Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.255
Filtrar
1.
Mikrochim Acta ; 191(8): 474, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037586

RESUMO

A novel magnetic dispersive solid phase extraction (MDSPE) procedure based on the deep eutectic solvent (DES) modified magnetic graphene oxide/metal organic frameworks nanocomposites (MGO@ZIF-8@DES) was established and used for the efficient enrichment of estradiol, estrone, and diethylstilbestrol in cosmetics (toner, lotion, and cream) for the first time. Then, the three estrogens were separated and determined by UHPLC-UV analysis method. In order to study the features and morphology of the synthesized adsorbents, various techniques such as FT-IR, SEM, and VSM measurements were executed. The MGO@ZIF-8@DES nanocomposites combine the advantages of high adsorption capacity, adequate stability in aqueous solution, and convenient separation from the sample solution. To achieve high extraction recoveries, the Box-Behnken design and single factor experiment were applied in the experimental design. Under the optimum conditions, the method detection limits for three estrogens were 20-30 ng g-1. This approach showed a good correlation coefficient (r more than 0.9998) and reasonable linearity in the range 70-10000 ng g-1. The relative standard deviations for intra-day and inter-day were beneath 7.5% and 8.9%, respectively. The developed MDSPE-UHPLC-UV method was successfully used to determine  three estrogens in cosmetics, and acceptable recoveries in the intervals of 83.5-95.9% were obtained. Finally, three estrogens were not detected in some cosmetic samples. In addition, the Complex GAPI tool was used to evaluate the greenness of the developed pretreatment method. The developed MDSPE-UHPLC-UV method is sensitive, accurate, rapid, and eco-friendly, which provides a promising strategy for determining hormones in different complex samples.


Assuntos
Cosméticos , Solventes Eutéticos Profundos , Estrogênios , Grafite , Estruturas Metalorgânicas , Nanocompostos , Extração em Fase Sólida , Grafite/química , Cosméticos/química , Cosméticos/análise , Nanocompostos/química , Estruturas Metalorgânicas/química , Extração em Fase Sólida/métodos , Estrogênios/análise , Estrogênios/isolamento & purificação , Estrogênios/química , Solventes Eutéticos Profundos/química , Limite de Detecção , Estradiol/química , Estradiol/análise , Estradiol/isolamento & purificação , Estrona/análise , Estrona/química , Estrona/isolamento & purificação , Adsorção , Dietilestilbestrol/análise , Dietilestilbestrol/química , Dietilestilbestrol/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos
2.
Mikrochim Acta ; 191(8): 477, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039391

RESUMO

A novel biofuel cell (BFC)-based self-powered electrochemical immunosensing platform was developed by integrating the target-induced biofuel release and biogate immunoassay for ultrasensitive 17ß-estradiol (E2) detection. The carbon nanocages/gold nanoparticle composite was employed in the BFCs device as the electrode material, through which bilirubin oxidase and glucose oxidase were wired to form the biocathode and bioanode, respectively. Positively charged mesoporous silica nanoparticles (PMSN) were encapsulated with glucose molecules as biofuel and subsequently coated by the negatively charged AuNPs-labelled anti-E2 antibody (AuNPs-Ab) serving as a biogate. The biogate could be opened efficiently and the trapped glucose released once the target E2 was recognized and captured by AuNPs-Ab due to the decreased adhesion between the antigen-antibody complex and PMSN. Then, glucose oxidase oxidized the glucose to produce a large number of electrons, resulting in significantly increased open-circuit voltage (EOCV). Promisingly, the proposed BFC-based self-powered immunosensor demonstrated exceptional sensitivity for the detection of E2 in the concentration range from 1.0 pg mL-1 to 10.0 ng mL -1, with a detection limit of 0.32 pg mL-1 (S/N = 3). Furthermore, the prepared BFC-based self-powered homogeneous immunosensor showed significant potential for implementation as a viable prototype for a mobile and an on-site bioassay system in food and environmental safety applications.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Estradiol , Glucose Oxidase , Ouro , Limite de Detecção , Nanopartículas Metálicas , Imunoensaio/métodos , Estradiol/química , Estradiol/análise , Ouro/química , Glucose Oxidase/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Humanos , Eletrodos , Glucose/análise , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Anticorpos Imobilizados/imunologia , Dióxido de Silício/química , Enzimas Imobilizadas/química
3.
J Photochem Photobiol B ; 257: 112964, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943711

RESUMO

Photopharmacology is a young and rapidly developing field of research that offers significant potential for new insights into targeted therapy. While it primarily focuses on cancer treatment, it also holds promise for other diseases. The key feature of photopharmacological agents is the presence of a photosensitive and biologically active component in the same molecule. In our current study, we synthesized a spiropyran-based meta-stable state photoacid containing a fragment of ß-estradiol. This compound exhibits negative photochromism and photocontrolled fluorescence under visible-light irradiation due to the initial stabilization of its self-protonated form in solution. We conducted comprehensive biological studies on the HeLa cells model to assess the short- and long-term cytotoxicity of the photoacid, its metabolic effects, its influence on signaling and epithelial-mesenchymal transition super-system pathways, and the proportion of the population enriched with cancer stem cells. Our findings reveal that this derivative demonstrates low cytotoxicity to HeLa cells, yet it is capable of dramatically reducing malignant cells side population enriched in cancer stem cells. Additionally, appropriate structural modification lead to an increase in some other biological effects compared to ß-estradiol. In particular, our substance possesses rare properties of AP-1 suppression and demonstrates some pro-oxidant and metabolic effects, which can be regulated by visible light irradiation. As a result, the new estradiol-based photoacid may be considered a promising multi-acting photopharmacological agent for the next-generation anti-cancer research & development.


Assuntos
Estradiol , Luz , Células-Tronco Neoplásicas , Humanos , Células HeLa , Estradiol/química , Estradiol/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
4.
J Enzyme Inhib Med Chem ; 39(1): 2367139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38904149

RESUMO

Estradiol dimers (EDs) possess significant anticancer activity by targeting tubulin dynamics. In this study, we synthesised 12 EDs variants via copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction, focusing on structural modifications within the aromatic bridge connecting two estradiol moieties. In vitro testing of these EDs revealed a marked improvement in selectivity towards cancerous cells, particularly for ED1-8. The most active compounds, ED3 (IC50 = 0.38 µM in CCRF-CEM) and ED5 (IC50 = 0.71 µM in CCRF-CEM) demonstrated cytotoxic effects superior to 2-methoxyestradiol (IC50 = 1.61 µM in CCRF-CEM) and exhibited anti-angiogenic properties in an endothelial cell tube-formation model. Cell-based experiments and in vitro assays revealed that EDs interfere with mitotic spindle assembly. Additionally, we proposed an in silico model illustrating the probable binding modes of ED3 and ED5, suggesting that dimers with a simple linker and a single substituent on the aromatic central ring possess enhanced characteristics compared to more complex dimers.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Estradiol , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Estradiol/farmacologia , Estradiol/química , Estradiol/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Dimerização , Química Click , Linhagem Celular Tumoral
5.
Mikrochim Acta ; 191(7): 383, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861005

RESUMO

A competitive-type photoelectrochemical (PEC) aptasensor coupled with a novel Au@Cd:SnO2/SnS2 nanocomposite was designed for the detection of 17ß-estradiol (E2) in microfluidic devices. The designed Au@Cd:SnO2/SnS2 nanocomposites exhibit high photoelectrochemical activity owing to the good matching of cascade band-edge and the efficient separation of photo-generated e-/h+ pairs derived from the Cd-doped defects in the energy level. The Au@Cd:SnO2/SnS2 nanocomposites were loaded into carbon paste electrodes (CPEs) to immobilize complementary DNA (cDNA) and estradiol aptamer probe DNA (E2-Apt), forming a double-strand DNA structure on the CPE surface. As the target E2 interacts with the double-strand DNA, E2-Apt is sensitively released from the CPE, subsequently increasing the photocurrent intensity due to the reduced steric hindrance of the electrode surface. The competitive-type sensing mechanism, combined with high PEC activity of the Au@Cd:SnO2/SnS2 nanocomposites, contributed to the rapid and sensitive detection of E2 in a "signal on" manner. Under the optimized conditions, the PEC aptasensor exhibited a linear range from 1.0 × 10-13 mol L-1 to 3.2 × 10-6 mol L-1 and a detection limit of 1.2 × 10-14 mol L-1 (S/N = 3). Moreover, the integration of microfluidic device with smartphone controlled portable electrochemical workstation enables the on-site detection of E2. The small sample volume (10 µL) and short analysis time (40 min) demonstrated the great potential of this strategy for E2 detection in rat serum and river water. With these advantages, the PEC aptasensor can be utilized for point-of-care testing (POCT) in both clinical and environmental applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Estradiol , Ouro , Limite de Detecção , Nanocompostos , Sulfetos , Compostos de Estanho , Compostos de Estanho/química , Aptâmeros de Nucleotídeos/química , Nanocompostos/química , Ouro/química , Estradiol/análise , Estradiol/sangue , Estradiol/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Sulfetos/química , Cádmio/química , Cádmio/análise , Processos Fotoquímicos , Dispositivos Lab-On-A-Chip
6.
Talanta ; 276: 126243, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749160

RESUMO

Herein, we fabricated an electrochemical (EC) and UV-visible absorption (UV-vis) dual mode split-type immunoassay for the detection of 17ß-estradiol (E2), which was mediated by liposome encapsulated methylene blue (MB@lip). MB molecule acted as the probe in the EC and UV-vis absorption dual mode detections, and its release was controlled by liposome. The competitive immune recognition was conducted between the E2 in the sample and E2 conjugated bovine serum protein (E2-BSA) adsorbed on the 96-wells plate in combining with E2 antibody labeled with MB@lip (E2-Ab/MB@lip). MB molecule could be released from the resulting immune composite of E2-BSA/E2-Ab/MB@lip in the presence of Triton X-100, and quantified by UV-vis and EC methods. The three-dimensional cross-linked reduced graphene oxide/Ti3C2 (3D-rGO/Ti3C2) aerogel was prepared through hydrothermal method, then complexed with the electroactive anthraquinone (AQ) and used as the electrode modified material. The AQ/3D-rGO/Ti3C2 composite had high surface area and provided abundant adsorption sites for MB, and the displacement/competitive behavior between AQ and MB could dexterously achieve the ratiometric EC detection of E2. In addition, the inherent blue color of MB allowed it to be analyzed by UV-vis absorption method. The proposed dual mode detection method exhibited broad linear ranges of 0.1 pg mL-1 to 50 ng mL-1 (by UV-vis) and 0.03 pg mL-1 to 50 ng mL-1 (by EC) for E2 detection, and the detection limits were 0.023 pg mL-1 (S/N = 3) and 8.0 fg mL-1 (S/N = 3), respectively. Moreover, the proposed immunoassay exhibited good practicability and was applied to monitor E2 in milk and serum successfully.


Assuntos
Técnicas Eletroquímicas , Estradiol , Lipossomos , Azul de Metileno , Azul de Metileno/química , Estradiol/química , Estradiol/sangue , Estradiol/análise , Lipossomos/química , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Animais , Espectrofotometria Ultravioleta , Bovinos , Limite de Detecção , Soroalbumina Bovina/química
7.
J Chem Inf Model ; 64(10): 4121-4133, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38706255

RESUMO

Microtubules, composed of α- and ß-tubulin subunits are crucial for cell division with their dynamic tissue-specificity which is dictated by expression of isotypes. These isotypes differ in carboxy-terminal tails (CTTs), rich in negatively charged acidic residues in addition to the differences in the composition of active site residues. 2-Methoxy estradiol (2-ME) is the first antimicrotubule agent that showed less affinity toward hemopoietic-specific ß1 isotype consequently preventing myelosuppression toxicity. The present study focuses on the MD-directed conformational analysis of 2-ME and estimation of its binding affinity in the colchicine binding pocket of various ß-tubulin isotypes combined with the α-tubulin isotype, α1B. AlphaFold 2.0 was used to predict the 3D structure of phylogenetically divergent human ß-tubulin isotypes in dimer form with α1B. The dimeric complexes were subjected to induced-fit docking with 2-ME. The statistical analysis of docking showed differences in the binding characteristics of 2-ME with different isotypes. The replicas of atom-based molecular dynamic simulations of the best conformation of 2-ME provided insights into the molecular-level details of its binding pattern across the isotypes. Furthermore, the MM/GBSA analyses revealed the specific binding energy profile of 2-ME in ß-tubulin isotypes. It also highlighed, 2-ME exhibits the lowest binding affinity toward the ß1 isotype as supported by experimental study. The present study may offer useful information for designing next-generation antimicrotubule agents that are more specific and less toxic.


Assuntos
2-Metoxiestradiol , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Isoformas de Proteínas , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , 2-Metoxiestradiol/metabolismo , 2-Metoxiestradiol/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Estradiol/metabolismo , Estradiol/química , Estradiol/análogos & derivados , Conformação Proteica , Sítios de Ligação
8.
J Steroid Biochem Mol Biol ; 242: 106544, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38754521

RESUMO

Sex steroid hormones such as estrogen estradiol (E2) and androgen dihydrotestosterone (DHT) are involved in the development of hormone-dependent cancers. Blockade of 17ß-hydroxysteroid dehydrogenase type 7 (17ß-HSD7), a member of the short chain dehydrogenase/reductase superfamily, is thought to decrease E2 levels while increasing those of DHT. Therefore, its unique double action makes this enzyme as an interesting drug target for treatment of breast cancer. The chemical synthesis, molecular characterization, and preliminary biological evaluation as 17ß-HSD7 inhibitors of novel carbamate derivatives 3 and 4 are described. Like previous 17ß-HSD7 inhibitors 1 and 2, compounds 3 and 4 bear a hydrophobic nonyl side chain at the C-17ß position of a 4-aza-5α-androstane nucleus, but compound 3 has an oxygen atom replacing the CH2 in the steroid A-ring C-2 position, while compound 4 has a C17-spiranic E-ring containing a carbamate function. They both inhibited the in vitro transformation of estrone (E1) into E2 by 17ß-HSD7, but the introduction of a (17 R)-spirocarbamate is preferable to replacing C-2 methylene with an oxygen atom since compound 4 (IC50 = 63 nM) is an inhibitor 14 times more powerful than compound 3 (IC50 = 900 nM). Furthermore, when compared to the reference inhibitor 1 (IC50 = 111 nM), the use of a C17-spiranic E-ring made it possible to introduce differently the hydrophobic nonyl side chain, without reducing the inhibitory activity.


Assuntos
17-Hidroxiesteroide Desidrogenases , Inibidores Enzimáticos , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/metabolismo , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Estradiol/química , Estradiol/metabolismo , Estradiol/farmacologia , Carbamatos/química , Carbamatos/farmacologia , Carbamatos/síntese química , Estrona/química , Estrona/farmacologia , Estrona/síntese química
9.
SAR QSAR Environ Res ; 35(6): 433-456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38785078

RESUMO

Curcumin, an extensively utilized natural pigment in the food industry, has attracted considerable attention due to its potential therapeutic effects, such as anti-tumorigenic and anti-inflammatory activities. The enzyme 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) holds a crucial position in oestradiol production and exhibits significant involvement in oestrogen-responsive breast cancers and endometriosis. This study investigated the inhibitory effects of curcuminoids, metabolites, and analogues on 17ß-HSD1, a key enzyme in oestradiol synthesis. Screening 10 compounds, including demethoxycurcumin (IC50, 3.97 µM) and dihydrocurcumin (IC50, 5.84 µM), against human and rat 17ß-HSD1 revealed varying inhibitory potencies. These compounds suppressed oestradiol secretion in human BeWo cells at ≥ 5-10 µM. 3D-Quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses elucidated the interaction mechanisms. Docking studies and Gromacs simulations suggested competitive or mixed binding to the steroid or NADPH/steroid binding sites of 17ß-HSD1. Predictive 3D-QSAR models highlighted the importance of hydrophobic regions and hydrogen bonding in inhibiting 17ß-HSD1 activity. In conclusion, this study provides valuable insights into the inhibitory effects and mode of action of curcuminoids, metabolites, and analogues on 17ß-HSD1, which may have implications in the field of hormone-related disorders.


Assuntos
17-Hidroxiesteroide Desidrogenases , Curcumina , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Humanos , Ratos , Animais , Curcumina/análogos & derivados , Curcumina/farmacologia , Curcumina/química , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/metabolismo , Estradiol/análogos & derivados , Estradiol/química , Estradiol/farmacologia , Estradiol/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
10.
Eur J Pharm Sci ; 199: 106813, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797442

RESUMO

Novel BODIPY-estradiol conjugates have been synthesized by selecting position C-3-O for labeling. The conjugation strategy was based on Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) or etherification. Estradiol derivatives used as azide partners bearing an ω-azidoalkyl function through C4-C8-long linkers have been prepared. CuAAC reactions of estradiol azides with BODIPY alkyne furnished fluorescent 3-O-labeled conjugates bearing the triazole ring as a coupling moiety. Williamson etherifications of 3-O-(ω-bromoalkyl)-17ß-estradiol derivatives with BODIPY-OH resulted in labeled conjugates connected with an ether moiety. Interactions of the conjugates with estrogen receptor (ER) were investigated using molecular docking calculations in comparison with estradiol. The conjugates occupied both the classical and alternative binding sites on human ERα, with slightly lower binding affinity to references estradiol and diethystilbestrol. All compounds have displayed reasonable estrogenic activity. They increased the proliferation of ER-positive breast cancer cell line MCF7 contrary to ER-negative SKBR-3 cell line. The most potent compound 13a induced the transcriptional activity of ER in dose-dependent manner in dual luciferase recombinant reporter model and increased progesterone receptor's expression, proving the retained estrogenic activity. The fluorescence of candidate compound 13a co-localised with the ERα. The newly synthesized labeled compounds might serve as good starting point for further development of fluorescent probes for modern biological applications. In addition to studying steroid uptake and transport in cells, e.g. in the processes of biodegradation of estrogen-hormones micropollutants, they could also be utilized in examination of estrogen-binding proteins.


Assuntos
Compostos de Boro , Estradiol , Receptor alfa de Estrogênio , Simulação de Acoplamento Molecular , Compostos de Boro/química , Humanos , Estradiol/química , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/química , Linhagem Celular Tumoral , Estrogênios/química , Proliferação de Células/efeitos dos fármacos , Células MCF-7 , Azidas/química , Corantes Fluorescentes/química
11.
Protein Sci ; 33(4): e4940, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511482

RESUMO

Estrogen receptor α is commonly used in synthetic biology to control the activity of genome editing tools. The activating ligands, estrogens, however, interfere with various cellular processes, thereby limiting the applicability of this receptor. Altering its ligand preference to chemicals of choice solves this hurdle but requires adaptation of unspecified ligand-interacting residues. Here, we provide a solution by combining rational protein design with multi-site-directed mutagenesis and directed evolution of stably integrated variants in Saccharomyces cerevisiae. This method yielded an estrogen receptor variant, named TERRA, that lost its estrogen responsiveness and became activated by tamoxifen, an anti-estrogenic drug used for breast cancer treatment. This tamoxifen preference of TERRA was maintained in mammalian cells and mice, even when fused to Cre recombinase, expanding the mammalian synthetic biology toolbox. Not only is our platform transferable to engineer ligand preference of any steroid receptor, it can also profile drug-resistance landscapes for steroid receptor-targeted therapies.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estradiol/química , Estradiol/metabolismo , Ligantes , Tamoxifeno/farmacologia , Tamoxifeno/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mamíferos
12.
Analyst ; 149(9): 2621-2628, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38546096

RESUMO

17ß-Estradiol (E2) is an important endogenous estrogen, which disturbs the endocrine system and poses a threat to human health because of its accumulation in the human body. Herein, a biofuel cell (BFC)-based self-powered electrochemical aptasensor was developed for E2 detection. Porous carbon nanocage/gold nanoparticle composite modified indium tin oxide (CNC/AuNP/ITO) and glucose oxidase modified CNC/AuNP/ITO were used as the biocathode and bioanode of BFCs, respectively. [Fe(CN)6]3- was selected as an electroactive probe, which was entrapped in the pores of positively charged magnetic Fe3O4 nanoparticles (PMNPs) and then capped with a negatively charged E2 aptamer to form a DNA bioconjugate. The presence of the target E2 triggered the entrapped [Fe(CN)6]3- probe release due to the removal of the aptamer via specific recognition, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode and produced a high open-circuit voltage (EOCV). Consequently, a "signal-on" homogeneous self-powered aptasensor for E2 assay was realized. Promisingly, the BFC-based self-powered aptasensor has particularly high sensitivity for E2 detection in the concentration range of 0.5 pg mL-1 to 15 ng mL-1 with a detection limit of 0.16 pg mL-1 (S/N = 3). Therefore, the proposed BFC-based self-powered electrochemical aptasensor has great promise to be applied as a successful prototype of a portable and on-site bioassay in the field of environment monitoring and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Fontes de Energia Bioelétrica , Carbono , Técnicas Eletroquímicas , Estradiol , Ouro , Nanopartículas Metálicas , Estradiol/química , Estradiol/análise , Aptâmeros de Nucleotídeos/química , Ouro/química , Nanopartículas Metálicas/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Limite de Detecção , Humanos , DNA/química , Glucose Oxidase/química , Compostos de Estanho/química
13.
Environ Sci Pollut Res Int ; 31(17): 24679-24712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488920

RESUMO

Even at low concentrations, steroid hormones pose a significant threat to ecosystem health and are classified as micropollutants. Among these, 17ß-estradiol (molecular formula: C18H24O2; pKa = 10.46; Log Kow = 4.01; solubility in water = 3.90 mg L-1 at 27 °C; molecular weight: 272.4 g mol-1) is extensively studied as an endocrine disruptor due to its release through natural pathways and widespread use in conventional medicine. 17ß-estradiol (E2) is emitted by various sources, such as animal and human excretions, hospital and veterinary clinic effluents, and treatment plants. In aquatic biota, it can cause issues ranging from the feminization of males to inhibiting plant growth. This review aims to identify technologies for remediating E2 in water, revealing that materials like graphene oxides, nanocomposites, and carbonaceous materials are commonly used for adsorption. The pH of the medium, especially in acidic to neutral conditions, affects efficiency, and ambient temperature (298 K) supports the process. The Langmuir and Freundlich models aptly describe isothermal studies, with interactions being of a low-energy, physical nature. Adsorption faces limitations when other ions coexist in the solution. Hybrid treatments exhibit high removal efficiency. To mitigate global E2 pollution, establishing national and international standards with detailed guidelines for advanced treatment systems is crucial. Despite significant advancements in optimizing technologies by the scientific community, there remains a considerable gap in their societal application, primarily due to economic and sustainable factors. Therefore, further studies are necessary, including conducting batch experiments with these adsorbents for large-scale treatment along with economic analyses of the production process.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Humanos , Adsorção , Estradiol/química , Tecnologia , Água , Poluentes Químicos da Água/análise
14.
J Steroid Biochem Mol Biol ; 240: 106510, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508472

RESUMO

The objective of this study was to examine the effect of 11 organochlorine pesticides on human and rat 17ß-Hydroxysteroid dehydrogenase 1 (17ß-HSD1) in human placental and rat ovarian microsome and on estradiol production in BeWo cells. The results showed that the IC50 values for endosulfan, fenhexamid, chlordecone, and rhothane on human 17ß-HSD1 were 21.37, 73.25, 92.80, and 117.69 µM. Kinetic analysis revealed that endosulfan acts as a competitive inhibitor, fenhexamid as a mixed/competitive inhibitor, chlordecone and rhothane as a mixed/uncompetitive inhibitor. In BeWo cells, all insecticides except endosulfan significantly decreased estradiol production at 100 µM. For rats, the IC50 values for dimethomorph, fenhexamid, and chlordecone were 11.98, 36.92, and 109.14 µM. Dimethomorph acts as a mixed inhibitor, while fenhexamid acts as a mixed/competitive inhibitor. Docking analysis revealed that endosulfan and fenhexamid bind to the steroid-binding site of human 17ß-HSD1. On the other hand, chlordecone and rhothane binds to a different site other than the steroid and NADPH-binding site. Dimethomorph binds to the steroid/NADPH binding site, and fenhexamid binds to the steroid binding site of rat 17ß-HSD1. Bivariate correlation analysis showed a positive correlation between IC50 values and LogP for human 17ß-HSD1, while a slight negative correlation was observed between IC50 values and the number of HBA. ADMET analysis provided insights into the toxicokinetics and toxicity of organochlorine pesticides. In conclusion, this study identified the inhibitory effects of 3-4 organochlorine pesticides and binding mechanisms on human and rat 17ß-HSD1, as well as their impact on hormone production.


Assuntos
Hidrocarbonetos Clorados , Simulação de Acoplamento Molecular , Praguicidas , Animais , Humanos , Ratos , Hidrocarbonetos Clorados/química , Hidrocarbonetos Clorados/farmacologia , Relação Estrutura-Atividade , Feminino , Praguicidas/química , Praguicidas/metabolismo , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/metabolismo , 17-Hidroxiesteroide Desidrogenases/química , Gravidez , Placenta/metabolismo , Estradiol/metabolismo , Estradiol/química , Inseticidas/química , Inseticidas/farmacologia
15.
Environ Sci Pollut Res Int ; 30(60): 125596-125608, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006481

RESUMO

The main objective of the research was to study the environmental "price" of the large-scale, milk production from a rarely known perspective, from the mapping of the estrogenic footprint (the amount of oestrus-inducer hormonal products, and the generated endoestrogens) in the resulting slurry in a dairy cow farm. These micropollutants are endocrine-disrupting chemicals (EDCs) and can be dangerous to the normal reproductive functions even at ng/kg concentration. One of them, 17ß-estradiol, has a 20,000 times stronger estrogenic effect than bisphenol-A, a widely known EDC of industrial origin. While most studies on EDCs are short-term and/or laboratory based, this study is longitudinal and field-based. We sampled the slurry pool on a quarterly basis between 2017 and 2020. Our purpose was testing the estrogenic effects using a dual approach. As an effect-based, holistic method, we developed and used the YES (yeast estrogen screen) test employing the genetically modified Saccharomyces cerevisiae BJ3505 strain which contains human estrogenic receptor. For testing exact molecules, UHPLC-FLD was used. Our study points out that slurry contains a growing amount of EDCs with the risk of penetrating into the soil, crops and the food chain. Considering the Green Chemistry concept, the most benign ways to prevent of the pollution of the slurry is choosing appropriate oestrus-inducing veterinary pharmaceuticals (OIVPs) and the separation of the solid and liquid parts with adequate treatment methods. To our knowledge, this is the first paper on the adaptation of the YES test for medicine and slurry samples, extending its applicability. The adapted YES test turned out to be a sensitive, robust and reliable method for testing samples with potential estrogenic effect. Our dual approach was successful in evaluating the estrogenic effect of the slurry samples.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Drogas Veterinárias , Poluentes Químicos da Água , Bovinos , Animais , Humanos , Poluentes Ambientais/farmacologia , Poluentes Químicos da Água/análise , Estrogênios/química , Estradiol/química , Saccharomyces cerevisiae , Disruptores Endócrinos/química
16.
Biosensors (Basel) ; 13(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36832008

RESUMO

17ß-estradiol (E2) is an important natural female hormone that is also classified as an estrogenic endocrine-disrupting compound (e-EDC). It is, however, known to cause more damaging health effects compared to other e-EDCs. Environmental water systems are commonly contaminated with E2 that originates from domestic effluents. The determination of the level of E2 is thus very crucial in both wastewater treatment and in the aspect of environmental pollution management. In this work, an inherent and strong affinity of the estrogen receptor-α (ER-α) for E2 was used as a basis for the development of a biosensor that was highly selective towards E2 determination. A gold disk electrode (AuE) was functionalised with a 3-mercaptopropionic acid-capped tin selenide (SnSe-3MPA) quantum dot to produce a SnSe-3MPA/AuE electroactive sensor platform. The ER-α-based biosensor (ER-α/SnSe-3MPA/AuE) for E2 was produced by the amide chemistry of carboxyl functional groups of SnSe-3MPA quantum dots and the primary amines of ER-α. The ER-α/SnSe-3MPA/AuE receptor-based biosensor exhibited a formal potential (E0') value of 217 ± 12 mV, assigned as the redox potential for monitoring the E2 response using square-wave voltammetry (SWV). The response parameters of the receptor-based biosensor for E2 include a dynamic linear range (DLR) value of 1.0-8.0 nM (R2 = 0.99), a limit of detection (LOD) value of 1.69 nM (S/N = 3), and a sensitivity of 0.04 µA/nM. The biosensor exhibited high selectivity for E2 and good recoveries for E2 determination in milk samples.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos , Pontos Quânticos , Feminino , Humanos , Receptores de Estrogênio , Estradiol/química , Técnicas Biossensoriais/métodos , Disruptores Endócrinos/análise
17.
Chembiochem ; 24(5): e202200555, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594441

RESUMO

Combining natural product fragments to design new scaffolds with unprecedented bioactivity is a powerful strategy for the discovery of tool compounds and potential therapeutics. However, the choice of fragments to couple and the biological screens to employ remain open questions in the field. By choosing a primary fragment containing the A/B ring system of estradiol and fusing it to nine different secondary fragments, we were able to identify compounds that modulated four different phenotypes: inhibition of autophagy and osteoblast differentiation, as well as potassium channel and tubulin modulation. The latter two were uncovered by using unbiased morphological profiling with a cell-painting assay. The number of hits and variety in bioactivity discovered validates the use of recombining natural product fragments coupled to phenotypic screening for the rapid identification of biologically diverse compounds.


Assuntos
Produtos Biológicos , Naftalenos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Naftalenos/síntese química , Estradiol/química
18.
Food Chem ; 401: 134084, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115225

RESUMO

Enzyme labeled competitive molecules are generally homologous with competitors in competitive broad-spectrum enzyme-linked immunosorbent assays (ELISA). It is speculated that the detectability will be improved when the competitiveness of competitive molecule is weak. Herein, common small molecule food hazard-estrogen disrupting chemicals (EDCs) were used as target model for verification. The dual-estrogen receptor (ER) and three estrogen-enzyme conjugates with various responses were used as recognizers and competitive molecules in ELISA. ELISA based on bisphenol (BPA)-horseradish peroxidase (HRP) has the highest detectability and can screen all six EDCs, in which BPA-HRP showed the weakest ER excitatory activity (Ka = 1.39 × 10-2 nmol·L-1) among three conjugates. The proposal showed good practicability with spiked recovery of 80.0-110 % for estrogens (17ß-estradiol, 17α-estradiol, BPA) in foodstuffs, and revealed biomarkers with weak competitiveness may be applied to other competitive procedures to improve detectability, and it provides sensitive pre-screening strategy for follow-up screening tool.


Assuntos
Disruptores Endócrinos , Receptores de Estrogênio , Estrogênios , Compostos Benzidrílicos , Estradiol/química , Ensaio de Imunoadsorção Enzimática/métodos , Peroxidase do Rábano Silvestre
19.
Molecules ; 27(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35807338

RESUMO

17α-Estradiol (αE2) is a natural diastereoisomer of 17ß-estradiol (E2). It is well known that αE2 can bind to estrogen receptors. However, its biological activity is less than that of E2 and is species and tissue specific. The goal of our study was to propose the mechanism of αE2 hormonal response in rat sperm during their capacitation in vitro and compare it with a previously studied mouse model. Concentration changes in externally added αE2 during capacitation of rat sperm were monitored by the high-performance liquid chromatographic method with tandem mass spectrometric detection (HPLC-MS/MS). The calculated values of relative concentrations Bt were subjected to kinetic analysis. The findings indicated that αE2 in rat sperm did not trigger autocatalytic reaction, in contrast to the mouse sperm, and that the initiation of the hormone penetration through the sperm plasma membrane was substantially faster in rats.


Assuntos
Estradiol , Capacitação Espermática , Animais , Estradiol/química , Cinética , Masculino , Camundongos , Ratos , Sêmen/metabolismo , Capacitação Espermática/fisiologia , Espectrometria de Massas em Tandem
20.
Biosens Bioelectron ; 215: 114548, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870335

RESUMO

It is significant to exploit the full potential of CRISPR/Cas based biosensor for non-nucleic-acid targets. Here, we developed a split aptamer regulated CRISPR/Cas12a and gap-enhanced Raman tags based lateral flow biosensor for small-molecule target, 17ß-estradiol. In this assay, one split aptamer of 17ß-estradiol was designed to complement with crRNA of Cas12a so that the trans-cleavage ability of CRISPR/Cas12a can be regulated by the competitive binding of 17ß-estradiol and split aptamers. Through integration of the signal amplification ability of CRISPR/Cas12a and the ultra-sensitive gap-enhanced Raman tags based lateral flow assay, a visible-SERS dual mode determination of 17ß-estradiol can be established. 17ß-estradiol can be visibly recognized as low as 10 pM and accurately quantified with a detection limit of 180 fM by SERS signals, which is at least 103-fold lower than that of the previous immunoassay lateral flow strategies. Our assay provides a novel perspective to develop split aptamer regulated CRISPR/Cas12a coupling with SERS lateral flow strips for ultrasensitive and easy-to-use non-nucleic-acid targets detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Sistemas CRISPR-Cas/genética , Estradiol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...