Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 497
Filtrar
1.
PeerJ ; 12: e18218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39430563

RESUMO

Eucalyptus urophylla S.T. Blake, an important economic tree species, is widely cultivated as a raw material source for pulpwood, veneer plywood, and sawlog timber in southern China. As a tree in multiple environments, tree-breeding programs can assess genotype by environment (G × E) interactions and identify the suitable genotype for a specific environment. G × E interactions related to growth traits and soil factors have not been adequately studied for clones of Eucalyptus urophylla and its hybrids. To examine this important question, trials containing 20 clones of E. urophylla and its hybrids were established at three sites in southern China: Shankou (SK), Tiantang (TT), and Xiniujiao (XNJ). These sites each have different soil conditions but similar geographical and climatic conditions. With the data across nearly eight years, average phenotypic trends and broad sense repeatability (H2) were modeled, G×E interactions between clones and diverse soil environments were estimated, genetic gains of clones were calculated, and the adaptabilities of E. urophylla clones in different soil environments were compared. Average survival trends for clones tended to show a moderate decrease while growth traits tended to show sharp increases with age. At the same age, sites were ordered for average survival and growth traits as TT>SK>XNJ while H2 values for growth traits by site followed the basic order TT>SK>XNJ. The H2 values for growth traits at SK tended to increase at first, platform, and then smooth with age. The H2 values for growth traits at TT were high and stable across ages, and those at XNJ tended to undulate largely at a relatively low level across ages. Genetic correlations for growth traits between any pair of sites tended to increase at first and then decrease. A genetic correlation was strong between SK and TT, intermediate between SK and XNJ, and weak between TT and XNJ. It was concluded that: (1) clones tended to be adapted better to an environment with acidic and loamy soil with a clay content of about 45.6%, the soil depth from the surface to parent material about 1.5 m, and the previous vegetation of Eucalypts. (2) The G×E interactions between clones and sites are weaker if the environmental conditions between the sites are similar, and which are stronger if the environmental conditions between the sites are different. (3) The optimum selection age for clones ranged from 1.5 to 3.5 years old, while the optimum selection growth trait is individual tree volume.


Assuntos
Eucalyptus , Interação Gene-Ambiente , Genótipo , Eucalyptus/genética , Eucalyptus/crescimento & desenvolvimento , China , Solo/química , Fenótipo
2.
BMC Genomics ; 25(1): 913, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350032

RESUMO

BACKGROUND: Eucalyptus regnans (Mountain Ash) is an Australian native giant tree species which form forests that are among the highest known carbon-dense biomasses in the world. To enhance genomic studies in this ecologically important species, we assembled a high-quality, mostly telomere-to-telomere complete, chromosome-level, haplotype-resolved reference genome. We sampled a single tree, the Centurion, which is currently a contender for the world's tallest flowering plant. RESULTS: Using long-read sequencing data (PacBio HiFi, Oxford Nanopore ultra-long reads) and chromosome conformation capture data (Hi-C), we assembled the most contiguous and complete Eucalyptus reference genome to date. For each haplotype, we observed contig N50s exceeding 36 Mbp, scaffold N50s exceeding 43 Mbp, and genome BUSCO completeness exceeding 99%. The assembled genome revealed extensive structural variations between the two haplotypes, consisting mostly of insertions, deletions, duplications and translocations. Analysis of gene content revealed haplotype-specific genes, which were enriched in functional categories related to transcription, energy production and conservation. Additionally, many genes reside within structurally rearranged regions, particularly duplications, suggesting that haplotype-specific variation may contribute to environmental adaptation in the species. CONCLUSIONS: Our study provides a foundation for future research into E. regnans environmental adaptation, and the high-quality genome will be a powerful resource for conservation of carbon-dense giant tree forests.


Assuntos
Eucalyptus , Genoma de Planta , Haplótipos , Telômero , Eucalyptus/genética , Telômero/genética , Árvores/genética , Genômica/métodos
3.
Sci Rep ; 14(1): 18429, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117704

RESUMO

Understanding the genotype-by-environment interaction (GEI) and considering it in the selection process is a sine qua non condition for the expansion of Brazilian eucalyptus silviculture. This study's objective is to select high-performance and stable eucalyptus clones based on a novel selection index that considers the Factor Analytic Selection Tools (FAST) and the clone's reliability. The investigation explores the nuances interplay of GEI and extends its insights by scrutinizing the relationship between latent factors and real environmental features. The analysis, conducted across seven trials in five Brazilian states involving 78 clones, employs FAST. The clonal selection was performed using an extended FAST index weighted by the clone's reliability. Further insights about GEI emerge from the integration of factor loadings with 25 environmental features through a principal component analysis. Ten clones, distinguished by high performance, stability, and reliability, have been selected across the target population of environments. The environmental features most closely associated with factor loadings, encompassing air temperature, radiation, and soil characteristics, emerge as pivotal drivers of GEI within this dataset. This study contributes insights to eucalyptus breeders, equipping them to enhance decision-making by harnessing a holistic understanding-from the genotypes under evaluation to the diverse environments anticipated in commercial plantations.


Assuntos
Eucalyptus , Melhoramento Vegetal , Eucalyptus/genética , Melhoramento Vegetal/métodos , Brasil , Interação Gene-Ambiente , Tomada de Decisões , Genótipo , Meio Ambiente , Reprodutibilidade dos Testes
4.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125768

RESUMO

Xylan, one of the most important structures and polysaccharides, plays critical roles in plant development, growth, and defense responses to pathogens. Glucuronic acid substitution of xylan (GUX) functions in xylan sidechain decoration, which is involved in a wide range of physiological processes in plants. However, the specifics of GUXs in trees remain unclear. In this study, the characterization and evolution of the GUX family genes in E. grandis, a fast-growing forest tree belonging to the Myrtaceae family, were performed. A total of 23 EgGUXs were identified from the E. grandis genome, of which all members contained motif 2, 3, 5, and 7. All GUX genes were phylogeneticly clustered into five distinct groups. Among them, EgGUX01~EgGUX05 genes were clustered into group III and IV, which were more closely related to the AtGUX1, AtGUX2, and AtGUX4 members of Arabidopsis thaliana known to possess glucuronyltransferase activity, while most other members were clustered into group I. The light-responsive elements, hormone-responsive elements, growth and development-responsive elements, and stress-responsive elements were found in the promoter cis-acting elements, suggesting the expression of GUX might also be regulated by abiotic factors. RNA-Seq data confirmed that EgGUX02, EgGUX03, and EgGUX10 are highly expressed in xylem, and EgGUX09, EgGUX10, and EgGUX14 were obviously responses to abiotic stresses. The results of this paper will provide a comprehensive determination of the functions of the EgGUX family members, which will further contribute to understanding E. grandis xylan formation.


Assuntos
Eucalyptus , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Xilanos , Eucalyptus/genética , Xilanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regiões Promotoras Genéticas
5.
New Phytol ; 244(3): 1024-1040, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39001592

RESUMO

Polysaccharide structural complexity not only influences cell wall strength and extensibility but also hinders pathogenic and biotechnological attempts to saccharify the wall. In certain species and tissues, glucuronic acid side groups on xylan exhibit arabinopyranose or galactose decorations whose genetic and evolutionary basis is completely unknown, impeding efforts to understand their function and engineer wall digestibility. Genetics and polysaccharide profiling were used to identify the responsible loci in Arabidopsis and Eucalyptus from proposed candidates, while phylogenies uncovered a shared evolutionary origin. GH30-family endo-glucuronoxylanase activities were analysed by electrophoresis, and their differing specificities were rationalised by phylogeny and structural analysis. The newly identified xylan arabinopyranosyltransferases comprise an overlooked subfamily in the GT47-A family of Golgi glycosyltransferases, previously assumed to comprise mainly xyloglucan galactosyltransferases, highlighting an unanticipated adaptation of both donor and acceptor specificities. Further neofunctionalisation has produced a Myrtaceae-specific xylan galactosyltransferase. Simultaneously, GH30 endo-glucuronoxylanases have convergently adapted to overcome these decorations, suggesting a role for these structures in defence. The differential expression of glucuronoxylan-modifying genes across Eucalyptus tissues, however, hints at further functions. Our results demonstrate the rapid adaptability of biosynthetic and degradative carbohydrate-active enzyme activities, providing insight into plant-pathogen interactions and facilitating plant cell wall biotechnological utilisation.


Assuntos
Arabidopsis , Parede Celular , Eucalyptus , Filogenia , Xilanos , Xilanos/metabolismo , Parede Celular/metabolismo , Arabidopsis/genética , Arabidopsis/enzimologia , Eucalyptus/genética , Eucalyptus/metabolismo , Hidrolases/metabolismo , Hidrolases/genética , Adaptação Fisiológica/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Evolução Molecular
6.
Genes (Basel) ; 15(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39062710

RESUMO

Eucalyptus grandis is an important planted hardwood tree worldwide with fast growth and good wood performance. The nitrate transporter (NRT) gene family is a major core involved in nitrogen (N) absorption and utilization in plants, but the comprehensive characterization of NRT genes in E. grandis remains mostly elusive. In this study, a total of 75 EgNRT genes were identified from the genome of E. grandis that were distributed unevenly across ten chromosomes, except Chr9. A phylogenetic analysis showed that the EgNRT proteins could be divided into three classes, namely NRT1, NRT2 and NRT3, which contained 69, 4 and 2 members, respectively. The cis-regulatory elements in the promoter regions of EgNRT genes were mainly involved in phytohormone and stress response. The transcriptome analysis indicated that the differentially expressed genes of leaf and root in E. grandis under different N supply conditions were mainly involved in the metabolic process and plant hormone signal transduction. In addition, the transcriptome-based and RT-qPCR analysis revealed that the expression of 13 EgNRT genes, especially EgNRT1.3, EgNRT1.38, EgNRT1.39 and EgNRT1.52, was significantly upregulated in the root under low-N-supply treatment, suggesting that those genes might play a critical role in root response to nitrate deficiency. Taken together, these results would provide valuable information for characterizing the roles of EgNRTs and facilitate the clarification of the molecular mechanism underlying EgNRT-mediated N absorption and distribution in E. grandis.


Assuntos
Proteínas de Transporte de Ânions , Eucalyptus , Regulação da Expressão Gênica de Plantas , Família Multigênica , Transportadores de Nitrato , Proteínas de Plantas , Eucalyptus/genética , Eucalyptus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Filogenia , Perfilação da Expressão Gênica/métodos , Nitrogênio/metabolismo , Transcriptoma , Genoma de Planta , Nitratos/metabolismo
7.
Plant Physiol Biochem ; 214: 108972, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067106

RESUMO

In plants, abiotic stressors are frequently encountered during growth and development. To counteract these challenges, zinc finger proteins play a critical role as transcriptional regulators. The EgrZFP6 gene, which codes for a zinc finger protein of the C2H2 type, was shown to be considerably elevated in the leaves of Eucalyptus grandis seedlings in the current study when they were subjected to a variety of abiotic stimuli, including heat, salinity, cold, and drought. Analysis conducted later showed that in EgrZFP6 transgenic Arabidopsis thaliana, EgrZFP6 was essential for causing hyponastic leaves and controlling the stress response. Furthermore, the transgenic plants showed elevated levels of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide (H2O2). Additionally, in EgrZFP6-overexpressing plants, transcriptome sequencing analysis demonstrated a considerable downregulation of many genes involved in photosynthesis, decreasing electron transport efficiency and perhaps promoting the buildup of ROS. Auxin levels were higher and auxin signal transduction was compromised in the transgenic plants. Stress-related genes were also upregulated in Arabidopsis as a result of EgrZFP6 overexpression. It is hypothesized that EgrZFP6 can downregulate photosynthesis, which would cause the production of ROS in chloroplasts. As a result, this protein may alter plant stress responses and leaf morphology via a retrograde mechanism driven by ROS. These results highlight the significance of zinc finger proteins in this sophisticated process and advance our understanding of the complex link between gene regulation, ROS signaling, and plant stress responses.


Assuntos
Arabidopsis , Eucalyptus , Regulação da Expressão Gênica de Plantas , Fotossíntese , Proteínas de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Fotossíntese/genética , Espécies Reativas de Oxigênio/metabolismo , Eucalyptus/genética , Eucalyptus/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação para Baixo/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Estresse Fisiológico , Peróxido de Hidrogênio/metabolismo , Dedos de Zinco CYS2-HIS2
8.
BMC Plant Biol ; 24(1): 561, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877454

RESUMO

BACKGROUND: Somatic embryogenesis (SE) is recognized as a promising technology for plant vegetative propagation. Although previous studies have identified some key regulators involved in the SE process in plant, our knowledge about the molecular changes in the SE process and key regulators associated with high embryogenic potential is still poor, especially in the important fiber and energy source tree - eucalyptus. RESULTS: In this study, we analyzed the transcriptome and proteome profiles of E. camaldulensis (with high embryogenic potential) and E. grandis x urophylla (with low embryogenic potential) in SE process: callus induction and development. A total of 12,121 differentially expressed genes (DEGs) and 3,922 differentially expressed proteins (DEPs) were identified in the SE of the two eucalyptus species. Integration analysis identified 1,353 (131 to 546) DEGs/DEPs shared by the two eucalyptus species in the SE process, including 142, 13 and 186 DEGs/DEPs commonly upregulated in the callus induction, maturation and development, respectively. Further, we found that the trihelix transcription factor ASR3 isoform X2 was commonly upregulated in the callus induction of the two eucalyptus species. The SOX30 and WRKY40 TFs were specifically upregulated in the callus induction of E. camaldulensis. Three TFs (bHLH62, bHLH35 isoform X2, RAP2-1) were specifically downregulated in the callus induction of E. grandis x urophylla. WGCNA identified 125 and 26 genes/proteins with high correlation (Pearson correlation > 0.8 or < -0.8) with ASR3 TF in the SE of E. camaldulensis and E. grandis x urophylla, respectively. The potential target gene expression patterns of ASR3 TF were then validated using qRT-PCR in the material. CONCLUSIONS: This is the first time to integrate multiple omics technologies to study the SE of eucalyptus. The findings will enhance our understanding of molecular regulation mechanisms of SE in eucalyptus. The output will also benefit the eucalyptus breeding program.


Assuntos
Eucalyptus , Técnicas de Embriogênese Somática de Plantas , Proteoma , Transcriptoma , Eucalyptus/genética , Eucalyptus/metabolismo , Eucalyptus/crescimento & desenvolvimento , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica
9.
Braz J Biol ; 84: e279850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896727

RESUMO

The gall wasp, Leptocybe invasa, poses a significant global threat to Eucalyptus cultivation, by causing substantial economic losses. The objective of this study was to differentiate between resistant and susceptible genotypes by morphological characteristics using image analysis based on the damage caused by the gall wasp. In addition, consensus sequences derived from transposable elements (TEs) and the genome of Eucalyptus spp. Were identified by in silico analysis. Furthermore, another objective was to discriminate Eucalyptus genotypes in response to Leptocybe invasa by conducting molecular analyses involving transposable elements and inter simple sequence markers. For image analysis, the GroundEye ® system was used to collect images of 60 leaves from six genotypes, three of which were resistant and three susceptible. Eucalyptus spp. sequences were obtained from the GenBank database by in silico analysis and pairwise alignments with TE sequences were conducted using BLASTN. Multiple sequence alignment was performed with Clustal Omega, followed by the identification of conserved regions in Jalview. A motif signature was generated using Weblogo. For molecular characterization using ISSR markers and TEs, samples of young leaves were obtained from a total of 80 Eucalyptus seedlings, of which 50 were classified as resistant and 30 as susceptible to L. invasa. It was possible to distinguish gall wasp susceptible and resistant genotypes by image analysis. In silico analysis enabled the identification of conserved regions in the Eucalyptus spp. genome, which were associated with proteins involved in secondary metabolite production, e.g., terpenes, which play a role in the response to L. invasa. The discrimination capacity of TEs and ISSR primers was demonstrated and bands were generated that could be used to identify resistant genotypes. However, increasing the number of markers required to discriminate genotypes in both cases is suggested.


Assuntos
Eucalyptus , Genótipo , Fenótipo , Vespas , Eucalyptus/genética , Eucalyptus/parasitologia , Animais , Vespas/genética , Vespas/classificação , Resistência à Doença/genética , Simulação por Computador , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Elementos de DNA Transponíveis/genética
10.
BMC Plant Biol ; 24(1): 573, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890621

RESUMO

BACKGROUND: The GRAS gene family is a class of plant-specific transcription factors with important roles in many biological processes, such as signal transduction, disease resistance and stress tolerance, plant growth and development. So far, no information available describes the functions of the GRAS genes in Eucalyptus grandis. RESULTS: A total of 82 GRAS genes were identified with amino acid lengths ranging from 267 to 817 aa, and most EgrGRAS genes had one exon. Members of the GRAS gene family of Eucalyptus grandis are divided into 9 subfamilies with different protein structures, while members of the same subfamily have similar gene structures and conserved motifs. Moreover, these EgrGRAS genes expanded primarily due to segmental duplication. In addition, cis-acting element analysis showed that this family of genes was involved involved in the signal transduction of various plant hormones, growth and development, and stress response. The qRT-PCR data indicated that 18 EgrGRAS genes significantly responded to hormonal and abiotic stresses. Among them, the expression of EgrGRAS13, EgrGRAS68 and EgrGRAS55 genes was significantly up-regulated during the treatment period, and it was hypothesised that members of the EgrGRAS family play an important role in stress tolerance. CONCLUSIONS: In this study, the phylogenetic relationship, conserved domains, cis-elements and expression patterns of GRAS gene family of Eucalyptus grandis were analyzed, which filled the gap in the identification of GRAS gene family of Eucalyptus grandis and laid the foundation for analyzing the function of EgrGRAS gene in hormone and stress response.


Assuntos
Eucalyptus , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Eucalyptus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genes de Plantas , Perfilação da Expressão Gênica
11.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38869149

RESUMO

Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.


Assuntos
Eucalyptus , Genoma de Planta , Isolamento Reprodutivo , Eucalyptus/genética , Variação Estrutural do Genoma , Polimorfismo Genético , Evolução Molecular , Adaptação Fisiológica/genética , Especiação Genética , Sequenciamento Completo do Genoma/métodos , Genótipo
12.
Tree Physiol ; 44(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38896029

RESUMO

Future climatic scenarios forecast increasingly frequent droughts that will pose substantial consequences on tree mortality. In light of this, drought-tolerant eucalypts have been propagated; however, the severity of these conditions will invoke adaptive responses, impacting the commercially valuable wood properties. To determine what mechanisms govern the wood anatomical adaptive response, highly controlled drought experiments were conducted in Eucalyptus grandis W. Hill ex Maiden, with the tree physiology and transcriptome closely monitored. In response to water deficit, E. grandis displays an isohydric stomatal response to conserve water and enable stem growth to continue, albeit at a reduced rate. Maintaining gaseous exchange is likely a critical short-term response that drives the formation of hydraulically safer xylem. For instance, the development of significantly smaller fibers and vessels was found to increase cellular density, thereby promoting drought tolerance through improved functional redundancy, as well as implosion and cavitation resistance. The transcriptome was explored to identify the molecular mechanisms responsible for controlling xylem cell size during prolonged water deficit. Downregulation of genes associated with cell wall remodeling and the biosynthesis of cellulose, hemicellulose and pectin appeared to coincide with a reduction in cellular enlargement during drought. Furthermore, transcript levels of NAC and MYB transcription factors, vital for cell wall component biosynthesis, were reduced, while those linked to lignification increased. The upregulation of EgCAD and various peroxidases under water deficit did not correlate with an increased lignin composition. However, with the elevated cellular density, a higher lignin content per xylem cross-sectional area was observed, potentially enhancing hydraulic safety. These results support the requirement for higher density, drought-adapted wood as a long-term adaptive response in E. grandis, which is largely influenced by the isohydric stomatal response coupled with cellular expansion-related molecular processes.


Assuntos
Secas , Eucalyptus , Água , Xilema , Eucalyptus/fisiologia , Eucalyptus/genética , Xilema/fisiologia , Xilema/metabolismo , Água/metabolismo , Água/fisiologia , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Tamanho Celular , Parede Celular/metabolismo , Madeira/fisiologia , Transcriptoma
13.
PLoS One ; 19(5): e0294839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768148

RESUMO

Rare species are often considered inferior competitors due to occupancy of small ranges, specific habitats, and small local populations. However, the phylogenetic relatedness and rarity level (level 1-7 and common) of interacting species in plant-plant interactions are not often considered when predicting the response of rare plants in a biotic context. We used a common garden of 25 species of Tasmanian Eucalyptus, to differentiate non-additive patterns in the biomass of rare versus common species when grown in mixtures varying in phylogenetic relatedness and rarity. We demonstrate that rare species maintain progressively positive non-additive responses in biomass when interacting with phylogenetically intermediate, less rare and common species. This trend is not reflected in common species that out-performed in monocultures compared to mixtures. These results offer predictability as to how rare species' productivity will respond within various plant-plant interactions. However, species-specific interactions, such as those involving E. globulus, yielded a 97% increase in biomass compared to other species-specific interaction outcomes. These results are important because they suggest that plant rarity may also be shaped by biotic interactions, in addition to the known environmental and population factors normally used to describe rarity. Rare species may utilize potentially facilitative interactions with phylogenetically intermediate and common species to escape the effects of limiting similarity. Biotically mediated increases in rare plant biomass may have subsequent effects on the competitive ability and geographic occurrence of rare species, allowing rare species to persist at low abundance across plant communities. Through the consideration of species rarity and evolutionary history, we can more accurately predict plant-plant interaction dynamics to preserve unique ecosystem functions and fundamentally challenge what it means to be "rare".


Assuntos
Biomassa , Eucalyptus , Filogenia , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Ecossistema , Evolução Biológica , Especificidade da Espécie , Plantas/classificação
14.
Plant Physiol Biochem ; 212: 108715, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761541

RESUMO

Light plays a pivotal role in regulating anthocyanin biosynthesis in plants, and the early light-responsive signals that initiate anthocyanin biosynthesis remain to be elucidated. In this study, we showed that the anthocyanin biosynthesis in Eucalyptus is hypersensitive to increased light intensity. The combined transcriptomic and metabolomic analyses were conducted on Eucalyptus leaves after moderate (ML; 100 µmol m-2 s-1) and high (HL; 300 µmol m-2 s-1) light intensity treatments. The results identified 1940, 1096, 1173, and 2756 differentially expressed genes at 6, 12, 24, and 36 h after HL treatment, respectively. The metabolomic results revealed the primary anthocyanin types, and other differentially accumulated flavonoids and phenylpropane intermediates that were produced in response to HL, which well aligned with the transcriptome results. Moreover, biochemical analysis showed that HL inhibited peroxidase activity and increased the ROS level in Eucalyptus leaves. ROS depletion through co-application of the antioxidants rutin, uric acid, and melatonin significantly reduced, and even abolished, anthocyanin biosynthesis induced by HL treatment. Additionally, exogenous application of hydrogen peroxide efficiently induced anthocyanin biosynthesis within 24 h, even under ML conditions, suggesting that ROS played a major role in activating anthocyanin biosynthesis. A HL-responsive MYB transcription factor EgrMYB113 was identified to play an important role in regulating anthocyanin biosynthesis by targeting multiple anthocyanin biosynthesis genes. Additionally, the results demonstrated that gibberellic acid and sugar signaling contributed to HL-induced anthocyanin biosynthesis. Conclusively, these results suggested that HL triggers multiple signaling pathways to induce anthocyanin biosynthesis, with ROS acting as indispensable mediators in Eucalyptus.


Assuntos
Antocianinas , Eucalyptus , Luz , Espécies Reativas de Oxigênio , Eucalyptus/metabolismo , Eucalyptus/genética , Antocianinas/biossíntese , Antocianinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
15.
Genome Res ; 34(4): 606-619, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38589251

RESUMO

Genomes have a highly organized architecture (nonrandom organization of functional and nonfunctional genetic elements within chromosomes) that is essential for many biological functions, particularly gene expression and reproduction. Despite the need to conserve genome architecture, a high level of structural variation has been observed within species. As species separate and diverge, genome architecture also diverges, becoming increasingly poorly conserved as divergence time increases. However, within plant genomes, the processes of genome architecture divergence are not well described. Here we use long-read sequencing and de novo assembly of 33 phylogenetically diverse, wild and naturally evolving Eucalyptus species, covering 1-50 million years of diverging genome evolution to measure genome architectural conservation and describe architectural divergence. The investigation of these genomes revealed that following lineage divergence, genome architecture is highly fragmented by rearrangements. As genomes continue to diverge, the accumulation of mutations and the subsequent divergence beyond recognition of rearrangements become the primary driver of genome divergence. The loss of syntenic regions also contribute to genome divergence but at a slower pace than that of rearrangements. We hypothesize that duplications and translocations are potentially the greatest contributors to Eucalyptus genome divergence.


Assuntos
Eucalyptus , Evolução Molecular , Genoma de Planta , Eucalyptus/genética , Sintenia , Rearranjo Gênico , Filogenia , Cromossomos de Plantas/genética , Variação Genética
16.
BMC Plant Biol ; 24(1): 96, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331783

RESUMO

Eucalyptus was one of the most cultivated hardwood species worldwide, with rapid growth, good wood properties and a wide range of adaptability. Eucalyptus stem undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. In order to better understand the genetic regulation of secondary growth in Eucalyptus grandis, Transcriptome analyses in stem segments along a developmental gradient from the third internode to the eleventh internode of E. grandis that spanned primary to secondary growth were carried out. 5,149 genes that were differentially expressed during stem development were identified. Combining the trend analysis by the Mfuzz method and the module-trait correlation analysis by the Weighted Gene Co-expression Network Analysis method, a total of 70 differentially expressed genes (DEGs) selected from 868 DEGs with high connectivity were found to be closely correlated with secondary growth. Results revealed that the differential expression of these DEGs suggests that they may involve in the primary growth or secondary growth. AP1, YAB2 TFs and EXP genes are highly expressed in the IN3, whereas NAC, MYB TFs are likely to be important for secondary growth. These results will expand our understanding of the complex molecular and cellular events of secondary growth and provide a foundation for future studies on wood formation in Eucalyptus.


Assuntos
Eucalyptus , Transcriptoma , Eucalyptus/genética , Eucalyptus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Madeira/metabolismo , Regulação da Expressão Gênica de Plantas
17.
BMC Genom Data ; 25(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166632

RESUMO

OBJECTIVES: Lasiodiplodia pseudotheobromae is an important fungal pathogen associated with die-back, canker and shoot blight in many plant hosts with a wide geographic distribution. The aim of our study was to provide high-quality genome assemblies and sequence annotation resources of L. pseudotheobromae, to facilitate future studies on the systematics, population genetics and genomics of the fungal pathogen L. pseudotheobromae. DATA DESCRIPTION: High-quality genomes of five L. pseudotheobromae isolates were sequenced based on Oxford Nanopore technology (ONT) and Illumina HiSeq sequencing platform. The total size of each assembly ranged from 43 Mb to 43.86 Mb and over 11,000 protein-coding genes were predicted from each genome. The proteins of predicted genes were annotated using multiple public databases, among the annotated protein-coding genes, more than 4,300 genes were predicted as potential virulence genes by the Pathogen Host Interactions (PHI) database. Moreover, the genome comparative analysis among L. pseudotheobromae and other closely related species revealed that 7,408 gene clusters were shared among them and 152 gene clusters unique to L. pseudotheobromae. This genome and associated datasets provided here will serve as a useful resource for further analyses of this fungal pathogen species.


Assuntos
Ascomicetos , Eucalyptus , Árvores/genética , Eucalyptus/genética , Genoma , Ascomicetos/genética
18.
Sci Rep ; 14(1): 2556, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297150

RESUMO

Relative gene expression analysis through RT-qPCR is an important molecular technique that helps understanding different molecular mechanisms, such as the plant defense response to insect pests. However, the use of RT-qPCR for gene expression analysis can be affected by factors that directly affect the reliability of the results. Among these factors, the appropriate choice of reference genes is crucial and can strongly impact RT-qPCR relative gene expression analyses, highlighting the importance in correctly choosing the most suitable genes for the success of the analysis. Thus, this study aimed to select and validate reference genes for relative gene expression studies through RT-qPCR in hybrids of Eucalyptus tereticornis × Eucalyptus camaldulensis (drought tolerant and susceptible to Leptocybe invasa) under conditions of inoculation by the Beauveria bassiana fungus and subsequent infestation by L. invasa. The expression level and stability of eleven candidate genes were evaluated. Stability was analyzed using the RefFinder tool, which integrates the geNorm, NormFinder, BestKeeper, and Delta-Ct algorithms. The selected reference genes were validated through the expression analysis of the transcriptional factor EcDREB2 (dehydration-responsive element-binding protein 2). For all treatments evaluated, EcPTB, EcPP2A-1, and EcEUC12 were the best reference genes. The triplets EcPTB/EcEUC12/EcUBP6, EcPP2A-1/EcEUC12/EcPTB, EcIDH/EcSAND/Ecα-TUB, EcPP2A-1/Ecα-TUB/EcPTB, and EcPP2A-1/EcUPL7/EcSAND were the best reference genes for the control plants, mother plants, plants inoculated with B. bassiana, plants infested with L. invasa, and plants inoculated with B. bassiana and subsequently infested with L. invasa, respectively. The best determined reference genes were used to normalize the RT-qPCR expression data for each experimental condition evaluated. The results emphasize the importance of this type of study to ensure the reliability of relative gene expression analyses. Furthermore, the findings of this study can be used as a basis for future research, comprising gene expression analysis of different eucalyptus metabolic pathways.


Assuntos
Beauveria , Eucalyptus , Vespas , Animais , Vespas/genética , Eucalyptus/genética , Eucalyptus/metabolismo , Beauveria/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
19.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38123502

RESUMO

Anthocyanins are flavonoid-like substances that play important roles in plants' adaptation to various environmental stresses. In this research, we discovered that cytokinin (CK) alone could effectively induce the anthocyanin biosynthesis in Eucalyptus and many other perennial woody plant species, but not in tobacco and Arabidopsis, suggesting a diverse role of CK in regulating anthocyanin biosynthesis in different species. Transcriptomic and metabolomic strategies were used to further clarify the specific role of CK in regulating anthocyanin biosynthesis in Eucalyptus. The results showed that 801 and 2241 genes were differentially regulated at 6 and 24 h, respectively, after CK treatment. Pathway analysis showed that most of the differentially expressed genes were categorized into pathways related to cellular metabolism or transport of metabolites, including amino acids and sugars. The metabolomic results well supported the transcriptome data, which showed that most of the differentially regulated metabolites were related to the metabolism of sugar, amino acids and flavonoids. Moreover, CK treatment significantly induced the accumulation of sucrose in the CK-treated leaves, while sugar starvation mimicked by either defoliation or shading treatment of the basal leaves significantly reduced the sugar increase of the CK-treated leaves and thus inhibited CK-induced anthocyanin biosynthesis. The results of in vitro experiment also suggested that CK-induced anthocyanin in Eucalyptus was sugar-dependent. Furthermore, we identified an early CK-responsive transcription factor MYB113 in Eucalyptus, the expression of which was significantly upregulated by CK treatment in Eucalyptus, but was inhibited in Arabidopsis. Importantly, the overexpression of EgrMYB113 in the Eucalyptus hairy roots was associated with significant anthocyanin accumulation and upregulation of most of the anthocyanin biosynthetic genes. In conclusion, our study demonstrates a key role of CK in the regulation of anthocyanin biosynthesis in Eucalyptus, providing a molecular basis for further understanding the regulatory mechanism and diversity of hormone-regulated anthocyanin biosynthesis in different plant species.


Assuntos
Arabidopsis , Eucalyptus , Antocianinas/metabolismo , Arabidopsis/genética , Eucalyptus/genética , Eucalyptus/metabolismo , Açúcares/metabolismo , Citocininas/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
BMC Plant Biol ; 23(1): 604, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030990

RESUMO

BACKGROUND: The WUSCHEL-related Homeobox (WOX) genes, which encode plant-specific homeobox (HB) transcription factors, play crucial roles in regulating plant growth and development. However, the functions of WOX genes are little known in Eucalyptus, one of the fastest-growing tree resources with considerable widespread cultivation worldwide. RESULTS: A total of nine WOX genes named EgWOX1-EgWOX9 were retrieved and designated from Eucalyptus grandis. From the three divided clades marked as Modern/WUS, Intermediate and Ancient, the largest group Modern/WUS (6 EgWOXs) contains a specific domain with 8 amino acids: TLQLFPLR. The collinearity, cis-regulatory elements, protein-protein interaction network and gene expression analysis reveal that the WUS proteins in E. grandis involve in regulating meristems development and regeneration. Furthermore, by externally adding of truncated peptides isolated from WUS specific domain, the transformation efficiency in E. urophylla × E. grandis DH32-29 was significant enhanced. The transcriptomics data further reveals that the use of small peptides activates metabolism pathways such as starch and sucrose metabolism, phenylpropanoid biosynthesis and flavonoid biosynthesis. CONCLUSIONS: Peptides isolated from WUS protein can be utilized to enhance the transformation efficiency in Eucalyptus, thereby contributing to the high-efficiency breeding of Eucalyptus.


Assuntos
Eucalyptus , Genes Homeobox , Eucalyptus/genética , Eucalyptus/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Melhoramento Vegetal , Peptídeos/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...