Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.062
Filtrar
1.
Sci Rep ; 14(1): 12854, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834735

RESUMO

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Assuntos
Compostos Férricos , Ácido Gálico , Estresse Salino , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Ácido Gálico/metabolismo , Zinco/metabolismo , Fotossíntese/efeitos dos fármacos , Nanopartículas/química , Clorofila/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Salinidade , Solo/química
2.
Sci Rep ; 14(1): 12988, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844823

RESUMO

Salinity stress significantly hinders plant growth by disrupting osmotic balance and inhibiting nutrient uptake, leading to reduced biomass and stunted development. Using saponin (SAP) and boron (B) can effectively overcome this issue. Boron decreases salinity stress by stabilizing cell walls and membranes, regulating ion balance, activating antioxidant enzymes, and enhancing water uptake. SAP are bioactive compounds that have the potential to alleviate salinity stress by improving nutrient uptake, modulating plant hormone levels, promoting root growth, and stimulating antioxidant activity. That's why the current study was planned to use a combination of SAP and boron as amendments to mitigate salinity stress in sweet potatoes. Four levels of SAP (0%, 0.1%, 0.15%, and 0.20%) and B (control, 5, 10, and 20 mg/L B) were applied in 4 replications following a completely randomized design. Results illustrated that 0.15% SAP with 20 mg/L B caused significant enhancement in sweet potato vine length (13.12%), vine weight (12.86%), root weight (8.31%), over control under salinity stress. A significant improvement in sweet potato chlorophyll a (9.84%), chlorophyll b (20.20%), total chlorophyll (13.94%), photosynthetic rate (17.69%), transpiration rate (16.03%), and stomatal conductance (17.59%) contrast to control under salinity stress prove the effectiveness of 0.15% SAP + 20 mg/L B treatment. In conclusion, 0.15% SAP + 20 mg/L B is recommended to mitigate salinity stress in sweet potatoes.


Assuntos
Boro , Ipomoea batatas , Estresse Salino , Saponinas , Ipomoea batatas/crescimento & desenvolvimento , Boro/farmacologia , Saponinas/farmacologia , Estresse Salino/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Clorofila/metabolismo , Sinergismo Farmacológico , Salinidade
3.
BMC Plant Biol ; 24(1): 487, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824521

RESUMO

Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.


Assuntos
Carvão Vegetal , Clorofila , Germinação , Potássio , Estresse Salino , Sódio , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/fisiologia , Germinação/efeitos dos fármacos , Carvão Vegetal/farmacologia , Clorofila/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Solo/química , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Paquistão , Salinidade
4.
Plant Signal Behav ; 19(1): 2361174, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825852

RESUMO

Foeniculum vulgare Mill. commonly known as fennel, is a globally recognized aromatic medicinal plant and culinary herb with widespread popularity due to its antimicrobial, antioxidant, carminative, and diuretic properties, among others. Although the phenotypic effects of salinity stress have been previously explored in fennel, the molecular mechanisms underlying responses to elevated salinity in this plant remain elusive. MicroRNAs (miRNAs) are tiny, endogenous, and extensively conserved non-coding RNAs (ncRNAs) typically ranging from 20 to 24 nucleotides (nt) in length that play a major role in a myriad of biological functions. In fact, a number of miRNAs have been extensively associated with responses to abiotic stress in plants. Consequently, employing computational methodologies and rigorous filtering criteria, 40 putative miRNAs belonging to 25 different families were characterized from fennel in this study. Subsequently, employing the psRNATarget tool, a total of 67 different candidate target transcripts for the characterized fennel miRNAs were predicted. Additionally, the expression patterns of six selected fennel miRNAs (i.e. fvu-miR156a, fvu-miR162a-3p, fvu-miR166a-3p, fvu-miR167a-5p, fvu-miR171a-3p, and fvu-miR408-3p) were analyzed under salinity stress conditions via qPCR. This article holds notable significance as it identifies not only 40 putative miRNAs in fennel, a non-model plant, but also pioneers the analysis of their expression under salinity stress conditions.


Assuntos
Foeniculum , Regulação da Expressão Gênica de Plantas , MicroRNAs , Folhas de Planta , Estresse Salino , Foeniculum/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Estresse Salino/genética , Perfilação da Expressão Gênica , RNA de Plantas/genética , RNA de Plantas/metabolismo
5.
Sci Rep ; 14(1): 12705, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831025

RESUMO

Fifty-nine diverse Brassica juncea (Indian mustard) genotypes were used to find an effective screening method to identify salt tolerance at the germination and seedling stages. Salinity stress limits crop productivity and is difficult to simulate on farms, hindering parental selection for hybridization programmes and the development of tolerant cultivars. To estimate an optimum salt concentration for screening, seeds of 15 genotypes were selected randomly and grown in vitro at 0 mM/L, 75 mM/L, 150 mM/L, 225 mM/L, and 300 mM/L concentrations of NaCl in 2 replications in a complete randomized design. Various morphological parameters, viz., length of seedling, root and shoot length, fresh weight, and dry weight, were observed to determine a single concentration using the Salt Injury Index. Then, this optimum concentration (225 mM/L) was used to assess the salt tolerance of all the 59 genotypes in 4 replications while observing the same morphological parameters. With the help of Mean Membership Function Value evaluation criteria, the genotypes were categorized into 5 grades: 4 highly salt-tolerant (HST), 6 salt-tolerant (ST), 19 moderately salt-tolerant (MST), 21 salt-sensitive (SS), and 9 highly salt-sensitive (HSS). Seedling fresh weight (SFW) at 225 mM/L was found to be an ideal trait, which demonstrates the extent to which B. juncea genotypes respond to saline conditions. This is the first report that establishes a highly efficient and reliable method for evaluating the salinity tolerance of Indian mustard at the seedling stage and will facilitate breeders in the development of salt-tolerant cultivars.


Assuntos
Genótipo , Mostardeira , Estresse Salino , Tolerância ao Sal , Plântula , Mostardeira/genética , Mostardeira/crescimento & desenvolvimento , Mostardeira/efeitos dos fármacos , Mostardeira/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/genética , Tolerância ao Sal/genética , Germinação/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos
6.
Sci Rep ; 14(1): 12701, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831069

RESUMO

The distinctive characteristics of nanoparticles and their potential applications have been given considerable attention by scientists across different fields, particularly agriculture. However, there has been limited effort to assess the impact of copper nanoparticles (CuNPs) in modulating physiological and biochemical processes in response to salt-induced stress. This study aimed to synthesize CuNPs biologically using Solenostemma argel extract and determine their effects on morphophysiological parameters and antioxidant defense system of barley (Hordeum vulgare) under salt stress. The biosynthesized CuNPs were characterized by (UV-vis spectroscopy with Surface Plasmon Resonance at 320 nm, the crystalline nature of the formed NPs was verified via XRD, the FTIR recorded the presence of the functional groups, while TEM was confirmed the shape (spherical) and the sizes (9 to 18 nm) of biosynthesized CuNPs. Seeds of barley plants were grown in plastic pots and exposed to different levels of salt (0, 100 and 200 mM NaCl). Our findings revealed that the supplementation of CuNPs (0, 25 and 50 mg/L) to salinized barley significantly mitigate the negative impacts of salt stress and enhanced the plant growth-related parameters. High salinity level enhanced the oxidative damage by raising the concentrations of osmolytes (soluble protein, soluble sugar, and proline), malondialdehyde (MDA) and hydrogen peroxide (H2O2). In addition, increasing the activities of enzymatic antioxidants, total phenol, and flavonoids. Interestingly, exposing CuNPs on salt-stressed plants enhanced the plant-growth characteristics, photosynthetic pigments, and gas exchange parameters. Furthermore, CuNPs counteracted oxidative damage by lowering the accumulation of osmolytes, H2O2, MDA, total phenol, and flavonoids, while simultaneously enhancing the activities of antioxidant enzymes. In conclusion, the application of biosynthesized CuNPs presents a promising approach and sustainable strategy to enhance plant resistance to salinity stress, surpassing conventional methods in terms of environmental balance.


Assuntos
Antioxidantes , Cobre , Hordeum , Nanopartículas Metálicas , Tolerância ao Sal , Hordeum/efeitos dos fármacos , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Tolerância ao Sal/efeitos dos fármacos , Antioxidantes/metabolismo , Lamiaceae/efeitos dos fármacos , Lamiaceae/metabolismo , Lamiaceae/crescimento & desenvolvimento , Lamiaceae/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais , Malondialdeído/metabolismo , Estresse Salino
7.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724910

RESUMO

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Assuntos
Acetatos , Antioxidantes , Brassica napus , Ciclopentanos , Giberelinas , Oxilipinas , Reguladores de Crescimento de Plantas , Solo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Acetatos/farmacologia , Solo/química , Clorofila/metabolismo , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Nutrientes/metabolismo
8.
BMC Plant Biol ; 24(1): 356, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724950

RESUMO

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Thus, the research was carried out to assess the impact of biochar treatment on the morphological and physiological characteristics and production of Solanum lycopersicum in greenhouses exposed to drought and saline stresses. The study was structured as a three-factorial in split-split-plot design. There were 16 treatments across three variables: (i) water quality, with freshwater and saline water, with electrical conductivities of 0.9 and 2.4 dS m- 1, respectively; (ii) irrigation level, with 40%, 60%, 80%, and 100% of total evapotranspiration (ETC); (iii) and biochar application, with the addition of biochar at a 3% dosage by (w/w) (BC3%), and a control (BC0%). The findings demonstrated that salt and water deficiency hurt physiological, morphological, and yield characteristics. Conversely, the biochar addition enhanced all characteristics. Growth-related parameters, such as plant height, stem diameter, leaf area, and dry and wet weight, and leaf gas exchange attributes, such rate of transpiration and photosynthesis, conductivity, as well as leaf relative water content were decreased by drought and salt stresses, especially when the irrigation was 60% ETc or 40% ETc. The biochar addition resulted in a substantial enhancement in vegetative growth-related parameters, physiological characteristics, efficiency of water use, yield, as well as reduced proline levels. Tomato yield enhanced by 4%, 16%, 8%, and 3% when irrigation with freshwater at different levels of water deficit (100% ETc, 80% ETc, 60% ETc, and 40% ETc) than control (BC0%). Overall, the use of biochar (3%) combined with freshwater shows the potential to enhance morpho-physiological characteristics, support the development of tomato plants, and improve yield with higher WUE in semi-arid and arid areas.


Assuntos
Carvão Vegetal , Secas , Estresse Salino , Solanum lycopersicum , Água , Solanum lycopersicum/fisiologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Água/metabolismo , Irrigação Agrícola , Fotossíntese/efeitos dos fármacos
9.
Physiol Plant ; 176(3): e14328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695265

RESUMO

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.


Assuntos
Acremonium , Homeostase , Oxirredução , Reguladores de Crescimento de Plantas , Tolerância ao Sal , Transdução de Sinais , Acremonium/metabolismo , Acremonium/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Tolerância ao Sal/fisiologia , Brassica napus/microbiologia , Brassica napus/metabolismo , Brassica napus/fisiologia , Brassica napus/efeitos dos fármacos , Estresse Salino/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Fotossíntese
10.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696020

RESUMO

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Assuntos
Clorofila , Cucumis sativus , Regulação da Expressão Gênica de Plantas , Fotossíntese , Estresse Salino , Tolerância ao Sal , Plântula , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/fisiologia , Cucumis sativus/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Tolerância ao Sal/genética , Estresse Salino/genética , Clorofila/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Antioxidantes/metabolismo , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas , Inativação Gênica
11.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706002

RESUMO

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Assuntos
Ácido Ascórbico , Glutationa , Glycine max , Plântula , Ácido gama-Aminobutírico , Ácido gama-Aminobutírico/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/fisiologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/fisiologia , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Minerais/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Clorofila/metabolismo , Salinidade
12.
Funct Plant Biol ; 512024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743838

RESUMO

Soil salinisation is an important abiotic stress faced in grape cultivating, leading to weakened plant vigour and reduced fruit quality. Melatonin as a novel hormone has shown positive exogenous application value. Therefore, this study used wine grape (Vitis vinifera ) 'Pinot Noir' as a test material to investigate the changes of foliar spraying with different concentrations of melatonin on the physiology and fruit quality of wine grapes in a field under simulated salt stress (200mmolL-1 NaCl). The results showed that foliar spraying of melatonin significantly increased the intercellular CO2 concentration, maximum photochemical quantum yield of PSII, relative chlorophyll and ascorbic acid content of the leaves, as well as the single spike weight, 100-grain weight, transverse and longitudinal diameters, malic acid, α-amino nitrogen and ammonia content of fruits, and decreased the initial fluorescence value of leaves, ascorbate peroxidase activity, glutathione content, fruit transverse to longitudinal ratio and tartaric acid content of plants under salt stress. Results of the comprehensive evaluation of the affiliation function indicated that 100µmolL-1 melatonin treatment had the best effect on reducing salt stress in grapes. In summary, melatonin application could enhance the salt tolerance of grapes by improving the photosynthetic capacity of grape plants under salt stress and promoting fruit development and quality formation, and these results provide new insights into the involvement of melatonin in the improvement of salt tolerance in crop, as well as some theoretical basis for the development and industrialisation of stress-resistant cultivation techniques for wine grapes.


Assuntos
Frutas , Melatonina , Fotossíntese , Folhas de Planta , Estresse Salino , Vitis , Vitis/efeitos dos fármacos , Vitis/fisiologia , Vitis/crescimento & desenvolvimento , Melatonina/farmacologia , Melatonina/administração & dosagem , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Ácido Ascórbico/farmacologia , Vinho
13.
Funct Plant Biol ; 512024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38753957

RESUMO

Detrimental effects of salinity could be mitigated by exogenous zinc (Zn) application; however, the mechanisms underlying this amelioration are poorly understood. This study demonstrated the interaction between Zn and salinity by measuring plant biomass, photosynthetic performance, ion concentrations, ROS accumulation, antioxidant activity and electrophysiological parameters in barley (Hordeum vulgare L.). Salinity stress (200mM NaCl for 3weeks) resulted in a massive reduction in plant biomass; however, both fresh and dry weight of shoots were increased by ~30% with adequate Zn supply. Zinc supplementation also maintained K+ and Na+ homeostasis and prevented H2 O2 toxicity under salinity stress. Furthermore, exposure to 10mM H2 O2 resulted in massive K+ efflux from root epidermal cells in both the elongation and mature root zones, and pre-treating roots with Zn reduced ROS-induced K+ efflux from the roots by 3-4-fold. Similar results were observed for Ca2+ . The observed effects may be causally related to more efficient regulation of cation-permeable non-selective channels involved in the transport and sequestration of Na+ , K+ and Ca2+ in various cellular compartments and tissues. This study provides valuable insights into Zn protective functions in plants and encourages the use of Zn fertilisers in barley crops grown on salt-affected soils.


Assuntos
Homeostase , Hordeum , Raízes de Plantas , Potássio , Salinidade , Zinco , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Homeostase/efeitos dos fármacos , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Estresse Salino/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
14.
Sci Rep ; 14(1): 10981, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745099

RESUMO

Melia azedarach demonstrates strong salt tolerance and thrives in harsh saline soil conditions, but the underlying mechanisms are poorly understood. In this study, we analyzed gene expression under low, medium, and high salinity conditions to gain a deeper understanding of adaptation mechanisms of M. azedarach under salt stress. The GO (gene ontology) analysis unveiled a prominent trend: as salt stress intensified, a greater number of differentially expressed genes (DEGs) became enriched in categories related to metabolic processes, catalytic activities, and membrane components. Through the analysis of the category GO:0009651 (response to salt stress), we identified four key candidate genes (CBL7, SAPK10, EDL3, and AKT1) that play a pivotal role in salt stress responses. Furthermore, the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that DEGs were significantly enriched in the plant hormone signaling pathways and starch and sucrose metabolism under both medium and high salt exposure in comparison to low salt conditions. Notably, genes involved in JAZ and MYC2 in the jasmonic acid (JA) metabolic pathway were markedly upregulated in response to high salt stress. This study offers valuable insights into the molecular mechanisms underlying M. azedarach salt tolerance and identifies potential candidate genes for enhancing salt tolerance in M. azedarach.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Salino , Tolerância ao Sal , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino/genética , Transcriptoma , Salinidade , Ontologia Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Plant Mol Biol ; 114(3): 59, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750303

RESUMO

The plant-specific homeodomain-leucine zipper I subfamily is involved in the regulation of various biological processes, particularly growth, development and stress response. In the present study, we characterized four BnaHB6 homologues from Brassica napus. All BnaHB6 proteins have transcriptional activation activity. Structural and functional data indicate the complex role of BnaHB6 genes in regulating biological processes, with some functions conserved and others diverged. Transcriptional analyzes revealed that they are induced in a similar manner in different tissues but show different expression patterns in response to stress and circadian rhythm. Only the BnaA09HB6 and BnaC08HB6 genes are expressed under dehydration and salt stress, and in darkness. The partial transcriptional overlap of BnaHB6s with the evolutionarily related genes BnaHB5 and BnaHB16 was also observed. Transgenic Arabidopsis thaliana plants expressing a single proBnaHB6::GUS partially confirmed the expression results. Bioinformatic analysis allowed the identification of TF-binding sites in the BnaHB6 promoters that may control their expression under stress and circadian rhythm. ChIP-qPCR analysis revealed that BnaA09HB6 and BnaC08HB6 bind directly to the promoters of the target genes BnaABF4 and BnaDREB2A. Comparison of their expression patterns in the WT plants and the bnac08hb6 mutant showed that BnaC08HB6 positively regulates the expression of the BnaABF4 and BnaDREB2A genes under dehydration and salt stress. We conclude that four BnaHB6 homologues have distinct functions in response to stress despite high sequence similarity, possibly indicating different binding preferences with BnaABF4 and BnaDREB2A. We hypothesize that BnaC08HB6 and BnaA09HB6 function in a complex regulatory network under stress.


Assuntos
Brassica napus , Desidratação , Regulação da Expressão Gênica de Plantas , Zíper de Leucina , Proteínas de Plantas , Estresse Salino , Fatores de Transcrição , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/fisiologia , Brassica napus/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zíper de Leucina/genética , Plantas Geneticamente Modificadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Regiões Promotoras Genéticas/genética , Filogenia , Ritmo Circadiano/genética , Estresse Fisiológico/genética
16.
PeerJ ; 12: e16943, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770100

RESUMO

The aim of the current study was to assess the potency of the exopolymeric substances (EPS)-secreting purple non-sulfur bacteria (PNSB) on rice plants on acidic salt-affected soil under greenhouse conditions. A two-factor experiment was conducted following a completely randomized block design. The first factor was the salinity of the irrigation, and the other factor was the application of the EPS producing PNSB (Luteovulum sphaeroides EPS18, EPS37, and EPS54), with four replicates. The result illustrated that irrigation of salt water at 3-4‰ resulted in an increase in the Na+ accumulation in soil, resulting in a lower rice grain yield by 12.9-22.2% in comparison with the 0‰ salinity case. Supplying the mixture of L. sphaeroides EPS18, EPS37, and EPS54 increased pH by 0.13, NH4+ by 2.30 mg NH4+ kg-1, and available P by 8.80 mg P kg-1, and decreased Na+ by 0.348 meq Na+ 100 g-1, resulting in improvements in N, P, and K uptake and reductions in Na uptake, in comparison with the treatment without bacteria. Thus, the treatments supplied with the mixture of L. sphaeroides EPS18, EPS37, and EPS54 resulted in greater yield by 27.7% than the control treatment.


Assuntos
Oryza , Microbiologia do Solo , Solo , Oryza/microbiologia , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Solo/química , Salinidade , Estresse Salino , Proteobactérias/metabolismo , Concentração de Íons de Hidrogênio , Sódio/metabolismo , Sódio/farmacologia
17.
Planta ; 260(1): 5, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777878

RESUMO

MAIN CONCLUSION: Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.


Assuntos
Brassinosteroides , Homeostase , Raízes de Plantas , Espécies Reativas de Oxigênio , Tolerância ao Sal , Esteroides Heterocíclicos , Triticum , Triticum/genética , Triticum/fisiologia , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Brassinosteroides/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal/genética , Esteroides Heterocíclicos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Estresse Salino , Estresse Oxidativo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Catalase/metabolismo
18.
Plant Physiol Biochem ; 211: 108693, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714130

RESUMO

Abiotic stresses like salinity and micronutrient deficiency majorly affect wheat productivity. Applying mesoporous silica nanoparticles (MSiNPs) as a smart micronutrient delivery system can facilitate better stress management and nutrient delivery. In this purview, we investigated the potential of MSiNPs and Zn-loaded MSiNPs (Zn-MSiNPs) on the growth and physiology of wheat seedlings exposed to salinity stress (200 mM NaCl). Initially, the FESEM, DLS, and BET analysis portrayed nanoparticles' spherical shape, nano-size, and negatively charged mesoporous surface. A sustained release of Zn+2 from Zn-MSiNPs at 30 °C, diffused light, and pH 7 was perceived with a 96.57% release after 10 days. Further, the mitigation of NaCl stress in the wheat seedlings was evaluated with two different concentrations, each of MSiNPs and Zn-MSiNPs (1 g/L and 5 g/L), respectively. A meticulous improvement in the germination and growth of wheat seedlings was observed when treated with both MSiNPs and Zn-MSiNPs. A considerable increase in chlorophyll, total protein, and sugar content was in consort with a substantial decline in MDA, electrolyte leakage, and ROS accumulation, showcasing the nanomaterials' palliating effects. Most importantly, the K+/Na+ ratio in shoots increased significantly by 3.43 and 4.37 folds after being treated with 5 g/L Zn-MSiNPs, compared to their respective control sets (0 and 200 mM NaCl). Therefore, it can be concluded that the Zn-MSiNPs can effectively restrain the effects of salinity stress on wheat seedlings.


Assuntos
Nanopartículas , Espécies Reativas de Oxigênio , Plântula , Dióxido de Silício , Triticum , Zinco , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Dióxido de Silício/química , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Zinco/metabolismo , Zinco/farmacologia , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/efeitos dos fármacos , Porosidade , Osmose/efeitos dos fármacos
19.
Plant Physiol Biochem ; 211: 108655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744086

RESUMO

The challenge of desert farming with a high salt level has become an ecological task due to salt stress negatively affecting plant growth and reproduction. The current study deals with the cultivation of sorghum under salt stress conditions to counteract the effect of chitosan and gibberellic acid (GA3). Here, the effects of chitosan, GA3 and nano-composite (GA3@chitosan) on biochemical contents, growth and seed yield of sorghum under salinity stress conditions were studied. The results showed that spraying with GA3@chitosan increased sorghum grain yield by 2.07, 1.81 and 1.64 fold higher than salinity stressed plants, chitosan treatment and GA3 treatment, respectively. Additionally, compared to the control of the same variety, the GA3@chitosan spraying treatment improved the concentration of microelements in the grains of the Shandweel-1 and Dorado by 24.51% and 18.39%, respectively for each variety. Furthermore, spraying GA3@chitosan on sorghum varieties increased the accumulation of the macroelements N, P, and K by 34.03%, 47.61%, and 8.67% higher than salt-stressed plants, respectively. On the other hand, the proline and glycinebetaine content in sorghum leaves sprayed with nano-composite were drop by 51.04% and 11.98% less than stressed plants, respectively. The results showed that, in Ras Sudr, the Shandweel-1 variety produced more grain per feddan than the Dorado variety. These findings suggest that GA3@chitosan improves the chemical and biochemical components leading to a decrease in the negative effect of salt stress on the plant which reflects in the high-yield production of cultivated sorghum plants in salt conditions.


Assuntos
Quitosana , Giberelinas , Estresse Salino , Sorghum , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Sorghum/crescimento & desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
20.
Plant Physiol Biochem ; 211: 108601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696867

RESUMO

Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.


Assuntos
Neurotransmissores , Estresse Salino , Neurotransmissores/metabolismo , Plantas/metabolismo , Plantas/efeitos dos fármacos , Tolerância ao Sal , Fenômenos Fisiológicos Vegetais , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA