Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.774
Filtrar
1.
Sci Rep ; 14(1): 15812, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982224

RESUMO

Oyster reefs near estuarine channels have experienced substantial mortality over the last decades, primarily due to bank erosion, potentially exacerbated by boat activity. Using aerial imagery, we measured bank erosion along the Intracoastal Waterway and its main tributaries in the Guana-Tolomato-Matanzas estuary, finding that erosion outweighs progradation. This notably threatens oyster reefs and their filtration capabilities. By modeling the impact of bank erosion on oyster habitats and filtration using hydrodynamic, water quality, and particle tracking models, we observed a 12% filtration reduction due to reef mortality. Erosion results in an exponential decrease in reef area and filtration services, due to the removal of channel-adjacent reefs, which play a critical role in water filtration. If current erosion rates continue, simulations suggest a potential 20% filtration reduction over 100 years, potentially worsening water quality. Our findings highlight the urgency to protect and restore reefs near banks to mitigate erosion and maintain filtration services.


Assuntos
Recifes de Corais , Estuários , Filtração , Ostreidae , Animais , Filtração/métodos , Ecossistema , Conservação dos Recursos Naturais/métodos , Qualidade da Água , Monitoramento Ambiental/métodos
2.
Int Marit Health ; 75(2): 79-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949220

RESUMO

BACKGROUND: In confined waters, ships run a high risk of groundings, contact, sinkings and near misses. In such waters the maritime traffic is dense, the waterway is narrow, the depth is limited, and tides and currents are constantly changing. MATERIALS AND METHODS: From 2009-2019, 75 accidents were investigated in the estuary of the Seine. Weather conditions and perceived fatigue were studied. From May to June 2020, 114 seafarers, 34 pilots and 80 captains, responded to a questionnaire focusing on the use of Pilot Portable Units (PPU) and Electronic Chart Display Information Systems (ECDIS). RESULTS: The 75 accidents corresponded to an average of 6.8 ± 3.2 accidents per year. Groundings were the most frequent accidents (35%, n = 26) followed by contact accidents with the quayside (25%, n = 19), between ships or tugs while manoeuvring (8%, n = 6) or while sailing (1%, n = 1). There was no loss of vessels nor fatalities of crew members. In poor weather conditions, there were 76% more accidents than in normal conditions (4.4 ± 2.5 accidents/10,000 movements versus 2.5 ± 1.9 accidents/10,000 movements, p < 0.03). Almost all the accidents (96%) were related to human errors of judgment (81%), or negligence (53%), or both (39). Perceived fatigue was probably in cause in 6 accidents. Only 3 accidents were related to mechanical causes. Through the questionnaires, 69% of the pilots complained of difficulties in mastering the devices and software. They felt distracted by alarms which affected their attention while navigating. They requested training on a simulator. Concerning ship captains, 83% felt comfortable with ECDIS devices yet only 20% were able to configure the ECDIS correctly. CONCLUSIONS: In the Seine estuary, 75 accidents occurred within the 11 year-study. Risk factors were poor weather conditions and human error. PPU and ECDIS were considered as useful tools in the prevention of accidents. However, pilots and captains requested more thorough training in their use.


Assuntos
Acidentes de Trabalho , Navios , Humanos , Acidentes de Trabalho/estatística & dados numéricos , França/epidemiologia , Adulto , Inquéritos e Questionários , Tempo (Meteorologia) , Masculino , Estuários , Pilotos/estatística & dados numéricos , Medicina Naval , Fadiga/epidemiologia , Feminino , Pessoa de Meia-Idade
3.
Bull Environ Contam Toxicol ; 113(1): 1, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38949743

RESUMO

Microplastics (MPs) pollution is a profound problem around the world yet it's study on the effect on zooplankton including copepods are very limited. The study was conducted between January 2021 and January 2022 in the Lower Meghna Estuary to investigate MPs ingestion in two different family of copepod: Calanoid and Cyclopoid. A method of acid digestion along with Scanning Electron Microscope (SEM) was used to identify MPs ingested by copepods from the conducted area. However, three types of MPs namely fiber, fragment and foam were extracted from this copepod biomass. Fibers represent highest (> 50%) of the ingested MPs from both group of copepod that exceed fragments and foams in all sampling stations. The overall ingestion rate of Calanoid was found higher (0.084 ± 0.002 particles/individual) compared to the Cyclopoid group (0.077 ± 0.001 particles/individual). The results of the study have effectively illustrated that copepod, obtained from multiple sampling sites within the Lower Meghna Estuary, display a propensity to ingest MPs and subsequently endangering the food security of seafood industry.


Assuntos
Copépodes , Monitoramento Ambiental , Estuários , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Poluentes Químicos da Água/análise , Bangladesh , Ingestão de Alimentos
4.
Harmful Algae ; 137: 102681, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003025

RESUMO

In May-June 2019, the microalga Chrysochromulina leadbeateri caused a massive fish-killing event in several fjords in Northern Norway, resulting in the largest direct impact ever on aquaculture in northern Europe due to toxic algae. Motivated by the fact that no algal toxins have previously been described from C. leadbeateri, we set out to investigate the chemical nature and toxicity of secondary metabolites in extracts of two strains (UIO 393, UIO 394) isolated from the 2019 bloom, as well as one older strain (UIO 035) isolated during a bloom in Northern Norway in 1991. Initial LC-DAD-MS/MS-based molecular networking analysis of the crude MeOH extracts of the cultivated strains showed that their profiles of small organic molecules, including a large number of known lipids, were very similar, suggesting that the same class of toxin(s) were likely the causative agents of the two harmful algal bloom (HAB) events. Next, bioassay-guided fractionation using the RTgill-W1 cell line and metabolomics analysis pointed to a major compound affording [M + H]+ ions at m/z 1399.8333 as a possible toxin, corresponding to a compound with the formula C67H127ClO27. Moreover, our study unveiled a series of minor analogues exhibiting distinct patterns of chlorination and sulfation, together defining a new family of compounds, which we propose to name leadbeaterins. Remarkably, these suspected toxins were detected in situ in samples collected during the 2019 bloom close to Tromsø, thereby consistent with a role in fish kills. The elemental compositions of the putative C. leadbeateri ichthyotoxins strongly indicate them to be long linear polyhydroxylated polyketides, structurally similar to sterolysins reported from a number of dinoflagellates.


Assuntos
Proliferação Nociva de Algas , Toxinas Marinhas , Noruega , Toxinas Marinhas/toxicidade , Toxinas Marinhas/química , Toxinas Marinhas/análise , Estuários , Animais , Espectrometria de Massas em Tandem , Haptófitas/química
5.
Nat Commun ; 15(1): 5866, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997249

RESUMO

The estuarine plastisphere, a novel ecological habitat in the Anthropocene, has garnered global concerns. Recent geochemical evidence has pointed out its potential role in influencing nitrogen biogeochemistry. However, the biogeochemical significance of the plastisphere and its mechanisms regulating nitrogen cycling remain elusive. Using 15N- and 13C-labelling coupled with metagenomics and metatranscriptomics, here we unveil that the plastisphere likely acts as an underappreciated nitrifying niche in estuarine ecosystems, exhibiting a 0.9 ~ 12-fold higher activity of bacteria-mediated nitrification compared to surrounding seawater and other biofilms (stone, wood and glass biofilms). The shift of active nitrifiers from O2-sensitive nitrifiers in the seawater to nitrifiers with versatile metabolisms in the plastisphere, combined with the potential interspecific cooperation of nitrifying substrate exchange observed among the plastisphere nitrifiers, collectively results in the unique nitrifying niche. Our findings highlight the plastisphere as an emerging nitrifying niche in estuarine environment, and deepen the mechanistic understanding of its contribution to marine biogeochemistry.


Assuntos
Bactérias , Biofilmes , Estuários , Nitrificação , Água do Mar , Água do Mar/microbiologia , Bactérias/metabolismo , Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Ecossistema , Microbiota/fisiologia , Metagenômica , Filogenia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Isótopos de Nitrogênio/metabolismo
6.
Microb Ecol ; 87(1): 95, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017940

RESUMO

The study of microalgal communities is critical for understanding aquatic ecosystems. These communities primarily comprise diatoms (Heterokontophyta), with two methods commonly used to study them: Microscopy and metabarcoding. However, these two methods often deliver different results; thus, their suitability for analyzing diatom communities is frequently debated and evaluated. This study used these two methods to analyze the diatom communities in identical water samples and compare the results. The taxonomy of the species constituting the diatom communities was confirmed, and both methods showed that species belonging to the orders Bacillariales and Naviculales (class Bacillariophyceae) are the most diverse. In the lower taxonomic levels (family, genus, and species), microscopy tended to show a bias toward detecting diatom species (Nitzschia frustulum, Nitzschia inconspicua, Nitzschia intermedia, Navicula gregaria, Navicula perminuta, Navicula recens, Navicula sp.) belonging to the Bacillariaceae and Naviculaceae families. The results of the two methods differed in identifying diatom species in the communities and analyzing their structural characteristics. These results are consistent with the fact that diatoms belonging to the genera Nitzschia and Navicula are abundant in the communities; furthermore, only the Illumina MiSeq data showed the abundance of the Melosira and Entomoneis genera. The results obtained from microscopy were superior to those of Illumina MiSeq regarding species-level identification. Based on the results obtained via microscopy and Illumina MiSeq, it was revealed that neither method is perfect and that each has clear strengths and weaknesses. Therefore, to analyze diatom communities effectively and accurately, these two methods should be combined.


Assuntos
Código de Barras de DNA Taxonômico , Diatomáceas , Estuários , Microscopia , Diatomáceas/classificação , Diatomáceas/crescimento & desenvolvimento , Microscopia/métodos , República da Coreia , Biodiversidade , Filogenia , Ecossistema
7.
J Environ Manage ; 365: 121660, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963965

RESUMO

- The sediment transport plays a major role in every aquatic ecosystem. However, the lack of instruments to monitor this process has been an obstacle to understanding its effects. We present the design of a single sensor built to measure water velocity, suspended sediment concentration and depth in situ, and how to associate the three variables to estimate and analyse sediment transport. During the laboratory calibrations, the developed instrument presented a resolution from 0.001 g/L to 0.1 g/L in the 0-12 g/L range for the measurement of suspended sediment concentration and 0.05 m/s resolution for 0-0.5 m/s range and 0.001 m/s resolution for 0.5-1 m/s range for the measurement of water velocity. The device was deployed for 6 days in an estuarine area with high sediment dynamics to evaluate its performance. During the field experiment, the sensor successfully measured the tidal cycles and consequent change of flow directions, and the suspended sediment concentration in the area. These measurements allowed to estimate water discharge and sediment transport rates during the different phases of tides, and the daily total volume of water and total amount of sediment passing through the estuary.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Sedimentos Geológicos/análise , Monitoramento Ambiental/métodos , Movimentos da Água , Estuários , Ecossistema
8.
PLoS One ; 19(7): e0302497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38976700

RESUMO

This paper presents a deep-learning-based method to detect recreational vessels. The method takes advantage of existing underwater acoustic measurements from an Estuarine Soundscape Observatory Network based in the estuaries of South Carolina (SC), USA. The detection method is a two-step searching method, called Deep Scanning (DS), which includes a time-domain energy analysis and a frequency-domain spectrum analysis. In the time domain, acoustic signals with higher energy, measured by sound pressure level (SPL), are labeled for the potential existence of moving vessels. In the frequency domain, the labeled acoustic signals are examined against a predefined training dataset using a neural network. This research builds training data using diverse vessel sound features obtained from real measurements, with a duration between 5.0 seconds and 7.5 seconds and a frequency between 800 Hz to 10,000 Hz. The proposed method was then evaluated using all acoustic data in the years 2017, 2018, and 2021, respectively; a total of approximately 171,262 2-minute.wav files at three deployed locations in May River, SC. The DS detections were compared to human-observed detections for each audio file and results showed the method was able to classify the existence of vessels, with an average accuracy of around 99.0%.


Assuntos
Acústica , Aprendizado Profundo , Estuários , Rios , South Carolina , Humanos , Recreação , Som , Navios
9.
Environ Monit Assess ; 196(8): 735, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009737

RESUMO

This study focuses on the Kadalundi estuary, Kerala's first community reserve, investigating the prevalence and impacts of microplastics on both the estuarine environment and selected fish species. This study presents the initial evidence indicating the consumption of microplastic particles by 12 commercially important edible fish species inhabiting the Kadalundi estuary. Analysis revealed significant accumulations of microplastic fibers within the surface water. In examining 12 fish species from demersal and pelagic habitats, microplastics were found in both the gastrointestinal tracts and gills. In the digestive tracts, microplastic fragments constituted the highest proportion (46%), while in the gills, microplastic fibers were dominant (52.4%). This study observed a prevalence of blue microplastics over other colors in both water and fish samples. Notably, demersal species showed a higher incidence of ingested microplastics. Polymer analysis identified Polypropylene (PP), Nylon, Low-Density Polyethylene (LDPE), Polyethylene (PE), Polypropylene isotactic (iPP), PE 1 Octene copolymer, and Rayon in water samples, while fish samples predominantly contained LDPE, PP, PE, and Nylon. Risk assessment utilizing the Polymer Hazard Index (PHI) categorized certain polymers as posing minor to moderate risks. Pollution Load Index (PLI) computations indicated moderate to high levels of microplastic contamination across various sampling sites in the estuary. Principal Component Analysis (PCA) revealed a lack of correlation between fish size and microplastic ingestion, underscoring environmental factors' influence on microplastic intake. The study emphasizes the implications of microplastic pollution on the fragile ecosystem of the Kadalundi estuary, posing potential risks to biodiversity and human health.


Assuntos
Monitoramento Ambiental , Estuários , Peixes , Microplásticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Microplásticos/análise , Índia , Medição de Risco
10.
Chemosphere ; 361: 142523, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838865

RESUMO

Microplastic (MP) pollution has been widely reported across water matrices including in estuaries, which are important for the understanding of oceanic MPs. Estuaries can greatly alter the fate, transport, size distribution, and abundance of plastic pollution. The aim of this study was to quantify and characterize MP pollution in the Delaware Bay estuary USA, including the size distribution. Samples (N = 31) were collected from the mouth of the Delaware River to the coastal ocean including multiple frontal zones across two sampling campaigns (2019 and 2022). MP were extracted from the collected particles using wet peroxide oxidation and density separation with saturated sodium chloride. Particles collected on 500 µm mesh sieves were analyzed via Fourier transform infrared (FTIR) spectroscopy. Across all samples, 324 of the 1015 particles analyzed were MP, and 11 macroplastics were observed. MP concentrations ranged from below detection to 4.12 MP/m3 (mean 0.34 ± 0.80 MP/m3). No significant differences were observed between sampling sites; nonetheless, the two highest MP concentrations were observed when sampling along frontal zones with visible debris including macroplastics. Polyethylene (53%) and polypropylene (43%) were the most abundant polymers observed. The majority of the non-plastic particles were classified as particulate natural organic matter (82% of non-plastics). Particles from samples collected during 2022 (N = 864) also had color, morphology, and two size dimensions recorded. MP particle size was significantly associated with sampling site, with the coastal ocean sampling site generally having the smallest MPs. A correlation between total post-extraction particles and total plastic particles was observed. Aspect ratios for the plastics ranged from one to 40.7, with larger ratios for fibers, with a mean (±standard deviation) of 3.39 ± 4.72 (unitless). These aspect ratios can be used to select shape factors used to estimate the total volume of MP in the studied size range. Overall, these results can help inform fate, transport, and risk assessments related to estuarine plastic pollution.


Assuntos
Baías , Monitoramento Ambiental , Estuários , Microplásticos , Tamanho da Partícula , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Baías/química , Delaware , Plásticos/análise , Rios/química
11.
PLoS One ; 19(6): e0302433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865356

RESUMO

The timing of American horseshoe crab (Limulus polyphemus) spawning behavior along the coast of Florida (United States) is generally associated with the highest tides during the spring and fall lunar cycles. All Florida estuaries support horseshoe crab populations, but tidal characteristics vary markedly among locations, which may influence the timing of horseshoe crab spawning behavior. The Indian River Lagoon is a large microtidal estuary on Florida's east coast. Given the microtidal nature of the lagoon, it is unclear which environmental factors affect horseshoe spawning. In 2019, volunteers of Florida Horseshoe Crab Watch conducted daily surveys at two sites in the northern Indian River Lagoon during peak spawning months (February-April). During each survey, volunteers counted all spawning horseshoe crabs and recorded environmental variables, including water temperature, air temperature, wind speed, wind direction, salinity, and tide height. We developed a suite of negative-binomial regression models to quantify relationships between the number of spawning horseshoe crabs and environmental factors. Modeling results indicated a positive relationship between onshore wind speed and number of spawning horseshoe crabs. Our study suggests that in the absence of tidal cues, onshore wind speed may be an important driver of horseshoe crab spawning activity in microtidal estuarine systems.


Assuntos
Caranguejos Ferradura , Animais , Florida , Caranguejos Ferradura/fisiologia , Temperatura , Estações do Ano , Estuários , Reprodução/fisiologia , Vento , Ondas de Maré , Salinidade , Rios
12.
J Environ Manage ; 364: 121427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38870790

RESUMO

Tidal wetlands play a critical role in emitting greenhouse gases (GHGs) into the atmosphere; our understanding of the intricate interplay between natural processes and human activities shaping their biogeochemistry and GHG emissions remains lacking. In this study, we delve into the spatiotemporal dynamics and key drivers of the GHG emissions from five tidal wetlands in the Scheldt Estuary by focusing on the interactive impacts of salinity and water pollution, two factors exhibiting contrasting gradients in this estuarine system: pollution escalates as salinity declines. Our findings reveal a marked escalation in GHG emissions when moving upstream, primarily attributed to increased concentrations of organic matter and nutrients, coupled with reduced levels of dissolved oxygen and pH. These low water quality conditions not only promote methanogenesis and denitrification to produce CH4 and N2O, respectively, but also shift the carbonate equilibria towards releasing more CO2. As a result, the most upstream freshwater wetland was the largest GHG emitter with a global warming potential around 35 to 70 times higher than the other wetlands. When moving seaward along a gradient of decreasing urbanization and increasing salinity, wetlands become less polluted and are characterized by lower concentrations of NO3-, TN and TOC, which induces stronger negative impact of elevated salinity on the GHG emissions from the saline wetlands. Consequently, these meso-to polyhaline wetlands released considerably smaller amounts of GHGs. These findings emphasize the importance of integrating management strategies, such as wetland restoration and pollution prevention, that address both natural salinity gradients and human-induced water pollution to effectively mitigate GHG emissions from tidal wetlands.


Assuntos
Gases de Efeito Estufa , Salinidade , Poluição da Água , Áreas Alagadas , Gases de Efeito Estufa/análise , Estuários , Monitoramento Ambiental
13.
J Environ Manage ; 364: 121471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878581

RESUMO

Seasonal water and sediment samples were collected from the Xiaoqing River estuary and the neighboring sea to study the spatial and temporal distributions, sources and ecological risks of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. The results showed significant spatial and temporal differences in the concentrations of PAHs and n-alkanes under the influence of precipitation, temperature, and human activities. The concentrations of PAHs in water were lower in the wet season than in the dry season, and those in sediments were higher in the wet season than in the dry season. The concentrations of n-alkanes were higher in the rainy season than in the dry season for both water and sediments. The spatial distributions of PAHs and n-alkanes were estuarine > offshore. The concentration ranges of ∑PAHs in water and sediments were 230.66-599.86 ng/L and 84.51-5548.62 ng/g, respectively, in the wet season and 192.46-8649.55 ng/L and 23.39-1208.92 ng/g, respectively, in the dry season. The proportion of three-ring PAHs in water (57.03% and 78.27% in the wet and dry seasons, respectively) was high, followed by two-ring PAHs (27.31% and 13.59% in the wet and dry seasons, respectively). The proportion of four-ring PAHs was higher in sediments (24.79% and 32.20% in the wet and dry seasons, respectively). The ecological risk of PAHs assessed using the toxicity equivalent quotient and risk quotient was at moderate to moderately high risk levels. The high concentration of n-alkane fraction C16 (611.65-75594.58 ng/L) in the water is indicative of petroleum or other fossil fuel inputs. The main peaks of n-alkanes in river sediments were C27, C29 and C31, indicating higher inputs of plant sources. The sediments in the estuary showed dominance of both short-chain C16 and long-chain C25-C31, indicating a combined input of higher plants and petroleum. The diagnostic ratios of PAHs and n-alkanes indicated that their sources were mainly oil/coal/biomass combustion and petroleum spills attributed to frequent vehicular, vessel and mariculture activities. Given the potential ecological risks of PAHs and n-alkanes in water and sediments, future studies should focus on their bioaccumulation and biotoxicity.


Assuntos
Alcanos , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Rios , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Alcanos/análise , Poluentes Químicos da Água/análise , Estações do Ano
14.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1369-1378, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886436

RESUMO

To explore the temporal and spatial variations in phytoplankton community in small estuaries, we collected surface water samples from Yongjiang River estuary during wet, normal, and dry seasons and determined the main driving factors of phytoplankton community. A total of 358 species belonging to nine phyla and 123 genera were identified in all seasons. During wet, normal, and dry seasons, species number was 276, 154 and 151, and the abundance was (170.45±225.43)×103, (51.92±30.28)×103 and (31.65±12.79)×103 cells·L-1, respectively. Diatoms dominated the phytoplankton community, and the main dominant species were Cyclotella meneghiniana, Skeletonema costatum, and Paralia sulcata. Shannon diversity and Pielou evenness indices decreased from inside mouth to outside mouth in wet season, but there was no obvious spatial difference in normal season or dry season. Results of non-metric multidimensional scaling analysis and analysis of similarities showed that phytoplankton community composition differed significantly among different regions (inside, at and outside mouth) and different seasons. In wet season, phytoplankton abundance was significantly positively correlated with temperature, dissolved inorganic nitrogen, and dissolved reactive phosphorus, but significantly negatively correlated with salinity. In normal season, phytoplankton abundance was significantly negatively correlated with temperature. In dry season, it was not significantly correlated with environmental factors. Results of redundancy analysis showed that temperature, salinity, ammonium and dissolved reactive phosphorus explained the variations in phytoplankton community by 19.5%, 11.9%, 9.4% and 8.2%, respectively. These results revealed high dominance of diatoms and the main driving factors (temperature, salinity and nutrients) of phytoplankton community in Yongjiang River estuary.


Assuntos
Diatomáceas , Estuários , Fitoplâncton , Rios , Estações do Ano , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/classificação , China , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/classificação , Dinâmica Populacional , Análise Espaço-Temporal , Monitoramento Ambiental , Ecossistema , Nitrogênio/análise
15.
Sci Total Environ ; 942: 173675, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38839014

RESUMO

Microphytobenthic (MPB) biofilms play significant roles in the ecology of coastal mudflats, including provision of essential food resources to shorebird species. In these ecosystems, water-divergence structures like jetties and causeways can drastically alter sedimentation patterns and mudflat topography, yet their effects on MPB biofilm biomass and distribution are poorly understood. Here, we used a combination of unoccupied aerial vehicle (UAV) technologies, photogrammetric processing, and sediment field samples to compare biofilm and mudflat characteristics between areas of the Fraser River Estuary with varying sedimentary regimes and shorebird use. Our aims were to: (1) demonstrate the use of fine spatial resolution UAV-acquired multispectral imagery (cm2) with extensive spatial coverage (>km2) and a co-alignment photogrammetric processing techniques to survey MPB biofilm and mudflat topography at spatial scales and detail relevant to foraging shorebirds; and, (2) investigate the effects of water-divergence structures on mudflat elevation and microtopography, as well as MPB biofilm biomass, distribution, and spatial patterning. From a technical perspective, co-alignment allowed us to analyze aligned and continuous fine-resolution elevation models and orthomosaics for large areas of the estuary, while the normalized difference vegetation index was a good predictor of sediment chlorophyll-a (R2 = 0.9). Using these data products, we found that mudflats in close proximity to water-divergence structures have cross-shore profiles characteristic of low sediment supply as well as decreased microtopographic variability. At disturbed sites, elevation and microtopography had a weaker influence on biofilm biomass compared to intact estuarine ecosystem sites. Analysis of biofilm patch showed that sites either had a relatively small number of large, contiguous patches, or a large number of smaller, isolated patches; however, less disturbed sites did not necessarily have larger biofilm patches than more disturbed sites. We conclude that UAV-acquired multispectral imagery and co-alignment-based workflow are promising new tools for ecologists to map, monitor, and understand MPB biofilm dynamics in ecologically sensitive estuaries.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Fotogrametria , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Biofilmes , Ecossistema , Animais , Estuários , Biomassa
16.
Sci Total Environ ; 943: 173709, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852864

RESUMO

Antibiotics and polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants in the aquatic region encompassing the estuary of the Yellow River and Laizhou Bay. But little information is available about the trophic transfer of antibiotics and PAHs in the marine food web of this area. This study investigated the occurrence and trophic transfer of 19 antibiotics and 16 PAHs in marine organisms from a food web of Laizhou Bay of the Yellow River estuary. Sulfonamides, fluoroquinolones, and 2 to 4-ring PAHs were the dominant contaminants in organisms. There was a significant positive correlation between the log total concentration of sulfonamides and trophic level (TL). Sulfadiazine, sulfamethazine, and erythromycin had biomagnification effects, while ciprofloxacin and ofloxacin had biological dilution effects. The log total concentration of PAHs had a significant negative correlation with TL. Naphthalene, fluorene, anthracene, pyrene, and benzo[g,h,i]perylene had biological dilution effects. The distinct correlations of trophic magnification factors Dow of antibiotics and Kow of 2 to 5-ring PAHs, indicating that the potential of these two coefficients for predicting their transfer. Risk assessment indicated that the consumption of seafood containing antibiotics and PAHs in Laizhou Bay of the Yellow River estuary posed health and carcinogenic risks to human, respectively.


Assuntos
Antibacterianos , Monitoramento Ambiental , Estuários , Cadeia Alimentar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Antibacterianos/análise , China , Medição de Risco , Humanos , Rios/química , Organismos Aquáticos , Animais
17.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943017

RESUMO

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Assuntos
Bactérias , Biodegradação Ambiental , Microbiota , Microplásticos , Instalações de Eliminação de Resíduos , Microplásticos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Poluentes Químicos da Água/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/genética , Estuários , Polietileno/metabolismo , Polietilenotereftalatos/metabolismo
18.
Water Res ; 259: 121853, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843628

RESUMO

Increasing microplastic (MP) pollution poses significant threats to estuarine and coastal ecosystems. However, the effects of MPs on the emission of methane (CH4), a potent greenhouse gas, within these ecosystems and the underlying regulatory mechanisms have not been elucidated. Here, a combination of 13C stable isotope-based method and molecular techniques was applied to investigate how conventional petroleum-based MPs [polyethylene (PE) and polyvinyl chloride (PVC)] and biodegradable MPs [polylactic acid (PLA) and polyadipate/butylene terephthalate (PBAT)] regulate CH4 production and consumption and thus affect CH4 emission dynamics in estuarine and coastal wetlands. Results indicated that both conventional and biodegradable MPs enhanced the emission of CH4 (P < 0.05), with the promoting effect being more significant for biodegradable MPs. However, the mechanisms by which conventional and biodegradable MPs promote CH4 emissions were different. Specifically, conventional MPs stimulated the emission of CH4 by inhibiting the processes of CH4 consumption, but had no significant effect on CH4 production rate. Nevertheless, biodegradable MPs promoted CH4 emissions via accelerating the activities the methanogens while inhibiting the oxidation of CH4, thus resulting in a higher degree of promoting effect on CH4 emissions than conventional MPs. Consistently, quantitative PCR further revealed a significant increase in the abundance of methyl-coenzyme M reductase gene (mcrA) of methanogens under the exposure of biodegradable MPs (P < 0.05), but not conventional MPs. Furthermore, the relative abundance of most genes involved in CH4 oxidation exhibited varying degrees of reduction after exposure to all types of MPs, based on metagenomics data. This study reveals the effects of MPs on CH4 emissions in estuarine and coastal ecosystems and their underlying mechanisms, highlighting that the emerging biodegradable MPs exhibited a greater impact than conventional MPs on promoting CH4 emissions in these globally important ecosystems, thereby accelerating global climate change.


Assuntos
Metano , Microplásticos , Áreas Alagadas , Estuários , Biodegradação Ambiental
19.
Microbiome ; 12(1): 115, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918820

RESUMO

BACKGROUND: Microbial adaptation to salinity has been a classic inquiry in the field of microbiology. It has been demonstrated that microorganisms can endure salinity stress via either the "salt-in" strategy, involving inorganic ion uptake, or the "salt-out" strategy, relying on compatible solutes. While these insights are mostly based on laboratory-cultured isolates, exploring the adaptive mechanisms of microorganisms within natural salinity gradient is crucial for gaining a deeper understanding of microbial adaptation in the estuarine ecosystem. RESULTS: Here, we conducted metagenomic analyses on filtered surface water samples collected from a typical subtropical short residence-time estuary and categorized them by salinity into low-, intermediate-, and high-salinity metagenomes. Our findings highlighted salinity-driven variations in microbial community composition and function, as revealed through taxonomic and Clusters of Orthologous Group (COG) functional annotations. Through metagenomic binning, 127 bacterial and archaeal metagenome-assembled genomes (MAGs) were reconstructed. These MAGs were categorized as stenohaline-specific to low-, intermediate-, or high-salinity-based on the average relative abundance in one salinity category significantly exceeding those in the other two categories by an order of magnitude. Those that did not meet this criterion were classified as euryhaline, indicating a broader range of salinity tolerance. Applying the Boruta algorithm, a machine learning-based feature selection method, we discerned important genomic features from the stenohaline bacterial MAGs. Of the total 12,162 COGs obtained, 40 were identified as important features, with the "inorganic ion transport and metabolism" COG category emerging as the most prominent. Furthermore, eight COGs were implicated in microbial osmoregulation, of which four were related to the "salt-in" strategy, three to the "salt-out" strategy, and one to the regulation of water channel activity. COG0168, annotated as the Trk-type K+ transporter related to the "salt-in" strategy, was ranked as the most important feature. The relative abundance of COG0168 was observed to increase with rising salinity across metagenomes, the stenohaline strains, and the dominant Actinobacteriota and Proteobacteria phyla. CONCLUSIONS: We demonstrated that salinity exerts influences on both the taxonomic and functional profiles of the microbial communities inhabiting the estuarine ecosystem. Our findings shed light on diverse salinity adaptation strategies employed by the estuarine microbial communities, highlighting the crucial role of the "salt-in" strategy mediated by Trk-type K+ transporters for microorganisms thriving under osmotic stress in the short residence-time estuary. Video Abstract.


Assuntos
Archaea , Bactérias , Estuários , Metagenoma , Metagenômica , Salinidade , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Adaptação Fisiológica , Microbiota/genética , Água do Mar/microbiologia , Microbiologia da Água
20.
Environ Sci Technol ; 58(26): 11707-11717, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871667

RESUMO

Antimicrobial resistance (AMR) undermines the United Nations Sustainable Development Goals of good health and well-being. Antibiotics are known to exacerbate AMR, but nonantibiotic antimicrobials, such as quaternary ammonium compounds (QACs), are now emerging as another significant driver of AMR. However, assessing the AMR risks of QACs in complex environmental matrices remains challenging due to the ambiguity in their chemical structures and antibacterial activity. By machine learning prediction and high-resolution mass spectrometric analysis, a list of antibacterial QACs (n = 856) from industrial chemical inventories is compiled, and it leads to the identification of 50 structurally diverse antibacterial QACs in sediments, including traditional hydrocarbon-based compounds and new subclasses that bear additional functional groups, such as choline, ester, betaine, aryl ether, and pyridine. Urban wastewater, aquaculture, and hospital discharges are the main factors influencing QAC distribution patterns in estuarine sediments. Toxic unit calculations and metagenomic analysis revealed that these QACs can influence antibiotic resistance genes (particularly sulfonamide resistance genes) through cross- and coresistances. The potential to influence the AMR is related to their environmental persistence. These results suggest that controlling the source, preventing the co-use of QACs and sulfonamides, and prioritizing control of highly persistent molecules will lead to global stewardship and sustainable use of QACs.


Assuntos
Antibacterianos , Estuários , Aprendizado de Máquina , Compostos de Amônio Quaternário , Antibacterianos/farmacologia , Compostos de Amônio Quaternário/química , Espectrometria de Massas , China , População do Leste Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...