Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.341
Filtrar
1.
Water Sci Technol ; 90(3): 1009-1022, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39141048

RESUMO

The manufacturing of fossil-based fertilizers by extraction of rock phosphate has contributed to carbon emissions and depleted the non-renewable phosphorus reserves. Sewage sludge, which is a waste product from Sewage Treatment Plants (STPs), is rich in phosphorus. The existing techniques for sludge management contribute to carbon emissions and ecological footprint. Struvite (raw fertilizer) and biochar recovery from sludge has emerged as viable methods to reduce carbon emission and ensure economic sustainability of STPs. In this work, the potential for phosphorus recovery and revenue generation is discussed for Rajasthan state in India. The fate of phosphorus and heavy metals in STPs is evaluated which indicates that about 70% of the phosphorus and trace amounts of metals end up in sewage sludge. Further, the power consumption is high in STPs due to industrial wastewater ingress. There is a need to bridge the gap between sewage treatment and generation in Rajasthan, improve STP performance before resource recovery inclusion at policy-level and scale-up. Mixing struvite with biochar can lead to safe application of struvite as raw fertilizer as heavy metals are sequestered by biochar. A business framework is developed to serve as a blueprint and potential model for linking technical and market viability.


Assuntos
Compostos de Magnésio , Fosfatos , Fósforo , Esgotos , Estruvita , Esgotos/química , Estruvita/química , Índia , Fósforo/química , Fósforo/análise , Fosfatos/química , Compostos de Magnésio/química , Fertilizantes/análise , Precipitação Química , Carvão Vegetal/química , Metais Pesados/análise , Eliminação de Resíduos Líquidos/métodos
2.
Environ Geochem Health ; 46(9): 344, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073643

RESUMO

Ammonia nitrogen is a common pollutant in water and soil, known for its biological toxicity and complex removal process. Traditional biological methods for removing ammonia nitrogen are often inefficient, especially under varying temperature conditions. This study reviews physicochemical techniques for the treatment and recovery of ammonia nitrogen from water. Key methods analyzed include ion exchange, adsorption, membrane separation, struvite precipitation, and advanced oxidation processes (AOPs). Findings indicate that these methods not only remove ammonia nitrogen but also allow for nitrogen recovery. Ion exchange, adsorption, and membrane separation are effective in separating ammonia nitrogen, while AOPs generate reactive species for efficient degradation. Struvite precipitation offers dual benefits of removal and resource recovery. Despite their advantages, these methods face challenges such as secondary pollution and high energy consumption. This paper highlights the development principles, current challenges, and future prospects of physicochemical techniques, emphasizing the need for integrated approaches to enhance ammonia nitrogen removal efficiency.


Assuntos
Amônia , Poluentes Químicos da Água , Purificação da Água , Amônia/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Adsorção , Oxirredução , Nitrogênio/química , Troca Iônica , Estruvita/química , Precipitação Química
3.
Waste Manag ; 187: 50-60, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996619

RESUMO

Phosphate rock is a finite, non-renewable mineral resource that is used primarily in fertiliser production. The scarcity and the increasing demand for this finite material led the European Commission to include it in the critical raw material list in 2014. As a consequence, efforts have been directed towards enhancing material use efficiency, initiating recycling efforts, and formulating waste policies to mitigate the criticality of raw materials. Interest in the development of technologies for nutrient recovery from organic waste streams has increased in recent years, and dairy processing sludge (DPS) is a potential input waste stream. Although the recovery of P from DPS can contribute to more circular flows of nutrients in society, it has to be assessed whether there are also overall environmental gains. This paper reports on a life cycle assessment (LCA) of the environmental impacts of three scenarios for phosphorus (P) recovery involving hydrothermal carbonization (HTC) and struvite precipitation and a comparison to a reference drying scenario. HTC produces a solid fraction (hydrochar), and a liquid fraction (process water) and in one of the scenarios (Scenario 3), leaching the hydrochar for additional P recovery is considered. From the process water as well as from the hydrochar leachate, P is precipitated in the form of struvite. Scenarios 1 and 2 both consider HTC and struvite production with the only difference that the hydrochar is used as a fuel instead of as a fertilizer in the latter case, and Scenario 3 adds leaching of the hydrochar with subsequent struvite production and considers that hydrochar is used as a fuel. In the fourth (reference) scenario, dewatering and drying of DPS is considered. The recovered product use in agriculture was not assessed at this stage. The assessment of the emerging technologies in Scenarios 1-3 was done by studying the technologies in early stages of development but modelling them as more developed in the future. Additional functions beyond the functional unit of one kg of P recovered were handled through a system expansion by substitution approach. This way, the system was credited for calcium ammonium nitrate (CAN) production in all scenarios and for wood chips production in Scenarios 2 and 3. Looking at net outcomes for all scenarios, the life cycle impact indicator results for scenario 2 are lower than the other scenarios in several impact categories. Large gains in scenario 2 are related to the avoided production of wood chips.


Assuntos
Indústria de Laticínios , Fósforo , Esgotos , Fósforo/análise , Esgotos/química , Indústria de Laticínios/métodos , Reciclagem/métodos , Fertilizantes/análise , Meio Ambiente , Estruvita/química
4.
Chemosphere ; 363: 142828, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992447

RESUMO

Despite the potential of sodium sulfide (Na2S) for phosphorus (P) recovery from iron-phosphate waste, the underlying mechanism regarding its impact on P conversion and product quality has not been well addressed. In this study, the effects of Na2S addition on P release and recovery from a chemical-enhanced phosphorus removal (CEPR) sludge during anaerobic fermentation were systematically investigated. The results revealed that the effective mobilization of P bound to Fe (Fe-P) by Na2S dominated the massive P release from the CEPR sludge, while the organic P (OP) release was not significantly enhanced during anaerobic fermentation. Due to the rapid reaction of Na2S with Fe-P and the prevention of Fe(II)-P precipitation by excess S2-, the Fe-P was decreased by 9.7%, 15.2% and 24.9% at S:Fe molar ratios of 0.3, 0.5 and 1, respectively. After anaerobic fermentation, the released P mainly existed as soluble phosphate (SP), P bound to Ca (Ca-P) and P bound to Al (Al-P). The nitrogen and P contents in the fermentation supernatant significantly increased with higher S:Fe ratios, facilitating the efficient recovery of P as high-purity struvite. However, the increased Na2S dosage deteriorated the sludge dewaterability because of the dissolution of hydrophilic extracellular polymeric substances and the looser secondary structure of proteins. Comprehensively considering the P recovery, sludge dewaterability and economic cost, the optimal Na2S dosage was determined at the S:Fe ratio of 0.3. These findings provide novel insights into the role of Na2S in P recovery as struvite from CEPR sludge.


Assuntos
Fósforo , Esgotos , Estruvita , Sulfetos , Eliminação de Resíduos Líquidos , Fósforo/química , Esgotos/química , Sulfetos/química , Estruvita/química , Eliminação de Resíduos Líquidos/métodos , Ferro/química , Fermentação , Anaerobiose
5.
Chemosphere ; 363: 142823, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996978

RESUMO

Struvite biomineralization is an ecologically sound technology, adept at the efficient recovery and recycling of phosphorus from wastewater. However, the biomineralization process is often perturbed by the presence of antibiotics, notably tetracycline (TC), the impact of which on the biomineralization system has not been elucidated. This study examines the efficacy of Bacillus cereus LB-9 in struvite biomineralization, focusing on the precipitates' composition, morphology, and TC content. LB-9 facilitate an alkaline environment that effectively recovering nitrogen and phosphorus. These findings indicate that TC retards the initial formation of struvite and the concurrent recovery of nitrogen and phosphorus. However, at concentrations below 10 mg/L TC concentrations, TC enhanced struvite production (0.38g) by stimulating LB-9's growth and metabolic activity. Conversely, at a concentration of 10 mg/L TC, the strain's activity was markedly suppressed within the initial four days. This data suggests that TC promotes the strain's proliferation and metabolism, potentially through cellular secretions, thereby augmenting phosphorus recovery from wastewater. Notably, the recovered struvite doesn't contain TC, aligning with regulatory standards for agricultural application. In summary, LB-9-mediated struvite recovery is an effective strategy for producing phosphorus-enriched fertilizers and mitigating TC contamination, offering significant implications for wastewater treatment and industrial process development, particularly in the context of prevalent TC in wastewater.


Assuntos
Bacillus cereus , Fósforo , Estruvita , Tetraciclina , Águas Residuárias , Fósforo/metabolismo , Águas Residuárias/química , Bacillus cereus/metabolismo , Estruvita/química , Biomineralização , Antibacterianos , Poluentes Químicos da Água/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Fertilizantes
6.
J Hazard Mater ; 477: 135259, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047570

RESUMO

Struvite recovery from wastewater offers a sustainable phosphorus and nitrogen source, yet it harbors the challenge of variable antibiotic residues, notably oxytetracycline (OTC), increasing the ecological risk during subsequent use. Despite the need, mechanisms behind these residues and regulatory solutions remain obscure. We characterized OTC in recovered struvite and showed that increased dissolved organic matter (DOM) enhanced OTC accumulation, while PO43- suppressed it. NH4+ modulated OTC levels through the saturation index (SI), with a rise in SI significantly reducing OTC content. Additionally, excess Mg2+ formed complexes with OTC and DOM (humic acid, HA), leading to increased residue levels. Complexation was stronger at higher pH, whereas electrostatic interactions dominated at lower pH. The primary binding sites for antibiotics and DOM were Mg-OH and P-OH groups in struvite. OTC's dimethylamino, amide, and phenolic diketone groups primarily bound to struvite and DOM, with the carboxyl group of DOM serving as the main binding site. Mg2+ complexation was the primary pathway for OTC transportation, whereas electrostatic attraction of PO43- dominated during growth. Controlling magnesium (Mg) dosage and adjusting pH were effective for reducing OTC in recovered products. Our findings provided insights into the intricate interactions between struvite and antibiotics, laying the groundwork for further minimizing antibiotic residues in recovered phosphorus products.


Assuntos
Antibacterianos , Oxitetraciclina , Estruvita , Águas Residuárias , Poluentes Químicos da Água , Oxitetraciclina/química , Oxitetraciclina/análise , Estruvita/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Antibacterianos/química , Antibacterianos/análise , Concentração de Íons de Hidrogênio , Substâncias Húmicas/análise , Fósforo/química , Fósforo/análise
7.
Chemosphere ; 362: 142589, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866334

RESUMO

The enrichment of phosphorus (P) and nitrogen (N) in aquatic systems can cause eutrophication. Moreover, P rocks may become exhausted in the next 100 years. A slow-release fertilizer called struvite (MgNH4PO4.6H2O) can reduce surface runoff. However, the high cost of raw material or chemicals is a bottleneck in their economical production. Therefore, incinerated sewage sludge ash, food wastewater, and bittern were combined as the sources of P, N, and Mg, respectively. Sawdust biochar was used to enhance the adsorptive recovery of nutrients. First, recovery kinetics was studied by comparing bittern-impregnated biochar (BtB) with the Mg-impregnated biochar (MgB). Subsequently, the synergistic physical and chemical interactions were observed for P and N recovery. Almost complete PO43-P recoveries were achieved within 10 min for both biochars. However, NH4+-N recovery was stable after 2 h, with 26% recovery by MgB and 20% recovery by BtB. Biochars activated with steam (steam-activated biochar) and KOH (KOH-activated biochar) gave superior activities to those of unactivated biochars and activated carbon (AC) nutrient recovery and struvite purity. Moreover, the activated biochars showed a lower risk of surface runoff, similar to that of AC. Therefore, activated biochars can be used as an alternative to AC for economical struvite production from a combination of wastewater sources.


Assuntos
Carvão Vegetal , Fertilizantes , Nitrogênio , Fósforo , Estruvita , Eliminação de Resíduos Líquidos , Águas Residuárias , Estruvita/química , Carvão Vegetal/química , Águas Residuárias/química , Fósforo/química , Fósforo/análise , Nitrogênio/química , Nitrogênio/análise , Fertilizantes/análise , Eliminação de Resíduos Líquidos/métodos , Nutrientes/análise , Esgotos/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Compostos de Magnésio/química , Fosfatos/química
8.
Environ Sci Pollut Res Int ; 31(29): 42133-42143, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858288

RESUMO

Phosphorus recovery from wastewater is receiving more attention due to its non-renewable property. As copper (Cu) and zinc (Zn) usually occur in livestock wastewater, this study focused on metal sorption in struvite from swine wastewater and the release properties of granular struvite in solution with varying pH conditions (2, 4, 7). The results demonstrated pH values presented a slightly decreasing trend with increasing Cu/Zn ratio, and Zn exhibited higher sorption performance on struvite crystals than that of Cu. Under the high content of metals in the wastewater, Cu/Zn ratios in the wastewater contributed to varying metal binding forms and mechanisms, resulting in the difference in the leaching properties of nutrients and metal. For the granular struvite manufactured with the adhesion of alginate, the P release percentage achieved 30.3-40.5% after 96 h in the wastewater of pH 2, whereas they were only 5.63-8.92% and 1.05-1.50% in the wastewater of pH 4 and 7, respectively. Acid wastewater contributed to the release of two metals, and the release amount of Zn was higher than that of Cu, which is associated with their sorption capacity in crystals. During the latter soil leaching test of adding granular struvite, the NH4+-N and PO43--P concentration in the effluent ranged from 0.34 to 1.26 and 0.62 to 2.56 mg/L after 96 h, respectively. However, the Cu and Zn could not be measured due to lower than the detection limit under varying treatments. Struvite might be accompanied by quicker metal leaching and slower nutrient leaching when surface sorption dominates in wastewater with lower metal concentrations.


Assuntos
Gado , Metais Pesados , Estruvita , Águas Residuárias , Águas Residuárias/química , Estruvita/química , Animais , Metais Pesados/química , Adsorção , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos , Concentração de Íons de Hidrogênio
9.
Eur Rev Med Pharmacol Sci ; 28(9): 3447-3454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766801

RESUMO

OBJECTIVE: This study aimed to quantitatively analyze the calculi components of upper urinary tract calculi and to explore the relationship between calculus components, demographic characteristics, and underlying diseases. PATIENTS AND METHODS: Clinical data of 1,495 patients with upper urinary tract calculi were retrospectively collected. The calculi were divided into simple calcium oxalate, calcium oxalate mixed, calcium phosphate mixed, uric acid, magnesium ammonium phosphate, and other components. Statistical software SPSS 22.0 was used to analyze the differences between the stone compositions and various factors. The influencing factors (p < 0.05) were analyzed using multiple logistic regression analysis. RESULTS: Among 1,495 patients with upper urinary tract calculi, simple calcium oxalate calculi were the most common component (39.7%), followed by calcium oxalate mixed calculi (30.4%), uric acid calculi (13.6%), calcium phosphate mixed calculi (10.4%), magnesium ammonium phosphate calculi (5.8%) and other component calculi (0.1%). Univariate analysis revealed statistically significant differences in stone composition according to gender, age, and hyperuricemia (p < 0.05). Multiple logistic regression analysis showed that compared to men, the odds ratio (OR) values of calcium oxalate mixed stones, calcium phosphate mixed stones, and magnesium ammonium phosphate stones in women were 1.61, 2.50, and 4.17, respectively (p < 0.001). Compared with elderly patients, the OR values of calcium phosphate mixed stones in young and middle-aged patients were 3.14 and 2.70, respectively (p < 0.05). CONCLUSIONS: Patients with different stone components had different demographic characteristics, and stone components were significantly different between gender and age. Calcium oxalate mixed stones were more common in females, and calcium phosphate mixed stones and magnesium ammonium phosphate stones were more common in females, young patients, and middle-aged patients.


Assuntos
Oxalato de Cálcio , Fosfatos de Cálcio , Cálculos Urinários , Humanos , Masculino , Feminino , Cálculos Urinários/química , Cálculos Urinários/epidemiologia , Pessoa de Meia-Idade , Fosfatos de Cálcio/análise , Fatores Etários , Adulto , Estudos Retrospectivos , Oxalato de Cálcio/análise , Fatores Sexuais , Ácido Úrico/análise , Idoso , Estruvita/análise , Fosfatos/análise , Adolescente , Adulto Jovem
10.
Water Res ; 256: 121638, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691899

RESUMO

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Magnésio , Fósforo , Ureia , Ureia/química , Fósforo/química , Magnésio/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Urina/química , Fosfatos/química , Estruvita/química , Amônia/química , Compostos de Magnésio/química , Nitrogênio/química , Humanos
11.
Sci Rep ; 14(1): 10834, 2024 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734821

RESUMO

Bulk composition of kidney stones, often analyzed with infrared spectroscopy, plays an essential role in determining the course of treatment for kidney stone disease. Though bulk analysis of kidney stones can hint at the general causes of stone formation, it is necessary to understand kidney stone microstructure to further advance potential treatments that rely on in vivo dissolution of stones rather than surgery. The utility of Raman microscopy is demonstrated for the purpose of studying kidney stone microstructure with chemical maps at ≤ 1 µm scales collected for calcium oxalate, calcium phosphate, uric acid, and struvite stones. Observed microstructures are discussed with respect to kidney stone growth and dissolution with emphasis placed on < 5 µm features that would be difficult to identify using alternative techniques including micro computed tomography. These features include thin concentric rings of calcium oxalate monohydrate within uric acid stones and increased frequency of calcium oxalate crystals within regions of elongated crystal growth in a brushite stone. We relate these observations to potential concerns of clinical significance including dissolution of uric acid by raising urine pH and the higher rates of brushite stone recurrence compared to other non-infectious kidney stones.


Assuntos
Oxalato de Cálcio , Fosfatos de Cálcio , Cálculos Renais , Análise Espectral Raman , Estruvita , Ácido Úrico , Cálculos Renais/química , Análise Espectral Raman/métodos , Oxalato de Cálcio/química , Ácido Úrico/análise , Fosfatos de Cálcio/análise , Fosfatos de Cálcio/química , Humanos , Estruvita/química , Compostos de Magnésio/química , Fosfatos/análise
12.
J Environ Manage ; 360: 121100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744205

RESUMO

Removal of heavy metals using the electrokinetic (EK) remediation technology is restricted by soils containing a fraction of clay particles above 12%. Furthermore, it is also affected by hydroxide precipitation (focusing phenomenon) close to the cathode. A modified EK reactor containing a permeable reactive barrier (PRB) was proposed herein where the enzyme-induced carbonate precipitation (EICP) treatment was incorporated into the PRB. Despite that, NH4+-N pollution induced by the urea hydrolysis resulting from the EICP treatment causes serious threats to surrounding environments and human health. There were four types of tests applied to the present work, including CP, TS1, TS2, and TS3 tests. CP test neglected the bio-PRB, while TS1 test considered the bio-PRB. TS2 test based on TS1 test tackled NH4+-N pollution using the struvite precipitation technology. TS3 test based on TS2 test applied EDDS to enhance the removal of Cu and Pb. In CP test, the removal efficiency applied to Cu and Pb removals was as low as approximately 10%, presumably due to the focusing phenomenon. The removal efficiency was elevated to approximately 24% when the bio-PRB and the electrolyte reservoir were involved in TS1 test. TS2 test indicated that the rate of struvite precipitation was 40 times faster than the ureolysis rate, meaning that the struvite precipitate had sequestered NH4+ before it started threatening surrounding environments. The chelation between Cu2+ and EDDS took place when EDDS played a part in TS3 test. It made Cu2+ negatively surface charged by transforming Cu2+ into EDDSCu2-. The chelation caused those left in S4 and S4 to migrate toward the bio-PRB, whereas it also caused those left in S1 and S2 to migrate toward the anode. Due to this reason, the fraction of Cu2+ removed by the bio-PRB and the electrolyte reservoir is raised to 32% and 26% respectively, and the fraction of remaining Cu was reduced to 41%. Also, the removal efficiency applied to Pb removal was raised to 50%. Results demonstrate the potential of struvite and EDDS-assisted EK-PRB technology as a cleanup method for Cu- and Pb-contaminated loess.


Assuntos
Cobre , Chumbo , Estruvita , Cobre/química , Chumbo/química , Estruvita/química , Solo/química , Succinatos/química , Poluentes do Solo/química
13.
Metallomics ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38599629

RESUMO

Taking into account that in recent decades there has been an increase in the incidence of urinary stones, especially in highly developed countries, from a wide range of potentially harmful substances commonly available in such countries, we chose zinc for the research presented in this article, which is classified by some sources as a heavy metal. In this article, we present the results of research on the influence of Zn2+ ion on the nucleation and growth of struvite crystals-the main component of infection urinary stones. The tests were carried out in an artificial urine environment with and without the presence of Proteus mirabilis bacteria. In the latter case, the activity of bacterial urease was simulated chemically, by systematic addition of an aqueous ammonia solution. The obtained results indicate that Zn2+ ions compete with Mg2+ ions, which leads to the gradual replacement of Mg2+ ions in the struvite crystal lattice with Zn2+ ions to some extent. This means co-precipitation of Mg-struvite (MgNH4PO4·6H2O) and Znx-struvite (Mg1-xZnxNH4PO4·6H2O). Speciation analysis of chemical complexes showed that Znx-struvite precipitates at slightly lower pH values than Mg-struvite. This means that Zn2+ ions shift the nucleation point of crystalline solids towards a lower pH. Additionally, the conducted research shows that Zn2+ ions, in the range of tested concentrations, do not have a toxic effect on bacteria; on the contrary, it has a positive effect on cellular metabolism, enabling bacteria to develop better. It means that Zn2+ ions in artificial urine, in vitro, slightly increase the risk of developing infection urinary stones.


Assuntos
Proteus mirabilis , Estruvita , Cálculos Urinários , Zinco , Estruvita/química , Zinco/metabolismo , Zinco/química , Cálculos Urinários/química , Cálculos Urinários/metabolismo , Cálculos Urinários/microbiologia , Proteus mirabilis/metabolismo , Humanos , Fosfatos/metabolismo , Fosfatos/química , Íons , Compostos de Magnésio/metabolismo , Compostos de Magnésio/química , Cristalização
14.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38575019

RESUMO

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Assuntos
Fertilizantes , Magnésio , Estruvita/química , Magnésio/química , Fertilizantes/análise , Óxido de Magnésio , Fósforo/química , Carvão Vegetal/química , Solo/química , Nitrogênio/análise
15.
J Environ Manage ; 356: 120665, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518498

RESUMO

Struvite precipitation from source-separated urine is crucial for waste utilization and sustainability. However, after precipitation, the high moisture content of struvite necessitates an additional drying process that can be costly and inefficient. In the present study, the performance of different drying methods-open sun drying, air drying, conventional drying (20-100 °C), and microwave drying (180-720 W) on the quality of struvite obtained from source-separated urine through electrocoagulation using Mg-Mg electrodes were evaluated. It was found that higher temperatures and power in the convective oven and microwave resulted in higher diffusivity (10-9-10-7 m2s-1), leading to reduced drying times. Different models were employed to comprehend the drying mechanism, and the one with the highest correlation coefficient (R2 = 0.99) and the lowest statistical values was selected. The key findings indicated that higher power and temperature levels were more cost-effective. However, characterization of the dried struvite using X-ray diffraction and Fourier-transformed infrared spectroscopy, disintegration of struvite crystals at temperatures above 60 °C in the conventional oven and 180 W in the microwave oven was observed. Based on the results, we conclude that sun drying is a cost-effective and environmentally friendly alternative for drying struvite without compromising its quality.


Assuntos
Dessecação , Estruvita , Análise Custo-Benefício , Dessecação/métodos , Temperatura , Difração de Raios X
16.
Medicine (Baltimore) ; 103(10): e37374, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457575

RESUMO

The current report aimed to evaluate the characteristics of stone composition in 3637 renal and ureteral calculi patients in a single center while clarifying its relationship with sex, age, and time. Out of 3637 cases of upper urinary tract stones, stone specimens were analyzed retrospectively. There were 2373 male patients aged 6 months-87 years, with an average age of 44.73 ±â€…15.63 years, and 1264 female patients aged 4 months-87 years, with an average age of 46.84 ±â€…16.00 years. The male-female ratio was 1.88:1. Five hundred twelve patients had ureteral calculi, and 3125 had renal calculi. The SPSS software helped analyze the relationship between renal and ureteral calculi composition and sex, age, and time. Stone composition demonstrated 2205 cases of calcium oxalate stones (60.6%), 518 carbonate apatite (14.2%), 386 uric acids (10.6%), 232 magnesium ammonium phosphate (6.4%), 117 calcium phosphate (3.2%), 76 cystine (2.1%), 47 sodium urate (1.3%), 31 others (0.9%), and 25 ammonium urate (0.7%) cases. The overall male-to-female sex ratio was 1.88:1. Stones in the upper urinary tract were significantly more frequent in men than in women between the ages of 31 and 60. However, such stones were significantly more frequent in women than men over 80 (P < .05). Cystine, Sodium urate, Carbonated apatite, and uric acid indicated significant differences between different age categories (all P < .001). Stone composition analyses revealed that the frequency of calcium oxalate calculi has increased annually, while cystine and carbonated apatite incidences have dropped annually over the past decade. The components of renal and ureteral calculi vary significantly based on age and sex, with calcium oxalate calculi being more frequent in men while magnesium ammonium phosphate stones are more frequent in female patients. The age between 31 and 60 years is the most prevalent for renal and ureteral calculi in men and women.


Assuntos
Cálculos Renais , Cálculos Ureterais , Cálculos Urinários , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Cálculos Ureterais/epidemiologia , Estruvita , Oxalato de Cálcio , Cistina/análise , Estudos Retrospectivos , Ácido Úrico , Fosfatos , Cálculos Urinários/epidemiologia , Cálculos Renais/epidemiologia , Apatitas , China/epidemiologia
17.
Environ Sci Pollut Res Int ; 31(11): 17481-17493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342832

RESUMO

Excessive phosphorus will lead to eutrophication in aquatic environment; the efficient removal of phosphorus is crucial for wastewater engineering and surface water management. This study aimed to fabricate a nanorod-like sepiolite-supported MgO (S-MgO) nanocomposite with high specific surface area for efficient phosphate removal using a facile microwave-assisted method and calcining processes. The impact of solution pH, adsorbent dosage, contact time, initial phosphate concentrations, Ca2+ addition, and N/P ratio on the phosphate removal was extensively examined by the batch experiments. The findings demonstrated that the S-MgO nanocomposite exhibited effective removal performance for low-level phosphate (0 ~ 2.0 mM) within the pH range of 3.0 ~ 10.0. Additionally, the nanocomposite can synchronously remove phosphate and ammonium in high-level nutrient conditions (> 2.0 mM), with the maximum removal capacities of 188.49 mg P/g and 89.78 mg N/g. Quantitative and qualitative analyses confirmed the successful harvesting of struvite in effluent with high-phosphate concentrations, with the mechanisms involved attributed to a synergistic combination of sorption and struvite crystallization. Due to its proficient phosphate removal efficiency, cost-effectiveness, and substantial removal capacity, the developed S-MgO nanocomposite exhibits promising potential for application in phosphorus removal from aquatic environments.


Assuntos
Silicatos de Magnésio , Nanocompostos , Poluentes Químicos da Água , Fósforo/química , Estruvita/química , Óxido de Magnésio , Nitrogênio , Fosfatos/química
18.
Water Res ; 252: 121239, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335753

RESUMO

Limited mineralization of organic phosphorus to phosphate during the anaerobic digestion process poses a significant challenge in the development of cost-effective nutrient recovery strategies from anaerobically digested poultry wastewater (ADPW). This study investigated the influence of organic acids on phosphorus solubilization from ADPW, followed by its recycling in the form of struvite using a bubble column electrolytic reactor (BCER) without adding chemicals. The impact of seeding on the efficiency of PO43- and NH3-N recovery as well as the size distribution of recovered precipitates from the acid pre-treated ADPW was also evaluated. Pre-treatment of the ADPW with oxalic acid achieved complete solubilization of phosphorus, reaching ∼100% extraction efficiency at pH 2.5. The maximum removal efficiency of phosphate and ammonia-nitrogen from the ADPW were 88.9% and 90.1%, respectively, while the addition of 5 and 10 g/L struvite seed to the BCER increased PO43- removal efficiency by 9.6% and 11.5%, respectively. The value of the kinetic rate constant, k, increased from 0.0176 min-1 (unseeded) to 0.0198 min-1, 0.0307 min-1, and 0.0375 min-1 with the seed loading rate of 2, 5, and 10 g/L, respectively. Concurrently, the average particle size rose from 75.3 µm (unseeded) to 82.1 µm, 125.7 µm, and 148.9 µm, respectively. Results from XRD, FTIR, EDS, and dissolved chemical analysis revealed that the solid product obtained from the recovery process was a multi-nutrient fertilizer consisting of 94.7% struvite with negligible levels of heavy metals.


Assuntos
Aves Domésticas , Águas Residuárias , Animais , Estruvita , Fosfatos/análise , Fósforo/análise , Compostos Orgânicos , Nutrientes/análise , Precipitação Química
19.
Sci Rep ; 14(1): 1093, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212440

RESUMO

One of the main factors considered in assessing the nutritional value of feed is its chemical composition, which can be modified by fertilization. Faced with reducing P resources, alternative sources of this element are being sought. Phosphorus is an essential nutrient in soybean cultivation. The aim of the study was to use an alternative source of phosphorus fertilizer and compare its impact on the chemical composition of soybean seeds with that of a traditional fertilizer (Super FOS DAR). The study investigated a range of factors in animal nutrition as well as the basic content of macro- and microelements. A pot experiment with the Abelina soybean variety was conducted at the Experimental Station of the Wroclaw University of Environmental and Life Sciences. The experiment considered two factors against the control: phosphorus fertilizer placement (band, broadcast) and different phosphorus fertilization (Super FOS DAR, Crystal Green). Use of struvite (Crystal Green)) caused positive changes in selected amino acids content and in the nutritional value of protein in soybean seeds; this can enhance the value of soybean seeds as well as increase certain macroelements and microelements. Phosphorus fertilizer significantly increased the content of lysine, leucine, valine, phenyloalanine and tyrosine. Band fertilization with struvite caused a significant increase in amino acids (lysine, leucine, valine, phenyloalanine and tyrosine) as well as in the nutritional value of protein (as measured by the essential amino acid index, protein efficiency ratio and biological value of the protein). Favorable changes under the influence of the application of struvite were recorded in the content of calcium, as well as phosphorus, iron, and manganese. The value of the struvite in the case of its use as phosphorus fertilizer is promising; however, it needs further study.


Assuntos
Glycine max , Fosfatos , Animais , Estruvita/química , Fosfatos/química , Fertilizantes , Leucina , Lisina , Fósforo/química , Tirosina , Valina
20.
J Environ Manage ; 353: 120166, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280247

RESUMO

A series of technologies have been employed in pilot-scale to process digestate, i.e. the byproduct remaining after the anaerobic digestion of agricultural and other wastes, with the aim of recovering nutrients and reducing the load of solids and organics from it, hence improving the quality of digestate for potential subsequent reuse. In this case the digestate originated from a mixture of dairy and animal wastes and a small amount of agricultural wastes. It was processed by the application of several treatments, applied in series, i.e. microfiltration, ultrafiltration, reverse osmosis, selective electrodialysis and combined UV/ozonation. The initially applied membrane filtration methods (micro- and ultra-filtration) removed most of the suspended solids and macromolecules with a combined efficiency of more than 80%, while the reverse osmosis (at the end) removed almost all the remaining solutes (85-100%), producing sufficiently clarified water, appropriate for potential reuse. In the selective electrodialysis unit over 95% of ammonium and potassium were recovered from the feed, along with 55% of the phosphates. Of the latter, 75% was retrieved in the form of struvite.


Assuntos
Compostos de Amônio , Fosfatos , Animais , Anaerobiose , Estruvita , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...