RESUMO
Australian honey samples from four botanical genera (Lophostemon, Eucalyptus, Macadamia and Corymbia) were investigated for their phenolic content. An improved phenolic extraction and high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis method allowed for the rapid and reliable identification of phenolic compounds. A concentrated liquid-liquid extraction method with an acidified aqueous solution and acetonitrile was optimised to isolate phenolic compounds from the honey matrix. The concentrated extraction method improved sensitivity and permitted the identification of phenolics present at low concentrations (LOD: 0.012-0.25 mg/kg and LOQ: 0.040-2.99 mg/kg). The optimised HPLC-DAD chromatographic conditions gave stable retention times, improved peak separation and allowed for the inexpensive detection of each of the 109 phenolic compounds at their maximum absorbance wavelength. Out of the 109 phenolic compounds included in this study, 49 were identified in the Australian honeys tested. Furthermore, 25 of the 49 compounds were determined to be markers specific to honey floral origin.
Assuntos
Eucalyptus , Mel , Fenóis , Mel/análise , Cromatografia Líquida de Alta Pressão , Fenóis/análise , Fenóis/química , Eucalyptus/química , Austrália , Flores/químicaRESUMO
Non-native trees disrupt ecological processes vital to native plant communities. We studied how forests dominated by Acacia dealbata and Eucalyptus globulus affect the role of birds as dual pollinators and seed dispersers in a region heavily impacted by these two non-native species. We compared bird-plant interactions in the native and in the two non-native forest types. We constructed a multilayer regional network for each forest type and evaluated differences in network dissimilarity between networks. We also calculated the bird's importance in connecting processes and variables associated with module diversity. To determine how the networks react to changes in species richness, we did a simulation of species richness gradient and link percentage for each forest type. The number of birds acting both as pollinators and seed dispersers was higher in native than in non-native forests. However, birds in non-native forests still play a crucial role in maintaining the ecological services provided to native plant communities. However, the eucalyptus network exhibited a concerning simplification, forcing bird species to fully exploit the few remaining resources, leaving little room for structural adjustments and limiting the ecosystem's ability to withstand further species loss. These findings highlight how non-native trees may trigger cascading effects across trophic levels.
Assuntos
Acacia , Aves , Eucalyptus , Polinização , Dispersão de Sementes , Simbiose , Animais , Aves/fisiologia , Eucalyptus/fisiologia , Acacia/fisiologia , Florestas , Ecossistema , BiodiversidadeRESUMO
Auricularia cornea has become one of the most important cultivated mushrooms worldwide. Although not remarkably flavorful, Auricularia species are very versatile and rehydrate easily after drying, adding a unique and pleasing texture to the dishes. In this study, we collected, identified, and domesticated a wild strain of A. cornea from the Brazilian Atlantic Rainforest. The wild strain was evaluated for mycelial growth at different temperatures and substrates, biological efficiency, and nutritional composition. The temperature that best favored the A. cornea mycelium growth was 30 °C, and the substrate was sterile Eucalyptus sawdust. The highest biological efficiency value obtained was 106.90 ± 13.28%. Nutritional analysis showed that the produced wood ears contained 71.02% carbohydrates, 19.63% crude fiber, 11.59% crude protein, 10.19% crude fat, and 4.24% ash on dry matter basis. For the mineral content profile, the elements K and P were the most abundant. This is the first report on cultivation of a wild strain of A. cornea from Brazil.
Assuntos
Madeira , Brasil , Madeira/microbiologia , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/classificação , Micélio/crescimento & desenvolvimento , Temperatura , Eucalyptus/microbiologia , Eucalyptus/crescimento & desenvolvimento , Floresta ÚmidaRESUMO
Fire is a major disturbance affecting ecosystems globally, but its impact on mutualisms has received minimal attention. Here, we use a long-term field experiment to investigate the impact of different fire regimes on globally important ant-honeydew and ant-extrafloral nectar (EFN) mutualistic interactions in an Australian tropical savanna. These interactions provide ants with a key energy source, while their plant and hemipteran hosts receive protection services. We examined ant interactions on species of Eucalyptus (lacking EFNs) and Acacia (with EFNs) in three replicate plots each of burning every 2 and 3 years early in the dry season, burning late in the dry season every 2 years, and unburnt for > 25 years. The proportions of plants with ant-honeydew interactions in Acacia (44.6%) and Eucalyptus (36.3%) were double those of Acacia plants with ant-EFN interactions (18.9%). The most common ants, representing 85% of all interactions, were behaviourally dominant species of Oecophylla, Iridomyrmex and Papyrius. Fire promoted the incidence of ant interactions, especially those involving EFNs on Acacia, which occurred on only 3% of plants in unburnt plots compared with 24% in frequently burnt plots. Fire also promoted the relative incidence of behaviourally dominant ants, which are considered the highest quality mutualists. Contrary to expectations, frequent fire did not result in a switching of behaviourally dominant ant partners from forest-adapted Oecophylla to arid-adapted Iridomyrmex. Our findings that frequent fire increases ant interactions mediated by honeydew and extrafloral nectar, and promotes the quality of ant mutualists, have important implications for protective services provided by ants in highly fire-prone ecosystems.
Assuntos
Formigas , Incêndios , Pradaria , Néctar de Plantas , Animais , Formigas/fisiologia , Austrália , Acacia , Simbiose , Eucalyptus , Ecossistema , Clima TropicalRESUMO
Eucalyptus urophylla S.T. Blake, an important economic tree species, is widely cultivated as a raw material source for pulpwood, veneer plywood, and sawlog timber in southern China. As a tree in multiple environments, tree-breeding programs can assess genotype by environment (G × E) interactions and identify the suitable genotype for a specific environment. G × E interactions related to growth traits and soil factors have not been adequately studied for clones of Eucalyptus urophylla and its hybrids. To examine this important question, trials containing 20 clones of E. urophylla and its hybrids were established at three sites in southern China: Shankou (SK), Tiantang (TT), and Xiniujiao (XNJ). These sites each have different soil conditions but similar geographical and climatic conditions. With the data across nearly eight years, average phenotypic trends and broad sense repeatability (H2) were modeled, G×E interactions between clones and diverse soil environments were estimated, genetic gains of clones were calculated, and the adaptabilities of E. urophylla clones in different soil environments were compared. Average survival trends for clones tended to show a moderate decrease while growth traits tended to show sharp increases with age. At the same age, sites were ordered for average survival and growth traits as TT>SK>XNJ while H2 values for growth traits by site followed the basic order TT>SK>XNJ. The H2 values for growth traits at SK tended to increase at first, platform, and then smooth with age. The H2 values for growth traits at TT were high and stable across ages, and those at XNJ tended to undulate largely at a relatively low level across ages. Genetic correlations for growth traits between any pair of sites tended to increase at first and then decrease. A genetic correlation was strong between SK and TT, intermediate between SK and XNJ, and weak between TT and XNJ. It was concluded that: (1) clones tended to be adapted better to an environment with acidic and loamy soil with a clay content of about 45.6%, the soil depth from the surface to parent material about 1.5 m, and the previous vegetation of Eucalypts. (2) The G×E interactions between clones and sites are weaker if the environmental conditions between the sites are similar, and which are stronger if the environmental conditions between the sites are different. (3) The optimum selection age for clones ranged from 1.5 to 3.5 years old, while the optimum selection growth trait is individual tree volume.
Assuntos
Eucalyptus , Interação Gene-Ambiente , Genótipo , Eucalyptus/genética , Eucalyptus/crescimento & desenvolvimento , China , Solo/química , FenótipoRESUMO
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Assuntos
Encéfalo , Células Endoteliais , Eucalyptus , Extratos Vegetais , Fumaça , Madeira , Humanos , Fumaça/efeitos adversos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Eucalyptus/química , Madeira/química , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Linhagem Celular , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Relação Dose-Resposta a Droga , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Incêndios FlorestaisRESUMO
BACKGROUND: As an efficient and high-quality additive in agriculture and forestry production, silicon (Si) plays an important role in alleviating heavy metal stress and improving plant growth. However, the alleviating effect of aluminum (Al) toxicity by Si in Eucalyptus is still incomplete. RESULTS: Here, a study was conducted using two Al concentrations (0 and 4.5 mM) with four Si concentrations (0, 0.5, 1, and 1.5 mM) to investigate plant growth, tolerance and antioxidant defense system in four Eucalyptus species (Eucalyptus tereticornis, Eucalyptus urophylla, Eucalyptus grandis, and Eucalyptus urophylla × Eucalyptus grandis). The results showed that the stress induced by 4.5 mM Al increased oxidative damage, disturbed the balance of enzymatic and non-enzymatic antioxidant systems, and negatively affected plant growth and tolerance quality in the four Eucalyptus species. However, the addition of 0.5 mM and 1 mM Si alleviated the effects of Al toxicity on plant growth and improved plant growth quality by strengthening stress tolerance. Besides, adding Si significantly facilitated the synergistic action of enzymatic and non-enzymatic antioxidant defenses, increased the removal of reactive oxygen species, reduced lipid peroxidation, and oxidative stress, and promoted the phytoremediation rate of the four Eucalyptus species by 18.7 ~ 34.8% compared to that in the absence of Si. CONCLUSIONS: Silicon can alleviate the effect of Al toxicity by enhancing the antioxidant capacity and improving plant growth and tolerance quality. Hence, the application of Si is an effective method for the phytoremediation of Eucalyptus plantations in southern China.
Assuntos
Alumínio , Antioxidantes , Eucalyptus , Silício , Eucalyptus/efeitos dos fármacos , Eucalyptus/crescimento & desenvolvimento , Silício/farmacologia , Alumínio/toxicidade , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacosRESUMO
Mixed tree plantations containing nitrogen (N2)-fixing species have the potential to enhance C sequestration, soil biodiversity and forest productivity. Here, we investigated the impact of Acacia mangium and Eucalyptus urophilla x E. grandis mixed plantations in the Congolese coastal plains on soil mycobiota community structure and diversity by ITS metabarcoding sequencing and bioinformatic analysis. Higher Faith's phylogenetic diversity and Evenness' was found in Eucalyptus monoculture relative to stands containing Acacia. Differences in beta diversity were found among Eucalyptus and Acacia monoculture, and mixed-species stands highlight the effects of plant species on fungal community structure. Ascomycota, Basidiomycota and Rozellomycota phyla were predominant in all stands, with both Dikarya (Ascomycota and Basidiomycota) accounting for more than 70% in all stands. Correlation analysis revealed that sulfur (S) was the most correlated soil attribute with the three predominant phyla but also with Mucoromycota and Calcarisporiellomycota phyla, although mostly negatively correlated (4 out of 5). Phosphorus was mostly positively correlated to soil attributes (3 out of 4) and nitrogen was correlated twice, positively and negatively. Distance-based redundancy analysis revealed a positive correlation of nitrogen (p-value = 0.0019, contribution = 22%) and phosphorus (p-value = 0.0017, contribution = 19%) with soil mycobiota. A high prevalence of generalists (28% to 38%) than specialists (9% to 24%) were found among the different sites. In stands containing Acacia (pure and mixed species) the soil mycobiota harbor the prevalence of generalist strategies with the potential to withstand environmental stresses and utilize a higher number of resources against specialists in Eucalyptus stands. Stronger positive correlation between soil attributes and main fungal taxa, higher generalists' strategies and lower Faith's phylogenetic diversity and Evenness were reported in stands containing Acacia. This highlights the potential of mixed-species in preserving community stability following environmental disturbances and increasing the number of resources confirming their important ecological role in boosting the resilience of the forest ecosystems to climate and land-use (plant species as shown by PCA analysis) changes.
Assuntos
Biodiversidade , Florestas , Microbiologia do Solo , Micobioma , Solo/química , Congo , Filogenia , Acacia/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Eucalyptus/microbiologia , Nitrogênio/análiseRESUMO
The use of botanical insecticides has increased in recent years due to the demand for effective products, particularly against insects resistant to conventional insecticides. Among these is Aedes aegypti, a well-adapted mosquito to urban environments that opportunistically feeds on humans and animals, contributing to the spread of virus. We evaluated the potential of essential oils (EOs) extracted from Eucalyptus citriodora, Eucalyptus staigeriana, Eucalyptus caryophyllus, and Mentha arvensis in terms of their larvicidal activity against Ae. aegypti. EOs' compounds were determined using gas chromatography-mass spectrometry (GC-MS). Bioassays were performed on third instar larvae of Ae. aegypti to evaluate the larvicidal effects of EO dilutions in dimethyl sulfoxide (DMSO) at different concentrations. Mortality rates were observed over a 72-hour period to determine the efficacy of the treatments. Citronellal (86.64) predominated in E. citriodora, limonene in E. staigeriana (41.68), eugenol in E. caryophyllus (87.76), and menthol in M. arvensis (51.53%). EOs exhibited larvicidal activity from 10 ppm, with notable efficacy at 85 ppm, in which those from E. staigeriana and M. arvensis caused maximum mortality to Ae. aegypti larvae. Results revealed distinct efficacy patterns among EOs, with E. staigeriana displaying high toxicity within 24 h, achieving LC50 and LC95 values of 47.04 ppm and 97.35 ppm, respectively. Larvicidal effects within 1 h were observed for E. citriodora and E. caryophyllus. This study underscores larvicidal efficacy against Ae. aegypti, notably E. staigeriana, which had the lowest LC50 value. The findings indicate that the tested samples have potential for use as bioinsecticides.
Assuntos
Aedes , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas , Larva , Óleos Voláteis , Animais , Aedes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Eucalyptus/química , Bioensaio , Dose Letal MedianaRESUMO
Biotic factors in fungal exudates impact plant-fungal symbioses establishment. Mutualistic ectomycorrhizal fungi play various ecological roles in forest soils by interacting with trees. Despite progress in understanding secreted fungal signals, dynamics of signal production in situ before or during direct host root contact remain unclear. We need to better understand how variability in intra-species fungal signaling at these stages impacts symbiosis with host tissues. Using the ECM model Pisolithus microcarpus, we selected two isolates (Si9 and Si14) with different abilities to colonize Eucalyptus grandis roots. Hypothesizing that distinct early signalling and metabolite profiles between these isolates would influence colonization and symbiosis, we used microdialysis to non-destructively collect secreted metabolites from either the fungus, host, or both, capturing the dynamic interplay of pre-symbiotic signalling over 48 hours. Our findings revealed significant differences in metabolite profiles between Si9 and Si14, grown alone or with a host root. Si9, with lower colonization efficiency than Si14, secreted a more diverse range of compounds, including lipids, oligopeptides, and carboxylic acids. In contrast, Si14's secretions, similar to the host's, included more aminoglycosides. This study emphasizes the importance of intra-specific metabolomic diversity in ectomycorrhizal fungi, suggesting that early metabolite secretion is crucial for establishing successful mutualistic relationships.
Assuntos
Eucalyptus , Micorrizas , Raízes de Plantas , Simbiose , Eucalyptus/microbiologia , Eucalyptus/metabolismo , Raízes de Plantas/microbiologia , Micorrizas/metabolismo , Micorrizas/fisiologia , Basidiomycota/metabolismo , Transdução de Sinais , MetabolomaRESUMO
We identified two gall-inducing wasp species infesting eucalypts leaves, including an undescribed species, Ophelimus cracens sp. nov., and Epichrysocharis burwelli, which is a new record for Taiwan. The major hosts of O. cracens were Eucalyptus grandis, Eu. urophylla, and Eu. camaldulensis (Myrtaceae). We observed failed galls of O. cracens at an early stage on Eu. amplifolia and Corymbia maculata. All O. cracens adults discovered on infected leaves were females, and four parasitoid species were identified in samples collected from two cities, three counties, and four municipalities across Taiwan. Epichrysocharis burwelli was exclusively found on C. citriodora in Hsinchu, Nantou, and Tainan Cities. This marks the first record of Ep. burwelli in Asia, accompanied by the identification of one parasitoid species. The adult longevity of adults which emerged from their major hosts, when provided with honey-water solution, was 5.5 days for O. cracens and 5.7 days for Ep. burwelli. Recognizing the potential damage by these wasps on Eucalyptus production areas in the absence of parasitoids, further investigations of their biology and control are warranted.
Assuntos
Eucalyptus , Vespas , Animais , Vespas/fisiologia , Taiwan , Eucalyptus/parasitologia , Feminino , Folhas de Planta/parasitologia , Tumores de Planta/parasitologia , Espécies Introduzidas , Especificidade da Espécie , Interações Hospedeiro-Parasita , Distribuição AnimalRESUMO
An innovative binary biol-based deep eutectic solvent (DES), specifically ethylamine hydrochloride-ethylene glycol (EaCl-EG), was developed for efficient pretreatment of eucalyptus biomass. This DES exhibited superior performance in achieving high delignification (85.0%) and xylan removal (80.0%), while preserving a significant amount of cellulose (94.5%) compared to choline chloride-based DES. Notably, the pretreated eucalyptus residues showed a remarkable glucose yield of over 92.5%, representing a substantial enhancement of up to 15 times compared to untreated eucalyptus. Furthermore, the pretreated liquor yielded high-purity lignin with a yield of 97.8%, characterized by well-preserved ß-O-4 structure and nanoscale dimensions. These lignin nanoparticles (LNPs) were subsequently self-assembled into lignin nanobottles (LNBs), adding further value to the pretreatment process. The proposed novel binary EaCl-EG DES presented great potential as an efficient pretreatment solvent for future biomass fractionation processes.
Assuntos
Biomassa , Fracionamento Químico , Solventes Eutéticos Profundos , Eucalyptus , Lignina , Eucalyptus/química , Lignina/química , Solventes Eutéticos Profundos/química , Fracionamento Químico/métodos , Hidrólise , Celulase/metabolismo , Celulase/química , Glucose/química , Solventes/química , Nanopartículas/químicaRESUMO
Thyrinteina arnobia (Lepidoptera: Geometridae) is a native American species. Despite its historical importance as an insect pest in Eucalyptus plantations, more information is needed regarding the population diversity, demography, and climatic variables associated with its distribution in different regions of Brazil. We used a phylogeographic approach to infer the genetic diversity, genetic structure, and demographic parameters of T. arnobia. We also conducted an ecological niche modeling (ENM) to predict suitable areas for T. arnobia occurrence in Brazil and other countries worldwide. Although T. arnobia populations have low genetic diversity in Brazil, we identified mitochondrial haplogroups predominating in different Brazilian regions and high ФST and ФCT values in AMOVA, suggesting a low frequency of insect movement among these regions. These results indicate that outbreaks of T. arnobia in Eucalyptus areas in different regions of Brazil are associated with local or regional populations, with no significant contribution from long-distance dispersal from different regions or biomes, suggesting that pest management strategies would be implemented on a regional scale. In Brazil, the demographic and spatial expansion signals of T. arnobia seem to be associated with the history of geographical expansion of Eucalyptus plantations, a new sustainable host for this species. ENM indicated that isothermality and annual rainfall are critical climatic factors for the occurrence of T. arnobia in tropical and subtropical areas in the Americas. ENM also suggested that T. arnobia is a potential pest in Eucalyptus areas in all Brazilian territory and in regions from Africa, Asia, and Oceania.
Assuntos
Ecossistema , Eucalyptus , Variação Genética , Filogeografia , Animais , Eucalyptus/parasitologia , Brasil , Lepidópteros/genética , Lepidópteros/fisiologia , Mariposas/fisiologia , Mariposas/genética , FilogeniaRESUMO
An ointment containing larch turpentine, turpentine oil, and eucalyptus oil has been used for almost a century for the symptomatic treatment of mild, localized, purulent inflammations of the skin. Its clinical efficacy in the treatment of skin infections has been shown in clinical trials, but the mode of action of the active ingredients on inflammation is not known. We studied the anti-inflammatory properties of the active ingredients of the ointment and their mixture in a human monocyte cell model, in which the cells were stimulated with lipopolysaccharide and incubated with the test substances. The cytotoxic threshold of each test substance and the mixture was identified using the alamarBlue assay, and their anti-inflammatory activity was assessed by measuring the release of interleukins IL-1ß, IL-6, IL-8, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α. Cell toxicity was observed at a mixture concentration of 10 µg/mL. All immunological assays were carried out at nontoxic concentrations. Larch turpentine decreased IL-1ß, monocyte chemoattractant protein-1, and prostaglandin E2 release at a concentration of 3.9 µg/mL and TNF-α at concentrations > 1.95 µg/mL, whereas eucalyptus oil and turpentine oil had no relevant inhibitory effects. The mixture dose-dependently inhibited IL-1ß, IL-6, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α release at concentrations > 1 µg/mL. IL-8 release was only marginally affected. The anti-inflammatory activity of the herbal ingredients and their mixture was confirmed in this model. This effect seems to be mediated mainly by larch turpentine, with turpentine oil and eucalyptus oil exerting an additive or possibly synergistic function.
Assuntos
Anti-Inflamatórios , Larix , Terebintina , Humanos , Anti-Inflamatórios/farmacologia , Larix/química , Pomadas , Óleo de Eucalipto/farmacologia , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Eucalyptus/química , Dinoprostona/metabolismo , Monócitos/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Citocinas/metabolismoRESUMO
Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in Populus trichocarpa and Eucalyptus grandis, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.
Assuntos
Eucalyptus , Lignina , Populus , Populus/metabolismo , Eucalyptus/metabolismo , Lignina/biossíntese , Lignina/metabolismo , Vias BiossintéticasRESUMO
Changes in vapour pressure deficit can lead to the depletion and replenishment of stem water pools to buffer water potential variations in the xylem. Yet, the precise velocity at which stem water pools track environmental cues remains poorly explored. Nine eucalyptus seedlings grown in a glasshouse experienced high-frequency environmental oscillations and their stem radial variations (ΔR) were monitored at a 30-s temporal resolution in upper and lower stem locations and on the bark and xylem. The stem ΔR response to vapour pressure deficit changes was nearly instantaneous (<1 min), while temperature lagged behind stem ΔR. No temporal differences in the stem ΔR response were observed between locations. Punctual gravimetric measurements confirmed the synchrony between transpiration and stem ΔR dynamics. These results indicate (i) that stem-stored water can respond to the atmospheric evaporative demand much faster than commonly assumed and (ii) that the origin of the water released to the transpiration stream seems critical in determining time lags in stem water pool dynamics. Near-zero time lags may be explained by the high elasticity of eucalyptus woody tissues and the predominant water use from the xylem, circumventing the hydraulic radial barriers to water flow from/to the outer tissues.
Assuntos
Eucalyptus , Caules de Planta , Transpiração Vegetal , Água , Eucalyptus/fisiologia , Caules de Planta/fisiologia , Água/metabolismo , Transpiração Vegetal/fisiologia , Xilema/fisiologia , Árvores/fisiologia , Pressão de Vapor , AtmosferaRESUMO
Cellulose micro/nanofibril (MNFC) films are an interesting alternative to plastic-based films for application in biodegradable packaging. In this study, we aimed to produce and characterize MNFC films obtained from alkaline-pretreated rubberwood (Hevea brasiliensis) waste and Eucalyptus sp. commercial pulp. MNFC and films were evaluated regarding microstructure; crystallinity; stability; and physical, optical, mechanical, and barrier properties. A combined quality index (QI) was also calculated. Eucalyptus MNFC suspensions were more stable than H. brasiliensis. Both films had a hydrophobic surface (>90°) and high grease resistance (oil kit 12). H. brasiliensis films had lower transparency (26.4 %) and high crystallinity (â¼89 %), while Eucalyptus films had lower permeability and higher mechanical strength. The QI of MNFC was 51 ± 5 for H. brasiliensis and 55 ± 4 for Eucalyptus, showing that both types of raw material have potential for application in the packaging industry and in the reinforcement of composites, as well as for high value-added applications in products made from special materials.
Assuntos
Celulose , Hevea , Nanofibras , Celulose/química , Hevea/química , Nanofibras/química , Permeabilidade , Eucalyptus/química , Embalagem de Produtos , Resistência à Tração , Interações Hidrofóbicas e HidrofílicasRESUMO
BACKGROUND: Eucalyptus regnans (Mountain Ash) is an Australian native giant tree species which form forests that are among the highest known carbon-dense biomasses in the world. To enhance genomic studies in this ecologically important species, we assembled a high-quality, mostly telomere-to-telomere complete, chromosome-level, haplotype-resolved reference genome. We sampled a single tree, the Centurion, which is currently a contender for the world's tallest flowering plant. RESULTS: Using long-read sequencing data (PacBio HiFi, Oxford Nanopore ultra-long reads) and chromosome conformation capture data (Hi-C), we assembled the most contiguous and complete Eucalyptus reference genome to date. For each haplotype, we observed contig N50s exceeding 36 Mbp, scaffold N50s exceeding 43 Mbp, and genome BUSCO completeness exceeding 99%. The assembled genome revealed extensive structural variations between the two haplotypes, consisting mostly of insertions, deletions, duplications and translocations. Analysis of gene content revealed haplotype-specific genes, which were enriched in functional categories related to transcription, energy production and conservation. Additionally, many genes reside within structurally rearranged regions, particularly duplications, suggesting that haplotype-specific variation may contribute to environmental adaptation in the species. CONCLUSIONS: Our study provides a foundation for future research into E. regnans environmental adaptation, and the high-quality genome will be a powerful resource for conservation of carbon-dense giant tree forests.
Assuntos
Eucalyptus , Genoma de Planta , Haplótipos , Telômero , Eucalyptus/genética , Telômero/genética , Árvores/genética , Genômica/métodosRESUMO
As a pest, the gall wasp Ophelimus migdanorum poses a risk to several Eucalyptus species in Colombia. In the tropical Andes, its biological development and the damage it causes can be influenced by climate, particularly rainfall. In this regard, we examined gall phenology, population fluctuation, and leaf damage caused by O. migdanorum, and its parasitoid Closterocerus chamaeleon, over 5 months at two sites with contrasting rainfall in peri-urban areas of Bogotá, Colombia. Gall phenology and foliar damage were assessed on 10 trees per site. We characterized gall phenology by assessing their size and color, wasps' developmental stages, as well as affected leaf area and gall density on the leaf blade. Additionally, the individuals found in five attraction traps at each site were quantified biweekly to record population fluctuations. The effect of rainfall on wasp frequency and gall density between sampling sites and dates was compared using the chi-square test, while the relationship with rainfall was evaluated using the Kruskal-Wallis test. Only females of the gall wasp and its parasitoid were observed during the study, displaying multivoltine behavior. Six developmental stages of the galls were differentiated, each characterized by distinct coloration. Drier microclimates favored gall size, wasps' development stage frequency, population trend, and foliar damage. The general trend indicated a greater abundance of the parasitoid C. chamaeleon compared to O. migdanorum. Our study suggests that O. migdanorum has a less damaging effect on E. globulus in areas with rainy microclimates.
Assuntos
Eucalyptus , Tumores de Planta , Chuva , Vespas , Animais , Colômbia , Vespas/fisiologia , Eucalyptus/parasitologia , Tumores de Planta/parasitologia , Feminino , Folhas de Planta , Dinâmica PopulacionalRESUMO
Vegetation restoration in karst areas has shifted from expanding planting areas to the collective enhancement of various ecological functions, especially carbon sequestration. Identifying and regulating key plant functional traits involved in the carbon cycle is an effective approach to increase carbon sequestration. However, reports on the significant contribution of petiole traits to the carbon cycle are scarce. Eucalyptus globulus and Bauhinia purpurea plantations in Liujiang river basin were investigated in this study. Petiole traits, understory characteristics, and soil organic carbon have been measured. The aim is to explore key effect of petiole traits for increasing soil carbon sequestration and to provide scientific evidence for the high-quality development of plantations in karst areas. The results indicate that in Eucalyptus globulus plantations, when the understory vegetation coverage is below 50 %, petioles tend to elongate rather than thicken, leading to an increase in specific petiole length. In Bauhinia purpurea plantations, petioles consistently tend to increase diameter. However, when specific leaf area decreases, specific petiole length increases. In both plantations, an increase in specific petiole length accelerates leaf shedding. It leads to increased litter accumulation so that soil carbon content increases. In Eucalyptus globulus plantations, to enhance soil carbon sequestration as an ecological goal, it is recommended to keep the soil total nitrogen below 1.20 mg/g, to control understory vegetation coverage below 50 %, and to limit the extension of Bidens pilosa. In Bauhinia purpurea plantations, within 100 m of altitude, the soil total nitrogen can be controlled below 1.00 mg/g to increase soil organic carbon from large leaf shedding due to the increase of specific petiole length. At lower altitudes, increasing soil total nitrogen can enhance understory vegetation coverage, allowing soil organic carbon to originate from both leaf shedding and understory vegetation residues.