and 71 years and presenting with respiratory sequelae of long COVID were included. They were submitted to an intervention that comprised HD-tDCS combined with IMT twice a week for 5 weeks. Lung function and respiratory muscle assessments were performed at baseline and after 5 weeks of intervention. IMPLICATIONS ON PHYSIOTHERAPY PRACTICE: HD-tDCS may enhance the IMT effects by increasing respiratory muscle strength, efficiency, and lung function of individuals with long COVID.


Assuntos
Exercícios Respiratórios , COVID-19 , Síndrome de COVID-19 Pós-Aguda , Músculos Respiratórios , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Músculos Respiratórios/fisiopatologia , SARS-CoV-2 , Resultado do Tratamento , Força Muscular/fisiologia , Testes de Função Respiratória
5.
Sci Rep ; 14(1): 16569, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019949

RESUMO

This randomised, crossover, sham-controlled study explored the neural basis of source-monitoring, a crucial cognitive process implicated in schizophrenia. Left superior temporal gyrus (STG) and dorsolateral prefrontal cortex (DLPFC) were the key focus areas. Thirty participants without neurological or psychological disorders underwent offline sham and active tDCS sessions with specific electrode montage targeting the left STG and DLPFC. Source-monitoring tasks, reality monitoring (Hear-Imagine), internal source-monitoring (Say-Imagine), and external source monitoring (Virtual-Real) were administered. Paired t-test and estimation statistics was performed with Graphpad version 10.1.0. The Benjamini-Hochberg procedure was employed to control the false discovery rate in multiple hypothesis testing. A significant improvement in internal source monitoring tasks (p = 0.001, Cohen's d = 0.97) was observed, but reality monitoring tasks demonstrated moderate improvement (p = 0.02, Cohen's d = 0.44). The study provides insights into the neural mechanisms of source monitoring in healthy individuals and proposes tDCS as a therapeutic intervention, laying the foundation for future studies to refine tDCS protocols and develop individualized approaches to address source monitoring deficits in schizophrenia.


Assuntos
Estudos Cross-Over , Alucinações , Esquizofrenia , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Alucinações/terapia , Alucinações/fisiopatologia , Adulto , Esquizofrenia/terapia , Esquizofrenia/fisiopatologia , Adulto Jovem , Córtex Pré-Frontal Dorsolateral/fisiologia , Lobo Temporal/fisiopatologia , Lobo Temporal/fisiologia
6.
Physiother Res Int ; 29(3): e2111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39014876

RESUMO

BACKGROUND: Aberrant movement in chronic low back pain (CLBP) is associated with a deficit in the lumbar multifidus (LM) and changes in cortical topography. Anodal transcranial direct current stimulation (a-tDCS) can be used to enhance cortical excitability by priming the neuromuscular system for motor control exercise (MCE), thereby enhancing LM activation and movement control. This study aimed to determine the effects of a 6-week MCE program combined with a-tDCS on cortical topography, LM activation, movement patterns, and clinical outcomes in individuals with CLBP. METHODS: Twenty-two individuals with CLBP were randomly allocated to the a-tDCS group (a-tDCS; n = 12) or sham-tDCS group (s-tDCS; n = 10). Both groups received 20 min of tDCS followed by 30 min of MCE. The LM and erector spinae (ES) cortical topography, LM activation, movement control battery tests, and clinical outcomes (disability and quality of life) were measured pre- and post-intervention. RESULTS: Significant interaction (group × time; p < 0.01) was found in the distance between LM and ES cortical locations. The a-tDCS group demonstrated significantly fewer discrete peaks (p < 0.05) in both ES and LM and significant improvements (p < 0.05) in clinical outcomes post-intervention. The s-tDCS group demonstrated a significant increase (p < 0.05) in the number of discrete peaks in the LM cortical topography. No significant changes (p > 0.05) in LM activation were observed in either group; however, both groups demonstrated improved movement patterns. DISCUSSION: Our findings suggest that combined a-tDCS with MCE can separate LM and ES locations over time while s-tDCS (MCE alone) reduces the distance. Our study did not find superior benefits of adding a-tDCS before MCE for LM activation, movement patterns, or clinical outcomes.


Assuntos
Terapia por Exercício , Dor Lombar , Estimulação Transcraniana por Corrente Contínua , Humanos , Dor Lombar/terapia , Dor Lombar/reabilitação , Feminino , Masculino , Adulto , Terapia por Exercício/métodos , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Córtex Motor/fisiopatologia , Resultado do Tratamento , Músculos Paraespinais/fisiologia , Qualidade de Vida , Dor Crônica/terapia , Dor Crônica/reabilitação
7.
J Med Case Rep ; 18(1): 310, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965608

RESUMO

BACKGROUND: Intellectual disability is a neurodevelopmental disorder characterized by significant impairments in intellectual functioning and adaptive behavior. Cognitive flexibility and attention are crucial cognitive domains often affected in children with intellectual disability. This case report explores the novel use of transcranial alternating current stimulation, a noninvasive brain stimulation technique, to enhance these cognitive functions. The study's novelty lies in its focus on alpha-wave frequency transcranial alternating current stimulation targeting specific Brodmann areas and its potential sustained impact on cognitive flexibility and attention in the pediatric population with intellectual disability. CASE PRESENTATION: The case study involved two elementary school students, both 7 years old with mild intellectual disability, one male and one female, both with Turkic ethnicity, from Shahid Fahmideh School for Exceptional Children in Khosrowshah, Iran. Both participants underwent a 2-week intervention with daily 20-minute sessions of transcranial alternating current stimulation at an alpha-wave frequency (10 Hz), targeting Brodmann areas F3 and P3. Cognitive flexibility and attention were assessed using the Wisconsin Card Sorting Test and the Clock Test, administered at four time points: pre-intervention, week 1, week 2, and 1 month post-intervention. Statistical analysis showed significant improvements in both Wisconsin Card Sorting Test and Clock Test scores for both participants compared with baseline, with sustained enhancement over time. CONCLUSION: The findings from this case report indicate that transcranial alternating current stimulation may be a promising intervention for improving cognitive flexibility and attention in children with intellectual disability. The significant and sustained improvements observed suggest that transcranial alternating current stimulation could have a meaningful clinical impact on the cognitive development of this population. However, further research is needed to confirm the efficacy of transcranial alternating current stimulation and to explore its broader applicability and long-term effects in larger, more diverse populations.


Assuntos
Atenção , Cognição , Deficiência Intelectual , Estimulação Transcraniana por Corrente Contínua , Humanos , Criança , Deficiência Intelectual/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Resultado do Tratamento , Testes Neuropsicológicos
8.
BMJ Open ; 14(7): e078281, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991682

RESUMO

INTRODUCTION: Therapeutic interventions for disorders of consciousness lack consistency; evidence supports non-invasive brain stimulation, but few studies assess neuromodulation in acute-to-subacute brain-injured patients. This study aims to validate the feasibility and assess the effect of a multi-session transcranial alternating current stimulation (tACS) intervention in subacute brain-injured patients on recovery of consciousness, related brain oscillations and brain network dynamics. METHODS AND ANALYSES: The study is comprised of two phases: a validation phase (n=12) and a randomised controlled trial (n=138). Both phases will be conducted in medically stable brain-injured adult patients (traumatic brain injury and hypoxic-ischaemic encephalopathy), with a Glasgow Coma Scale score ≤12 after continuous sedation withdrawal. Recruitment will occur at the intensive care unit of a Level 1 Trauma Centre in Montreal, Quebec, Canada. The intervention includes a 20 min 10 Hz tACS at 1 mA intensity or a sham session over parieto-occipital cortical sites, repeated over five consecutive days. The current's frequency targets alpha brain oscillations (8-13 Hz), known to be associated with consciousness. Resting-state electroencephalogram (EEG) will be recorded four times daily for five consecutive days: pre and post-intervention, at 60 and 120 min post-tACS. Two additional recordings will be included: 24 hours and 1-week post-protocol. Multimodal measures (blood samples, pupillometry, behavioural consciousness assessments (Coma Recovery Scale-revised), actigraphy measures) will be acquired from baseline up to 1 week after the stimulation. EEG signal analysis will focus on the alpha bandwidth (8-13 Hz) using spectral and functional network analyses. Phone assessments at 3, 6 and 12 months post-tACS, will measure long-term functional recovery, quality of life and caregivers' burden. ETHICS AND DISSEMINATION: Ethical approval for this study has been granted by the Research Ethics Board of the CIUSSS du Nord-de-l'Île-de-Montréal (Project ID 2021-2279). The findings of this two-phase study will be submitted for publication in a peer-reviewed academic journal and submitted for presentation at conferences. The trial's results will be published on a public trial registry database (ClinicalTrials.gov). TRIAL REGISTRATION NUMBER: NCT05833568.


Assuntos
Transtornos da Consciência , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Transtornos da Consciência/terapia , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/etiologia , Eletroencefalografia , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto , Cuidados Críticos/métodos , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/fisiopatologia , Lesões Encefálicas/terapia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/complicações , Escala de Coma de Glasgow , Masculino , Feminino , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/fisiopatologia , Estado de Consciência
9.
Transl Psychiatry ; 14(1): 279, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977683

RESUMO

Working memory deficits are linked to irregularities in the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC) in schizophrenia, effective intervention strategies are lacking. We evaluated the differential efficacy and underlying neuromechanisms of targeting transcranial direct current stimulation (tDCS) at the DLPFC and the PPC with concurrent cognitive performance for working memory in schizophrenia. In a randomized and double-blind clinical trial, sixty clinically stable schizophrenic patients with below-average working memory were randomly assigned to active DLPFC, active PPC, and sham tDCS groups. Two sessions of tDCS during N-back task were delivered daily for five days. The primary outcome was changes in spatial span test scores from baseline to week 1. The secondary outcomes included changes in scores of color delay-estimation task, other cognitive tasks, and mismatch negativity (biomarker of N-methyl-d-aspartate receptor functioning). Compared with the active DLPFC group, the active PPC group demonstrated significantly greater improvement in spatial span test scores (p = 0.008, d = 0.94) and an augmentation in color delay-estimation task capacity at week 1; the latter sustained to week 2. Compared with the sham tDCS group, the active PPC group did not show a significant improvement in spatial span test scores at week 1 and 2; however, significant enhancement was observed in their color delay-estimation task capacity at week 2. Additionally, mismatch negativity amplitude was enhanced, and changes in theta band measures were positively correlated with working memory improvement in the active PPC group, while no such correlations were observed in the active DLPFC group or the sham tDCS group. Our results suggest that tDCS targeting the PPC relative to the DLPFC during concurrent cognitive performance may improve working memory in schizophrenia, meriting further investigation. The improvement in working memory appears to be linked to enhanced N-methyl-d-aspartate receptor functioning.


Assuntos
Memória de Curto Prazo , Lobo Parietal , Córtex Pré-Frontal , Esquizofrenia , Estimulação Transcraniana por Corrente Contínua , Humanos , Memória de Curto Prazo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Esquizofrenia/terapia , Esquizofrenia/fisiopatologia , Masculino , Feminino , Adulto , Método Duplo-Cego , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Pessoa de Meia-Idade , Resultado do Tratamento , Cognição/fisiologia , Adulto Jovem , Testes Neuropsicológicos
10.
Sci Rep ; 14(1): 15645, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977806

RESUMO

Understanding the response of the injured brain to different transcranial direct current stimulation (tDCS) montages may help explain the variable tDCS treatment results on poststroke motor gains. Cortical connectivity has been found to reflect poststroke motor gains and cortical plasticity, but the changes in connectivity following tDCS remain unknown. We aimed to investigate the relationship between tDCS-induced changes in cortical connectivity and poststroke motor gains. In this study, participants were assigned to receive four tDCS montages (anodal, cathodal, bilateral, and sham) over the primary motor cortex (M1) according to a single-blind, randomized, crossover design. Electroencephalography (EEG) and Jebsen-Taylor hand function test (JTT) were performed before and after the intervention. Motor cortical connectivity was measured using beta-band coherence with the ipsilesional and contralesional M1 as seed regions. Motor gain was evaluated based on the JTT completion time. We examined the relationship between baseline connectivity and clinical characteristics and that between changes in connectivity and motor gains after different tDCS montages. Baseline functional connectivity, motor impairment, and poststroke duration were correlated. High ipsilesional M1-frontal-temporal connectivity was correlated with a good baseline motor status, and increased connectivity was accompanied by good functional improvement following anodal tDCS treatment. Low contralesional M1-frontal-central connectivity was correlated with a good baseline motor status, and decreased connectivity was accompanied by good functional improvement following cathodal tDCS treatment. In conclusion, EEG-based motor cortical connectivity was correlated with stroke characteristics, including motor impairment and poststroke duration, and motor gains induced by anodal and cathodal tDCS.


Assuntos
Estudos Cross-Over , Eletroencefalografia , AVC Isquêmico , Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Motor/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Pessoa de Meia-Idade , AVC Isquêmico/fisiopatologia , AVC Isquêmico/terapia , Método Simples-Cego , Idoso , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto , Plasticidade Neuronal/fisiologia
11.
Scand J Pain ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956966

RESUMO

BACKGROUND: The aim of this systematic review is to analyze the efficacy of noninvasive brain stimulation (NBS) in the treatment of central post-stroke pain (CPSP). METHODS: We included randomized controlled trials testing the efficacy of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation versus placebo or other usual therapy in patients with CPSP. Articles in English, Portuguese, Spanish, Italian, and French were included. A bibliographic search was independently conducted on June 1, 2022, by two authors, using the databases MEDLINE (PubMed), Embase (Elsevier), Cochrane Central Register of Controlled Trials (CENTRAL), Scopus, and Web of Science Core Collection. The risk of bias was assessed using the second version of the Cochrane risk of bias (RoB 2) tool and the certainty of the evidence was evaluated through Grading of Recommendations Assessment, Development and Evaluation. RESULTS: A total of 2,674 records were identified after removing duplicates, of which 5 eligible studies were included, involving a total of 119 patients. All five studies evaluated repetitive TMS, four of which stimulated the primary motor cortex (M1) and one stimulated the premotor/dorsolateral prefrontal cortex. Only the former one reported a significant pain reduction in the short term, while the latter one was interrupted due to a consistent lack of analgesic effect. CONCLUSION: NBS in the M1 area seems to be effective in reducing short-term pain; however, more high-quality homogeneous studies, with long-term follow-up, are required to determine the efficacy of this treatment in CSPS.


Assuntos
Manejo da Dor , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Humanos , Manejo da Dor/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos
12.
PLoS One ; 19(7): e0307304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012877

RESUMO

BACKGROUND: Parkinson's Disease (PD) affects movement and cognition, and physiotherapy, particularly treadmill gait training, has potential in addressing movement dysfunctions in PD. However, treadmill training falls short in addressing cognitive aspects and adherence. Virtual reality (VR) and gamification can enhance motor and cognitive retraining and improve adherence. People with Parkinson's Disease (PWPD) have decreased motor skill learning efficiency, but tDCS can improve motor and cognitive learning. METHODS: 78 participants with PD will be randomly allocated in a 1:1:1 ratio to one of three groups: (1) treadmill + Gamified Virtual Reality Environment (GVRE) + tDCS training group; (2) treadmill + GVRE training group or (3) treadmill training group. Participants will follow a 6-week, 12-session treadmill gait training plan, gradually increasing session duration from 20 to 45 minutes. Participants in (1) and (2) will undergo a GVRE training protocol, with (1) also receiving tDCS for the first 20 minutes of each session. Assessments will occur at baseline, post-intervention, and at a 6-week follow-up. The primary outcome measure will be gait speed during single and dual-task performance. Secondary measures will include additional gait parameters, executive tests for cognitive performance, and clinical outcomes for disease stage, cognitive status, and physical condition. DISCUSSION: This randomized clinical trial presents an innovative neurorehabilitation protocol that aims to improve gait and cognition in PWPD. The study also examines how tDCS can enhance motor and cognitive training. Results could contribute to enhancing the motor and cognitive state of PWPD through a GVRE and tDCS-based neurorehabilitation protocol. TRIAL REGISTRATION: NCT05243394. 28/02/2024 -v3.2.


Assuntos
Terapia por Exercício , Doença de Parkinson , Estimulação Transcraniana por Corrente Contínua , Realidade Virtual , Humanos , Doença de Parkinson/reabilitação , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Terapia por Exercício/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Marcha/fisiologia , Idoso , Cognição
14.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850217

RESUMO

This study aimed to investigate the effects of high-definition transcranial direct current stimulation on ankle force sense and underlying cerebral hemodynamics. Sixteen healthy adults (8 males and 8 females) were recruited in the study. Each participant received either real or sham high-definition transcranial direct current stimulation interventions in a randomly assigned order on 2 visits. An isokinetic dynamometer was used to assess the force sense of the dominant ankle; while the functional near-infrared spectroscopy was employed to monitor the hemodynamics of the sensorimotor cortex. Two-way analyses of variance with repeated measures and Pearson correlation analyses were performed. The results showed that the absolute error and root mean square error of ankle force sense dropped more after real stimulation than after sham stimulation (dropped by 23.4% vs. 14.9% for absolute error, and 20.0% vs. 10.2% for root mean square error). The supplementary motor area activation significantly increased after real high-definition transcranial direct current stimulation. The decrease in interhemispheric functional connectivity within the Brodmann's areas 6 was significantly correlated with ankle force sense improvement after real high-definition transcranial direct current stimulation. In conclusion, high-definition transcranial direct current stimulation can be used as a potential intervention for improving ankle force sense. Changes in cerebral hemodynamics could be one of the explanations for the energetic effect of high-definition transcranial direct current stimulation.


Assuntos
Tornozelo , Espectroscopia de Luz Próxima ao Infravermelho , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Adulto Jovem , Tornozelo/fisiologia , Hemodinâmica/fisiologia , Circulação Cerebrovascular/fisiologia , Córtex Motor/fisiologia
15.
PLoS One ; 19(6): e0295373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870202

RESUMO

Transcranial direct current stimulation (tDCS) has been shown to modify excitability of the primary motor cortex (M1) and influence online motor learning. However, research on the effects of tDCS on motor learning has focused predominantly on simplified motor tasks. The purpose of the present study was to investigate whether anodal stimulation of M1 over a single session of practice influences online learning of a relatively complex rhythmic timing video game. Fifty-eight healthy young adults were randomized to either a-tDCS or SHAM conditions and performed 2 familiarization blocks, a 20-minute 5 block practice period while receiving their assigned stimulation, and a post-test block with their non-dominant hand. To assess performance, a performance index was calculated that incorporated timing accuracy elements and incorrect key inputs. The results showed that M1 a-tDCS enhanced the learning of the video game based skill more than SHAM stimulation during practice, as well as overall learning at the post-test. These results provide evidence that M1 a-tDCS can enhance acquisition of skills where quality or success of performance depends on optimized timing between component motions of the skill, which could have implications for the application of tDCS in many real-world contexts.


Assuntos
Aprendizagem , Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Jogos de Vídeo , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Aprendizagem/fisiologia , Adulto Jovem , Córtex Motor/fisiologia , Adulto , Destreza Motora/fisiologia
16.
Sci Rep ; 14(1): 13889, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880826

RESUMO

Children with attention deficit/hyperactivity disorder (ADHD) typically exhibit difficulties in emotion regulation. It has been shown that the dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC) are crucially involved in these deficient processes. In this study, we aimed to explore the impact of electrical stimulation over the left dlPFC and right vmPFC on emotion regulation in children with ADHD. Twenty-four children with ADHD completed the Emotional Go/No-Go and Emotional 1-Back tasks while undergoing transcranial direct current stimulation (tDCS) in three separate sessions, each with a different electrode placement: anodal dlPFC (F3)/cathodal vmPFC (Fp2), anodal vmPFC (Fp2)/cathodal dlPFC (F3), and sham stimulation. During both real tDCS conditions, the accuracy of pre-potent inhibitory control and working memory performance improved, but not speed. This study provides evidence that the left dlPFC and the right vmPFC are involved in emotion regulation in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Regulação Emocional , Estimulação Transcraniana por Corrente Contínua , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Criança , Masculino , Feminino , Regulação Emocional/fisiologia , Córtex Pré-Frontal/fisiopatologia , Memória de Curto Prazo/fisiologia , Emoções/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Adolescente
19.
Syst Rev ; 13(1): 165, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915121

RESUMO

BACKGROUND: Non-invasive brain stimulation (NIBS) is a promising intervention for treatment-resistant schizophrenia. However, there are multiple available techniques and a comprehensive synthesis of evidence is lacking. Thus, we will conduct a systematic review and network meta-analysis to investigate the comparative efficacy and safety of NIBS techniques as an add-on to antipsychotics for treatment-resistant schizophrenia. METHODS: We will include single- and double-blind randomized-controlled trials (RCT) comparing any NIBS technique with each other or with a control intervention as an add-on to antipsychotics in adult patients with treatment-resistant schizophrenia. We will exclude studies focusing on predominant negative symptoms, maintenance treatment, and single sessions. The primary outcome will be a change in overall symptoms, and secondary outcomes will be a change in symptom domains, cognitive performance, quality of life, functioning, response, dropouts, and side effects. We will search for eligible studies in previous reviews, multiple electronic databases and clinical trial registries from inception onwards. At least two independent reviewers will perform the study selection, data extraction, and risk of bias assessment. We will measure the treatment differences using standardized mean difference (SMD) and odds ratio (OR) for continuous and dichotomous outcomes, respectively. We will conduct pairwise and network meta-analysis within a frequentist framework using a random-effects model, except for rare event outcomes where we will use a fixed-effects Mantel-Haenszel method. We will investigate potential sources of heterogeneity in subgroup analyses. Reporting bias will be assessed with funnel plots and the Risk of Bias due to Missing Evidence in Network meta-analysis (ROB-MEN) tool. The certainty in the evidence will be evaluated using the Confidence in Network Meta-analysis (CINeMA) approach. DISCUSSION: Our network meta-analysis would provide an up-to-date synthesis of the evidence from all available RCTs on the comparative efficacy and safety of NIBS for treatment-resistant schizophrenia. This information could guide evidence-based clinical practice and improve the outcomes of patients. SYSTEMATIC REVIEW REGISTRATION: PROSPERO-ID CRD42023410645.


Assuntos
Metanálise em Rede , Esquizofrenia Resistente ao Tratamento , Revisões Sistemáticas como Assunto , Estimulação Transcraniana por Corrente Contínua , Humanos , Esquizofrenia Resistente ao Tratamento/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Antipsicóticos/uso terapêutico , Estimulação Magnética Transcraniana/métodos , Metanálise como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Esquizofrenia/terapia
20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 476-484, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38932533

RESUMO

Motor imagery is often used in the fields of sports training and neurorehabilitation for its advantages of being highly targeted, easy to learn, and requiring no special equipment, and has become a major research paradigm in cognitive neuroscience. Transcranial direct current stimulation (tDCS), an emerging neuromodulation technique, modulates cortical excitability, which in turn affects functions such as locomotion. However, it is unclear whether tDCS has a positive effect on motor imagery task states. In this paper, 16 young healthy subjects were included, and the electroencephalogram (EEG) signals and near-infrared spectrum (NIRS) signals of the subjects were collected when they were performing motor imagery tasks before and after receiving tDCS, and the changes in multiscale sample entropy (MSE) and haemoglobin concentration were calculated and analyzed during the different tasks. The results found that MSE of task-related brain regions increased, oxygenated haemoglobin concentration increased, and total haemoglobin concentration rose after tDCS stimulation, indicating that tDCS increased the activation of task-related brain regions and had a positive effect on motor imagery. This study may provide some reference value for the clinical study of tDCS combined with motor imagery.


Assuntos
Encéfalo , Eletroencefalografia , Imaginação , Espectroscopia de Luz Próxima ao Infravermelho , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo/fisiologia , Imaginação/fisiologia , Córtex Motor/fisiologia , Hemoglobinas/análise , Hemoglobinas/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...