Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.523
Filtrar
1.
BMC Plant Biol ; 24(1): 748, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103795

RESUMO

Lead affects photosynthesis and growth and has serious toxic effects on plants. Here, the differential expressed proteins (DEPs) in D. huoshanense were investigated under different applications of lead acetate solutions. Using label-free quantitative proteomics methods, more than 12,000 peptides and 2,449 proteins were identified. GO and KEGG functional annotations show that these differential proteins mainly participate in carbohydrate metabolism, energy metabolism, amino acid metabolism, translation, protein folding, sorting, and degradation, as well as oxidation and reduction processes. A total of 636 DEPs were identified, and lead could induce the expression of most proteins. KEGG enrichment analysis suggested that proteins involved in processes such as homologous recombination, vitamin B6 metabolism, flavonoid biosynthesis, cellular component organisation or biogenesis, and biological regulation were significantly enriched. Nearly 40 proteins are involved in DNA replication and repair, RNA synthesis, transport, and splicing. The effect of lead stress on D. huoshanense may be achieved through photosynthesis, oxidative phosphorylation, and the production of excess antioxidant substances. The expression of 9 photosynthesis-related proteins and 12 oxidative phosphorylation-related proteins was up-regulated after lead stress. Furthermore, a total of 3 SOD, 12 POD, 3 CAT, and 7 ascorbate-related metabolic enzymes were identified. Under lead stress, almost all key enzymes involved in the synthesis of antioxidant substances are up-regulated, which may facilitate the scavenging of oxygen-free radical scavenging. The expression levels of some key enzymes involved in sugar and glycoside synthesis, the phenylpropanoid synthesis pathway, and the terpene synthesis pathway also increased. More than 30 proteins involved in heavy metal transport were also identified. Expression profiling revealed a significant rise in the expression of the ABC-type multidrug resistance transporter, copper chaperone, and P-type ATPase with exposure to lead stress. Our findings lay the basis for research on the response and resistance of D. huoshanense to heavy metal stress.


Assuntos
Dendrobium , Chumbo , Proteínas de Plantas , Proteômica , Estresse Fisiológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Chumbo/toxicidade , Dendrobium/efeitos dos fármacos , Dendrobium/metabolismo , Dendrobium/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos
2.
PLoS One ; 19(8): e0308559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39116116

RESUMO

Free fatty acids have long been used as dietary supplements in aquaculture, but the application of monoglycerides has increased interest in more recent times. The study aimed to investigate the effects of dietary short- and medium-chain fatty acid monoglyceride and cinnamaldehyde (SMMG) on the growth performance, survival, immune responses, and tolerance to hypoxic stress of Pacific white shrimp (Litopenaeus vannamei). In Experiment 1, shrimp post-larvae were divided into 4 groups with 6 replicates and fed with diets supplemented with 0 (control), 0.3, 0.4, and 0.5% diet for 30 days. The final body weight and survival rate were determined. In Experiment 2, the juvenile shrimp from Experiment 1 were subjected to hypoxic stress conditions (dissolved oxygen level 2-2.5 mg/L) for 14 days, then the specific growth rate (SGR), survival rate, intestinal Vibrio spp. count, immune responses, and histopathological change of the hepatopancreas were analyzed. Following the 30-day feeding trial, the results revealed that the final body weight and survival of the 0.3-0.5% SMMG groups (2.81-3.06 g and 74.00-84.33%, respectively) were significantly higher than the control shrimp (1.96 g and 68.33%, respectively). In the hypoxic stress experiment, the survival rates of shrimp fed 0.4-0.5% SMMG (71.67-80.00%) were significantly higher than the control (51.67%). Although the SGR were not affected by SMMG supplementation, all immune parameters evaluated were significantly enhanced, and the intestinal Vibrio spp. counts were significantly decreased in the 0.4-0.5% SMMG-fed shrimp; the histopathological structure of the hepatopancreas was also improved in these shrimp compared to the control. Our findings indicated that SMMG as a feed additive has beneficial effects in improving shrimp health and increasing tolerance to hypoxic conditions.


Assuntos
Acroleína , Penaeidae , Estresse Fisiológico , Animais , Penaeidae/imunologia , Penaeidae/efeitos dos fármacos , Penaeidae/crescimento & desenvolvimento , Acroleína/análogos & derivados , Acroleína/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Suplementos Nutricionais , Aquicultura/métodos , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/imunologia , Hepatopâncreas/patologia , Ração Animal , Ácidos Graxos/metabolismo
3.
Photochem Photobiol Sci ; 23(8): 1573-1586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103724

RESUMO

Since the molecular mechanisms behind adaptation and the bacterial stress response toward antimicrobial photodynamic therapy (aPDT) are not entirely clear yet, the aim of the present study was to investigate the transcriptomic stress response in Escherichia coli after sublethal treatment with aPDT using RNA sequencing (RNA-Seq). Planktonic cultures of stationary phase E. coli were treated with aPDT using a sublethal dose of the photosensitizer SAPYR. After treatment, RNA was extracted, and RNA-Seq was performed on the Illumina NextSeq 500. Differentially expressed genes were analyzed and validated by qRT-PCR. Furthermore, expression of specific stress response proteins was investigated using Western blot analysis.The analysis of the differential gene expression following pathway enrichment analysis revealed a considerable number of genes and pathways significantly up- or down-regulated in E. coli after sublethal treatment with aPDT. Expression of 1018 genes was up-regulated and of 648 genes was down-regulated after sublethal treatment with aPDT as compared to irradiated controls. Analysis of differentially expressed genes and significantly de-regulated pathways showed regulation of genes involved in oxidative stress response and bacterial membrane damage. In conclusion, the results show a transcriptomic stress response in E. coli upon exposure to aPDT using SAPYR and give an insight into potential molecular mechanisms that may result in development of adaptation.


Assuntos
Escherichia coli , Fotoquimioterapia , Fármacos Fotossensibilizantes , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , RNA-Seq , Antibacterianos/farmacologia , Estresse Fisiológico/efeitos dos fármacos
4.
Open Biol ; 14(8): 240093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39106944

RESUMO

Nutrition and resilience are linked, though it is not yet clear how diet confers stress resistance or the breadth of stressors that it can protect against. We have previously shown that transiently restricting an essential amino acid can protect Drosophila melanogaster against nicotine poisoning. Here, we sought to characterize the nature of this dietary-mediated protection and determine whether it was sex, amino acid and/or nicotine specific. When we compared between sexes, we found that isoleucine deprivation increases female, but not male, nicotine resistance. Surprisingly, we found that this protection afforded to females was not replicated by dietary protein restriction and was instead specific to individual amino acid restriction. To understand whether these beneficial effects of diet were specific to nicotine or were generalizable across stressors, we pre-treated flies with amino acid restriction diets and exposed them to other types of stress. We found that some of the diets that protected against nicotine also protected against oxidative and starvation stress, and improved survival following cold shock. Interestingly, we found that a diet lacking isoleucine was the only diet to protect against all these stressors. These data point to isoleucine as a critical determinant of robustness in the face of environmental challenges.


Assuntos
Drosophila melanogaster , Nicotina , Estresse Fisiológico , Animais , Drosophila melanogaster/efeitos dos fármacos , Feminino , Masculino , Nicotina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Aminoácidos/farmacologia , Aminoácidos/metabolismo , Isoleucina/farmacologia
5.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39150520

RESUMO

The integrated stress response (ISR) is a vital signaling pathway initiated by four kinases, PERK, GCN2, HRI and PKR, that ensure cellular resilience and protect cells from challenges. Here, we investigated whether increasing ISR signaling could rescue diabetes-like phenotypes in a mouse model of diet-induced obesity (DIO). We show that the orally available and clinically approved GCN2 activator halofuginone (HF) can activate the ISR in mouse tissues. We found that daily oral administration of HF increases glucose tolerance whilst reducing weight gain, insulin resistance, and serum insulin in DIO mice. Conversely, the ISR inhibitor GSK2656157, used at low doses to optimize its selectivity, aggravates glucose intolerance in DIO mice. Whilst loss of function mutations in mice and humans have revealed that PERK is the essential ISR kinase that protects from diabetes, our work demonstrates the therapeutic value of increasing ISR signaling by activating the related kinase GCN2 to reduce diabetes phenotypes in a DIO mouse model.


Assuntos
Obesidade , Fenótipo , Piperidinas , Proteínas Serina-Treonina Quinases , Quinazolinonas , Transdução de Sinais , eIF-2 Quinase , Animais , Quinazolinonas/farmacologia , Piperidinas/farmacologia , Camundongos , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Obesidade/patologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Obesidade/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Endogâmicos C57BL , Masculino , Resistência à Insulina , Insulina/metabolismo , Insulina/sangue , Estresse Fisiológico/efeitos dos fármacos , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus/patologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/prevenção & controle , Intolerância à Glucose/tratamento farmacológico , Adenina/análogos & derivados , Indóis
6.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39126019

RESUMO

Glutathione S-transferases (GSTs) are members of a protein superfamily with diverse physiological functions, including cellular detoxification and protection against oxidative damage. However, there is limited research on GSTs responding to cadmium (Cd) stress. This study classified 46 GST genes in Dendrobium officinale (D. officinale) into nine groups using model construction and domain annotation. Evolutionary analysis revealed nine subfamilies with diverse physical and chemical properties. Prediction of subcellular localization revealed that half of the GST members were located in the cytoplasm. According to the expression analysis of GST family genes responding to Cd stress, DoGST5 responded significantly to Cd stress. Transient expression of DoGST5-GFP in tobacco leaves revealed that DoGST5 was localized in the cytoplasm. DoGST5 overexpression in Arabidopsis enhanced Cd tolerance by reducing Cd-induced H2O2 and O2- levels. These findings demonstrate that DoGST5 plays a critical role in enhancing Cd tolerance by balancing reactive oxygen species (ROS) levels, offering potential applications for improving plant adaptability to heavy metal stress.


Assuntos
Cádmio , Dendrobium , Regulação da Expressão Gênica de Plantas , Glutationa Transferase , Proteínas de Plantas , Cádmio/toxicidade , Cádmio/metabolismo , Dendrobium/genética , Dendrobium/enzimologia , Dendrobium/efeitos dos fármacos , Dendrobium/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Filogenia , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Família Multigênica , Genoma de Planta
7.
J Transl Med ; 22(1): 757, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135106

RESUMO

BACKGROUND: Multi-drug resistance of poly(morpho)nuclear giant cells (PGCs) determines their cytoprotective and generative potential in cancer ecosystems. However, mechanisms underlying the involvement of PGCs in glioblastoma multiforme (GBM) adaptation to chemotherapeutic regimes remain largely obscure. In particular, metabolic reprogramming of PGCs has not yet been considered in terms of GBM recovery from doxorubicin (DOX)-induced stress. METHODS: Long-term proteomic and metabolic cell profiling was applied to trace the phenotypic dynamics of GBM populations subjected to pulse DOX treatment in vitro, with a particular focus on PGC formation and its metabolic background. The links between metabolic reprogramming, drug resistance and drug retention capacity of PGCs were assessed, along with their significance for GBM recovery from DOX-induced stress. RESULTS: Pulse DOX treatment triggered the transient formation of PGCs, followed by the appearance of small expanding cell (SEC) clusters. Development of PGCs was accompanied by the mobilization of their metabolic proteome, transient induction of oxidative phosphorylation (OXPHOS), and differential intracellular accumulation of NADH, NADPH, and ATP. The metabolic background of PGC formation was confirmed by the attenuation of GBM recovery from DOX-induced stress following the chemical inhibition of GSK-3ß, OXPHOS, and the pentose phosphate pathway. Concurrently, the mobilization of reactive oxygen species (ROS) scavenging systems and fine-tuning of NADPH-dependent ROS production systems in PGCs was observed. These processes were accompanied by perinuclear mobilization of ABCB1 and ABCG2 transporters and DOX retention in the perinuclear PGC compartments. CONCLUSIONS: These data demonstrate the cooperative pattern of GBM recovery from DOX-induced stress and the crucial role of metabolic reprogramming of PGCs in this process. Metabolic reprogramming enhances the efficiency of self-defense systems and increases the DOX retention capacity of PGCs, potentially reducing DOX bioavailability in the proximity of SECs. Consequently, the modulation of PGC metabolism is highlighted as a potential target for intervention in glioblastoma treatment.


Assuntos
Doxorrubicina , Glioblastoma , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Doxorrubicina/farmacologia , Linhagem Celular Tumoral , Estresse Fisiológico/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Proteômica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Reprogramação Metabólica
8.
Plant Cell Rep ; 43(9): 218, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153039

RESUMO

Cadmium (Cd) contamination poses a significant threat to agriculture and human health due to its high soil mobility and toxicity. This review synthesizes current knowledge on Cd uptake, transport, detoxification, and transcriptional regulation in plants, emphasizing the roles of metal transport proteins and transcription factors (TFs). We explore transporter families like NRAMP, HMA, ZIP, ABC, and YSL in facilitating Cd movement within plant tissues, identifying potential targets for reducing Cd accumulation in crops. Additionally, regulatory TF families, including WRKY, MYB, bHLH, and ERF, are highlighted for their roles in modulating gene expression to counteract Cd toxicity. This review consolidates the existing literature on plant-Cd interactions, providing insights into established mechanisms and identifying gaps for future research. Understanding these mechanisms is crucial for developing strategies to enhance plant tolerance, ensure food safety, and promote sustainable agriculture amidst increasing heavy-metal pollution.


Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Cádmio/toxicidade , Cádmio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas/metabolismo , Plantas/efeitos dos fármacos , Plantas/genética , Estresse Fisiológico/efeitos dos fármacos , Transporte Biológico , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo
9.
Physiol Plant ; 176(4): e14453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091124

RESUMO

Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 µM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Melatonina , Fenóis , Rosmarinus , Raios Ultravioleta , Melatonina/farmacologia , Melatonina/metabolismo , Rosmarinus/metabolismo , Rosmarinus/efeitos dos fármacos , Rosmarinus/efeitos da radiação , Antioxidantes/metabolismo , Fenóis/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Estresse Fisiológico/efeitos da radiação , Estresse Fisiológico/efeitos dos fármacos , Ácido Rosmarínico , Cinamatos/metabolismo , Cinamatos/farmacologia , Depsídeos/metabolismo
10.
BMC Plant Biol ; 24(1): 783, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152388

RESUMO

BACKGROUND: Chromium (Cr) toxicity significantly threatens agricultural ecosystems worldwide, adversely affecting plant growth and development and reducing crop productivity. Trehalose, a non-reducing sugar has been identified as a mitigator of toxic effects induced by abiotic stressors such as drought, salinity, and heavy metals. The primary objective of this study was to investigate the influence of exogenously applied trehalose on maize plants exposed to Cr stress. RESULTS: Two maize varieties, FH-1046 and FH-1453, were subjected to two different Cr concentrations (0.3 mM, and 0.5 mM). The results revealed significant variations in growth and biochemical parameters for both maize varieties under Cr-induced stress conditions as compared to the control group. Foliar application of trehalose at a concentration of 30 mM was administered to both maize varieties, leading to a noteworthy reduction in the detrimental effects of Cr stress. Notably, the Cr (0.5 mM) stress more adversely affected the shoot length more than 0.3mM of Cr stress. Cr stress (0.5 mM) significantly reduced the shoot length by 12.4% in FH-1046 and 24.5% in FH-1453 while Trehalose increased shoot length by 30.19% and 4.75% in FH-1046 and FH-1453 respectively. Cr stress significantly constrained growth and biochemical processes, whereas trehalose notably improved plant growth by reducing Cr uptake and minimizing oxidative stress caused by Cr. This reduction in oxidative stress was evidenced by decreased production of proline, SOD, POD, MDA, H2O2, catalase, and APX. Trehalose also enhanced photosynthetic activities under Cr stress, as indicated by increased values of chlorophyll a, b, and carotenoids. Furthermore, the ameliorative potential of trehalose was demonstrated by increased contents of proteins and carbohydrates and a decrease in Cr uptake. CONCLUSIONS: The study demonstrates that trehalose application substantially improved growth and enhanced photosynthetic activities in both maize varieties. Trehalose (30 mM) significantly increased the plant biomass, reduced ROS production and enhanced resilience to Cr stress even at 0.5 mM.


Assuntos
Cromo , Estresse Fisiológico , Trealose , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/metabolismo , Trealose/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo
11.
Physiol Plant ; 176(4): e14459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109439

RESUMO

Climate change induces significant abiotic stresses that adversely affect crop yields. One promising solution to improve plant resilience under adverse conditions is the application of exogenous salicylic acid (SA). However, its negative effects on growth and development are a concern. Encapsulation with protective materials like amorphous silica and chitosan has demonstrated a controlled release of SA, minimizing the detrimental impacts. In this work, we elucidate the physiological mechanisms behind this protective mechanism. We employed in vitro cultivation of Arabidopsis, comparing plant responses to both free and encapsulated SA under conditions of salt or mannitol stress, combined or not with high temperature (30°C). Plants treated with encapsulated SA displayed an enhanced tolerance to these stresses that was due, at least in part, to the maintenance of physiological endogenous SA levels, which in turn regulate indole-3-acetic acid (IAA) homeostasis. The activity of the Arabidopsis "DR5::GFP" reporter line supported this finding. Unlike plants treated with free SA (with altered DR5 activity under stress), those treated with encapsulated SA maintained similar activity levels to control plants. Moreover, stressed plants treated with free SA overexpressed genes involved in the SA biosynthesis pathway, leading to increased SA accumulation in roots and rosettes. In contrast, plants treated with encapsulated SA under stress did not exhibit increased expression of EDS1, PAL1, and NPR1 in roots, or of PAL1, PBS3, and NPR1 in rosettes. This indicates that these plants likely experienced lower stress levels, possibly because the encapsulated SA provided sufficient defense activation without triggering pleiotropic effects.


Assuntos
Arabidopsis , Homeostase , Reguladores de Crescimento de Plantas , Ácido Salicílico , Estresse Fisiológico , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Homeostase/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
12.
Sci Rep ; 14(1): 15985, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987560

RESUMO

Drought stress is a major abiotic stress affecting the performance of wheat (Triticum aestivum L.). The current study evaluated the effects of drought on wheat phenology, physiology, and biochemistry; and assessed the effectiveness of foliar-applied sulfhydryl thiourea to mitigate drought-induced oxidative stress. The treatments were: wheat varieties; V1 = Punjab-2011, V2 = Galaxy-2013, V3 = Ujala-2016, and V4 = Anaaj-2017, drought stress; D1 = control (80% field capacity [FC]) and D2 = drought stress (40% FC), at  the reproductive stage, and sulfhydryl thiourea (S) applications; S0 = control-no thiourea and S1 = foliar thiourea application @ 500 mg L-1. Results of this study indicated that growth parameters, including height, dry weight, leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) were decreased under drought stress-40% FC, as compared to control-80% FC. Drought stress reduced the photosynthetic efficiency, water potential, transpiration rates, stomatal conductances, and relative water contents by 18, 17, 26, 29, and 55% in wheat varieties as compared to control. In addition, foliar chlorophyll a, and b contents were also lowered under drought stress in all wheat varieties due to an increase in malondialdehyde and electrolyte leakage. Interestingly, thiourea applications restored wheat growth and yield attributes by improving the production and activities of proline, antioxidants, and osmolytes under normal and drought stress as compared to control. Thiourea applications improved the osmolyte defense in wheat varieties as peroxidase, superoxide dismutase, catalase, proline, glycine betaine, and total phenolic were increased by 13, 20, 12, 17, 23, and 52%; while reducing the electrolyte leakage and malondialdehyde content by 49 and 32% as compared to control. Among the wheat varieties, Anaaj-2017 showed better resilience towards drought stress and also gave better response towards thiourea application based on morpho-physiological, biochemical, and yield attributes as compared to Punjab-2011, Galaxy-2013, and Ujala-2016. Eta-square values showed that thiourea applications, drought stress, and wheat varieties were key contributors to most of the parameters measured. In conclusion, the sulfhydryl thiourea applications improved the morpho-physiology, biochemical, and yield attributes of wheat varieties, thereby mitigating the adverse effects of drought.  Moving forward, detailed studies pertaining to the molecular and genetic mechanisms under sulfhydryl thiourea-induced drought stress tolerance are warranted.


Assuntos
Secas , Estresse Oxidativo , Folhas de Planta , Tioureia , Triticum , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/fisiologia , Tioureia/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Água/metabolismo , Estresse Fisiológico/efeitos dos fármacos
13.
BMC Vet Res ; 20(1): 324, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026304

RESUMO

Environmental stressors (such as ammonia) in aquaculture could increase the risk of pathogenicity, posing a more severe threat to farmed fish. The aim of this study was to investigate the effects of ammonia stress on the pathogenicity of Shewanella spp. in Oreochromis niloticus. First, a 96-hour static test was used to determine the median lethal concentration (LC50) of unionized ammonia to Nile tilapia. After 96 h of exposure, the Un-ionized ammonia (UIA) LC50 was estimated to be 4.26 mg/L. Second, an experiment was conducted to test the effect of unionized ammonia stress on the pathogenicity of Shewanella spp. in O. niloticus for 30 days. A study involved 180 fish divided into six groups, with the first group serving as a control. The second group (AMN1/10) and the third group (AMN1/20) were not challenged and were exposed to 1/10 (0.42 mg/L) and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. Then 0.2 mL (0.14 × 105) of Shewanella spp. was intraperitoneally injected into the fourth (SH), fifth (SH + AMN1/10), and sixth (SH + AMN1/20) groups, which were subjected to 0, 1/10 (0.42 mg/L), and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. The survival rate, hematological indices, immunological parameters, and antioxidant activity of the fish significantly decreased when they were exposed to ammonia and Shewanella infection separately or together. Histopathological changes were also observed in the kidney and liver. Furthermore, both individual and combined exposures significantly altered renal and hepatic function, with notable increases in glucose and cortisol levels, as well as in the expression of proinflammatory cytokine genes (TNF-α and IL-1ß). However, the detrimental effects of co-exposure to ammonia stress and Shewanella infection were greater than those of separate exposures. As a result, we may say that increased ammonia concentrations enhance the infection of Shewanella spp. These findings could contribute to a better understanding of Shewanella infection in Nile tilapia.


Assuntos
Amônia , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Shewanella , Animais , Shewanella/patogenicidade , Shewanella/efeitos dos fármacos , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Estresse Fisiológico/efeitos dos fármacos , Dose Letal Mediana
14.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38985000

RESUMO

Pancreatic ß-cells are essential for survival, being the only cell type capable of insulin secretion. While they are believed to be vulnerable to damage by inflammatory cytokines such as interleukin-1 beta (IL-1ß) and interferon-gamma, we have recently identified physiological roles for cytokine signaling in rodent ß-cells that include the stimulation of antiviral and antimicrobial gene expression and the inhibition of viral replication. In this study, we examine cytokine-stimulated changes in gene expression in human islets using single-cell RNA sequencing. Surprisingly, the global responses of human islets to cytokine exposure were remarkably blunted compared to our previous observations in the mouse. The small population of human islet cells that were cytokine responsive exhibited increased expression of IL-1ß-stimulated antiviral guanylate-binding proteins, just like in the mouse. Most human islet cells were not responsive to cytokines, and this lack of responsiveness was associated with high expression of genes encoding ribosomal proteins. We further correlated the expression levels of RPL5 with stress response genes, and when expressed at high levels, RPL5 is predictive of failure to respond to cytokines in all endocrine cells. We postulate that donor causes of death and isolation methodologies may contribute to stress of the islet preparation. Our findings indicate that activation of stress responses in human islets limits cytokine-stimulated gene expression, and we urge caution in the evaluation of studies that have examined cytokine-stimulated gene expression in human islets without evaluation of stress-related gene expression.


Assuntos
Citocinas , Ilhotas Pancreáticas , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Citocinas/metabolismo , Citocinas/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Análise de Sequência de RNA , Estresse Fisiológico/efeitos dos fármacos , Interleucina-1beta/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Masculino , Camundongos , Animais , RNA-Seq , Feminino , Pessoa de Meia-Idade , Análise da Expressão Gênica de Célula Única
15.
BMC Plant Biol ; 24(1): 667, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997682

RESUMO

Recent studies have exhibited a very promising role of copper nanoparticles (CuNPs) in mitigation of abiotic stresses in plants. Arbuscular mycorrhizae fungi (AMF) assisted plants to trigger their defense mechanism against abiotic stresses. Arsenic (As) is a non-essential and injurious heavy-metal contaminant. Current research work was designed to elucidate role of CuNPs (100, 200 and 300 mM) and a commercial inoculum of Glomus species (Clonex® Root Maximizer) either alone or in combination (CuNPs + Clonex) on physiology, growth, and stress alleviation mechanisms of E. sibiricus growing in As spiked soils (0, 50, and 100 mg Kg- 1 soil). Arsenic induced oxidative stress, enhanced biosynthesis of hydrogen peroxide, lipid peroxidation and methylglyoxal (MG) in E. sibiricus. Moreover, As-phytotoxicity reduced photosynthetic activities and growth of plants. Results showed that individual and combined treatments, CuNPs (100 mM) as well as soil inoculation of AMF significantly enhanced root growth and shoot growth by declining As content in root tissues and shoot tissues in As polluted soils. E. sibiricus plants treated with CuNPs (100 mM) and/or AMF alleviated As induced phytotoxicity through upregulating the activity of antioxidative enzymes such as catalase (CAT) and superoxide dismutase (SOD) besides the biosynthesis of non-enzymatic antioxidants including phytochelatin (PC) and glutathione (GSH). In brief, supplementation of CuNPs (100 mM) alone or in combination with AMF reduced As uptake and alleviated the As-phytotoxicity in E. sibiricus by inducing stress tolerance mechanism resulting in the improvement of the plant growth parameters.


Assuntos
Arsênio , Cobre , Elymus , Metabolômica , Micorrizas , Poluentes do Solo , Arsênio/metabolismo , Cobre/metabolismo , Micorrizas/fisiologia , Micorrizas/efeitos dos fármacos , Poluentes do Solo/metabolismo , Elymus/metabolismo , Elymus/efeitos dos fármacos , Nanopartículas Metálicas , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos
16.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000320

RESUMO

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Populus/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estresse Fisiológico/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ligação Proteica
17.
Front Immunol ; 15: 1410150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947331

RESUMO

The recent trend of global warming poses a significant threat to ecosystems worldwide. This global climate change has also impacted the pollution levels in aquatic ecosystems, subsequently affecting human health. To address these issues, an experiment was conducted to investigate the mitigating effects of iron nanoparticles (Fe-NPs) on arsenic and ammonia toxicity as well as high temperature stress (As+NH3+T). Fe-NPs were biologically synthesized using fish waste and incorporated into feed formulations at 10, 15, and 20 mg kg-1 diet. A total of 12 treatments were designed in triplicate following a completely randomized design involving 540 fish. Fe-NPs at 15 mg kg-1 diet notably reduced the cortisol levels in fish exposed to multiple stressors. The gene expressions of HSP 70, DNA damage-inducible protein (DDIP), and DNA damage were upregulated by stressors (As+NH3+T) and downregulated by Fe-NPs. Apoptotic genes (Cas 3a and 3b) and detoxifying genes (CYP 450), metallothionein (MT), and inducible nitric oxide synthase (iNOS) were downregulated by Fe-NPs at 15 mg kg-1 diet in fish subjected to As+NH3+T stress. Immune-related genes such as tumor necrosis factor (TNFα), immunoglobulin (Ig), and interleukin (IL) were upregulated by Fe-NPs, indicating enhanced immunity in fish under As+NH3+T stress. Conversely, Toll-like receptor (TLR) expression was notably downregulated by Fe-NPs at 15 mg kg-1 diet in fish under As+NH3+T stress. Immunological attributes such as nitro blue tetrazolium chloride, total protein, albumin, globulin, A:G ratio, and myeloperoxidase (MPO) were improved by dietary Fe-NPs at 15 mg kg-1 diet in fish, regardless of stressors. The antioxidant genes (CAT, SOD, and GPx) were also strengthened by Fe-NPs in fish. Genes associated with growth performance, such as growth hormone regulator (GHR1 and GHRß), growth hormone (GH), and insulin-like growth factor (IGF 1X and IGF 2X), were upregulated, enhancing fish growth under stress, while SMT and MYST were downregulated by Fe-NPs in the diet. Various growth performance indicators were improved by dietary Fe-NPs at 15 mg kg-1 diet. Notably, Fe-NPs also enhanced arsenic detoxification and reduced the cumulative mortality after a bacterial infection. In conclusion, this study highlights that dietary Fe-NPs can effectively mitigate arsenic and ammonia toxicity as well as high temperature stress by modulating gene expression in fish.


Assuntos
Peixes , Regulação da Expressão Gênica , Ferro , Estresse Fisiológico , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Ferro/metabolismo , Peixes/imunologia , Estresse Fisiológico/imunologia , Estresse Fisiológico/efeitos dos fármacos , Nanopartículas Metálicas , Arsênio/toxicidade
18.
BMC Biol ; 22(1): 149, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965504

RESUMO

BACKGROUND: Organisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wild Saccharomyces cerevisiae yeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated "cross protection" mechanisms, where mild 'primary' doses of one stress can enhance tolerance to severe doses of a different 'secondary' stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. RESULTS: During the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2 scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2 resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whether CTT1 function was fully necessary for acquired H2O2 resistance. Some strains exhibited partial dispensability of CTT1 when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels of CTT1 dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. CONCLUSIONS: Ultimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms.


Assuntos
Peróxido de Hidrogênio , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Etanol/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Pressão Osmótica , Catalase/metabolismo , Catalase/genética , Variação Genética
19.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000475

RESUMO

Metallothioneins (MTs) are non-enzymatic metal-binding proteins widely found in animals, plants, and microorganisms and are regulated by metal-responsive transcription factor 1 (MTF1). MT and MTF1 play crucial roles in detoxification, antioxidation, and anti-apoptosis. Therefore, they are key factors allowing organisms to endure the toxicity of heavy metal pollution. Phascolosoma esculenta is a marine invertebrate that inhabits intertidal zones and has a high tolerance to heavy metal stress. In this study, we cloned and identified MT and MTF1 genes from P. esculenta (designated as PeMT and PeMTF1). PeMT and PeMTF1 were widely expressed in all tissues and highly expressed in the intestine. When exposed to 16.8, 33.6, and 84 mg/L of zinc ions, the expression levels of PeMT and PeMTF1 in the intestine increased first and then decreased, peaking at 12 and 6 h, respectively, indicating that both PeMT and PeMTF1 rapidly responded to Zn stress. The recombinant pGEX-6p-1-MT protein enhanced the Zn tolerance of Escherichia coli and showed a dose-dependent ABTS free radical scavenging ability. After RNA interference (RNAi) with PeMT and 24 h of Zn stress, the oxidative stress indices (MDA content, SOD activity, and GSH content) and the apoptosis indices (Caspase 3, Caspase 8, and Caspase 9 activities) were significantly increased, implying that PeMT plays an important role in Zn detoxification, antioxidation, and anti-apoptosis. Moreover, the expression level of PeMT in the intestine was significantly decreased after RNAi with PeMTF1 and 24 h of Zn stress, which preliminarily proved that PeMTF1 has a regulatory effect on PeMT. Our data suggest that PeMT and PeMTF1 play important roles in the resistance of P. esculenta to Zn stress and are the key factors allowing P. esculenta to endure the toxicity of Zn.


Assuntos
Metalotioneína , Fatores de Transcrição , Zinco , Metalotioneína/genética , Metalotioneína/metabolismo , Animais , Zinco/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fator MTF-1 de Transcrição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Apoptose/efeitos dos fármacos , Filogenia , Sequência de Aminoácidos , Regulação da Expressão Gênica/efeitos dos fármacos , Clonagem Molecular
20.
Int J Biol Macromol ; 275(Pt 1): 133586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960242

RESUMO

In the face of agricultural challenges posed by both abiotic and biotic stressors, phytopathogens emerge as formidable threats to crop productivity. Conventional methods, involving the use of pesticides and microbes, often lead to unintended consequences. In addressing this issue, ICAR -Indian Institute of Oilseeds Research (ICAR-IIOR) has developed a chitosan-based double-layer seed coating. Emphasizing crop input compatibility, entrapment, and characterization, the study has yielded promising results. The double-layer coating on groundnut seeds enhanced germination and seedling vigor. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed the structural changes and entrapment of crop inputs. The persistence of T. harzianum (Th4d) and Bradyrhizobium sp. in chitosan blended film in studied soils revealed that viable propogules of Th4d were recorded in double layer treatment combination with 3.54 and 3.50 Log CFUs/g of soil (colony forming units) and Bradyrhizobium sp. with 5.34 and 5.27 Log CFUs/g of soil at 90 days after application (DAA). Root colonization efficacy studies of Th4d and Bradyrhizobium sp. in groundnut crop in studied soils revealed that, maximum viable colonies were observed at 45 days after sowing (DAS). This comprehensive study highlights the potential of chitosan-based double-layer seed coating providing a promising and sustainable strategy for stress management in agriculture.


Assuntos
Bradyrhizobium , Quitosana , Sementes , Estresse Fisiológico , Quitosana/química , Quitosana/farmacologia , Sementes/efeitos dos fármacos , Bradyrhizobium/efeitos dos fármacos , Bradyrhizobium/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Vigna/efeitos dos fármacos , Vigna/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...