Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.149
Filtrar
1.
Luminescence ; 39(7): e4836, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023133

RESUMO

The near-infrared (NIR) down-conversion process for broadband sensitization has been studied in Eu2+-Nd3+ co-doped BaAl2O4. This material has a broad absorption band of 200-480 nm and can convert photons in the visible region into NIR photons. The NIR emission at 1064 nm, attributed to the Nd3+:4F3/2 → 4I11/2 transition, matches the bandgap of Si, allowing Si solar cells to utilize the solar spectrum better. The energy transfer (ET) process between Eu2+ and Nd3+ was demonstrated using photoluminescence spectra and luminescence decay curves, and Eu2+ may transfer energy to Nd3+ through the cooperative energy transfer (CET) to achieve the down-conversion process. The energy transfer efficiency (ETE) and theoretical quantum efficiency (QE) were 68.61% and 156.34%, respectively, when 4 mol% Nd3+ was introduced. The results indicate that BaAl2O4:Eu2+-Nd3+ can serve as a potential modulator of the solar spectrum and is expected to be applied to Si solar cells.


Assuntos
Európio , Raios Infravermelhos , Neodímio , Silício , Energia Solar , Európio/química , Silício/química , Neodímio/química , Luminescência , Transferência de Energia , Bário/química , Medições Luminescentes
2.
Inorg Chem ; 63(29): 13244-13252, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38981109

RESUMO

As a crucial biological gasotransmitter, hydrogen sulfide (H2S) plays important roles in many pathological and physiological processes. Highly selective and sensitive detection of H2S is significant for the precise diagnosis and evaluation of diverse diseases. Nevertheless, challenges remain in view of the interference of autofluorescence in organisms and the stronger reactivity of H2S itself. Herein, we report the design and synthesis of a novel H2S-responsive ß-diketonate-europium(III) complex-based probe, [Eu(DNB-Npketo)3(terpy)], for background-free time-gated luminescence (TGL) detection and imaging of H2S in autofluorescence-rich biological samples. The probe, consisting of a 2,4-dinitrobenzenesulfonyl (DNB) group coupled to a ß-diketonate-europium(III) complex, shows almost no luminescence owing to the existence of intramolecular photoinduced electron transfer. The cleavage of the DNB group by a H2S-triggered reaction results in the recovery of the long-lived luminescence of the Eu3+ complex, allowing the detection of H2S in complicated biological samples to be performed in TGL mode. The probe showed a fast response, high specificity, and high sensitivity toward H2S, which enabled it to be successfully used for the quantitative TGL detection of H2S in tissue homogenates of mouse organs. Additionally, the low cytotoxicity of the probe allowed it to be further used for the TGL imaging of H2S in living cells and mice under different stimuli. All of the results suggested the potential of the probe for the investigation and diagnosis of H2S-related diseases.


Assuntos
Complexos de Coordenação , Európio , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/análise , Animais , Camundongos , Humanos , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Európio/química , Medições Luminescentes , Imagem Óptica , Estrutura Molecular , Luminescência , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cetoácidos/química
3.
J Mater Chem B ; 12(29): 7153-7170, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38952270

RESUMO

Europium ions (Eu3+) are gaining attention in the field of regenerative medicine due to increasing evidence of their osteogenic properties. However, inflammatory and oxidative environments present in many bone diseases, such as osteoporosis or rheumatoid arthritis, are known to hinder this regenerative process. Herein, we describe a straightforward synthetic procedure to prepare Eu3+-tannic acid nanocomplexes (EuTA NCs) with modulable physicochemical characteristics, as well as antioxidant, anti-inflammatory, and osteogenic properties. EuTA NCs were rationally synthesized to present different contents of Eu3+ on their structure to evaluate the effect of the cation on the biological properties of the formulations. In all the cases, EuTA NCs were stable in distilled water at physiological pH, had a highly negative surface charge (ζ ≈ -25.4 mV), and controllable size (80 < Dh < 160 nm). In vitro antioxidant tests revealed that Eu3+ complexation did not significantly alter the total radical scavenging activity (RSA) of TA but enhanced its ability to scavenge H2O2 and ferrous ions, thus improving its overall antioxidant potential. At the cellular level, EuTA NCs reduced the instantaneous toxicity of high concentrations of free TA, resulting in better antioxidant (13.3% increase of RSA vs. TA) and anti-inflammatory responses (17.6% reduction of nitric oxide production vs. TA) on cultures of H2O2- and LPS-stimulated macrophages, respectively. Furthermore, the short-term treatment of osteoblasts with EuTA NCs was found to increase their alkaline phosphatase activity and their matrix mineralization capacity. Overall, this simple and tunable platform is a potential candidate to promote bone growth in complex environments by simultaneously targeting multiple pathophysiological mechanisms of disease.


Assuntos
Regeneração Óssea , Európio , Taninos , Európio/química , Európio/farmacologia , Regeneração Óssea/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Taninos/química , Taninos/farmacologia , Inflamação/tratamento farmacológico , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/síntese química , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Tamanho da Partícula , Propriedades de Superfície , Osteogênese/efeitos dos fármacos , Polifenóis
4.
J Environ Manage ; 362: 121303, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824885

RESUMO

Spent phosphor is an important secondary resource for extracting rare earth elements. Microwave absorption properties and enhanced extraction of Eu from blue phosphor by microwave alkali roasting were studied. Dielectric properties of alkali roasting system were measured by resonator perturbation method. Dielectric constant increases linearly from 250 °C until it reaches a peak at 400 °C. The dielectric loss reaches a higher value at 400-550 °C, due to the strong microwave absorption properties of molten alkali and roasted products. Effects of roasting temperature, roasting time and alkali addition amount on Eu leaching were investigated. The phosphor was completely decomposed into Eu2O3, BaCO3 and MgO at 400 °C. The alkaline decomposition process of phosphor is more consistent with diffusion control model with Eα being 28.9 kJ/mol. Effects of the main leaching conditions on Eu leaching were investigated. The leaching kinetic of Eu was in line with diffusion control model with Eα being 5.74 kJ/mol. The leaching rules of rare earths in the mixed phosphor were studied. The results showed that the presence of red and green phosphor affected the recovery of blue phosphor. The optimum process parameters of rare earth recovery in single blue phosphor and mixed phosphor were obtained, and the recovery of Eu were 97.81% and 94.80%, respectively. Microwave alkali roasting promoted the dissociation of phosphor and leaching of rare earths. The results can provide reference for the efficient and selective recovery of rare earths in phosphors.


Assuntos
Álcalis , Metais Terras Raras , Micro-Ondas , Metais Terras Raras/química , Álcalis/química , Európio/química , Reciclagem , Fósforo/química
5.
Biosensors (Basel) ; 14(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38920596

RESUMO

Olaquindox (OLA) and quinocetone (QCT) have been prohibited in aquatic products due to their significant toxicity and side effects. In this study, rapid and visual europium nanoparticle (EuNP)-based lateral flow strip biosensors (LFSBs) were developed for the simultaneous quantitative detection of OLA, QCT, and 3-methyl-quinoxaline-2-carboxylic acid (MQCA) in fish feed and tissue. The EuNP-LFSBs enabled sensitive detection for OLA, QCT, and MQCA with a limit of detection of 0.067, 0.017, and 0.099 ng/mL (R2 ≥ 0.9776) within 10 min. The average recovery of the EuNP-LFSBs was 95.13%, and relative standard deviations were below 9.38%. The method was verified by high-performance liquid chromatography (HPLC), and the test results were consistent. Therefore, the proposed LFSBs serve as a powerful tool to monitor quinoxalines in fish feeds and their residues in fish tissues.


Assuntos
Ração Animal , Antibacterianos , Técnicas Biossensoriais , Európio , Peixes , Quinoxalinas , Quinoxalinas/análise , Animais , Antibacterianos/análise , Ração Animal/análise , Nanopartículas , Cromatografia Líquida de Alta Pressão , Nanopartículas Metálicas
6.
Anal Chem ; 96(24): 9961-9968, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38838250

RESUMO

In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Európio , Géis , Medições Luminescentes , MicroRNAs , Európio/química , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , Ligantes , Géis/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Humanos
7.
Chemosphere ; 361: 142555, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851500

RESUMO

Easy synthesis of efficient, non-toxic photocatalysts is a target to expand their potential applications. In this research, the role of Eu3+ doping in the non-toxic, affordable, and easily prepared MgAl hydrotalcite-like compounds (HTlcs) was explored in order to prepare visible light semiconductors. Eu doped MgAl-HTlcs (MA-xEu) samples were prepared using a simple coprecipitation method (water, room temperature and atmospheric pressure) and europium was successfully incorporated into MgAl HTlc frameworks at various concentrations, with x (Eu3+/M3+ percentage) ranging from 2 to 15. Due to the higher ionic radius and lower polarizability of Eu3+ cation, its presence in the metal hydroxide layer induces slight structural distortions, which eventually affect the growth of the particles. The specific surface area also increases with the Eu content. Moreover, the presence of Eu3+ 4f energy levels in the electronic structure enables the absorption of visible light in the doped MA-xEu samples and contributes to efficient electron-hole separation. The microstructural and electronic changes induced by the insertion of Eu enable the preparation of visible light MgAl-based HTlcs photocatalysts for air purification purposes. Specifically, the optimal HTlc photocatalyst showed improved NOx removal efficiency, ∼ 51% (UV-Vis) and 39% (visible light irradiation, 420 nm), with excellent selectivity (> 96 %), stability (> 7 h), and enhanced release of •O2- radicals. Such results demonstrate a simple way to design photocatalytic HTlcs suitable for air purification technologies.


Assuntos
Hidróxido de Alumínio , Európio , Hidróxido de Magnésio , Óxidos de Nitrogênio , Oxirredução , Európio/química , Catálise , Hidróxido de Magnésio/química , Hidróxido de Alumínio/química , Óxidos de Nitrogênio/química , Processos Fotoquímicos , Luz , Poluentes Atmosféricos/química
8.
Luminescence ; 39(6): e4809, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890149

RESUMO

Utilizing the structure characteristic of KCaY (PO4)2 crystal, the site distribution of Eu2+ in KCaY (PO4)2:Eu phosphor coactivated with Eu2+ and Eu3+ ions is tuned. Upon 393-nm excitation, the as-prepared phosphor exhibits a broadband emission of Eu2+ peaked at ~ 475 nm and a typical red emission of Eu3+ with a strong 5D0-7F1 emission at ~ 591 nm. The luminescence color of the phosphor can be adjusted from blue to green, white, yellow, and red. The increasing concentration of Sr2+ and Eu2+ results in a blue shifting of Eu2+ emission. The increasing concentration of Eu3+ results in a red shifting of Eu2+ emission and an enhanced red emission of Eu3+. The luminescence behaviors of the phosphors are analyzed in terms of the site distribution of Eu2+ and Eu3+. A single-phase white light emitting was achieved in KCaY (PO4)2:Eu phosphor upon UV and NUV light excitation, indicating that the phosphor has potential application in white lighting.


Assuntos
Európio , Luminescência , Substâncias Luminescentes , Európio/química , Substâncias Luminescentes/química , Medições Luminescentes , Fosfatos/química
9.
Talanta ; 277: 126382, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852347

RESUMO

Owing to the adverse effects of oxytetracycline (OTC) residues on human health, it is of great importance to construct a rapid and effective strategy for OTC detection. Herein, we developed a dual-response fluorescence sensing platform based on molybdenum sulfide quantum dots (MoS2 QDs) and europium ions (Eu3+) for ratiometric detection of OTC. The MoS2 QDs, synthesized through an uncomplicated one-step hydrothermal approach, upon OTC integration into the MoS2 QDs/Eu3+ sensing system, exhibit a significant quenching of blue fluorescence due to the inner filter effect (IFE), simultaneously enhancing the distinct red emission of Eu3+ at 624 nm, a phenomenon attributed to the antenna effect (AE). This sensor demonstrates exceptional selectivity and sensitivity towards OTC, characterized by a linear detection range of 0.2-10 µM and a notably low detection limit of 2.21 nM. Furthermore, we achieved a visual semi-quantitative assessment of OTC through the discernible fluorescence color transition from blue to red under a 365 nm ultraviolet lamp. The practical applicability of this sensor was validated through the successful detection of OTC in milk and mutton samples, underscoring its potential as a robust tool for OTC monitoring in foodstuffs to safeguard food safety.


Assuntos
Európio , Corantes Fluorescentes , Leite , Molibdênio , Oxitetraciclina , Pontos Quânticos , Espectrometria de Fluorescência , Oxitetraciclina/análise , Leite/química , Pontos Quânticos/química , Molibdênio/química , Animais , Európio/química , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Dissulfetos/química , Contaminação de Alimentos/análise , Limite de Detecção , Fluorescência
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124610, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852306

RESUMO

Developing rapid tetracycline sensing system is of great significance to monitor the illegal addition to drugs and pollution to food and ecosystem. By loading covalent organic frameworks (COFs) with Eu3+, a new hybridized material (COF@Eu3+) was prepared for tetracycline determination. Based on the Schiff base reaction, the COFs were by synthesized through solvent evaporation in 30 min at room temperature. Thereafter, Eu3+ was modified into COFs to develop the COF@Eu3+ sensing platform by adsorption and coordination. In presence of tetracycline, tetracycline can displace water molecules and coordinate with Eu3+ through the antenna effect. As a result, the red fluorescence of Eu3+ was enhanced by tetracycline with green fluorescence of COF as a reference. The developed ratiometric fluorescence sensor exhibits a linear range of 0.1-20 µM for detecting tetracycline with a detection limit of 30 nM. Integrated with a smartphone, the rapid tetracycline detection can be realized in situ, which is potential for high-throughput screening of tetracycline contaminated samples. Furthermore, the COF@Eu3+ fluorescence sensor has been successfully applied to the detection of tetracycline in traditional Chinese medicine compound preparation with satisfied recoveries. Therefore, a smartphone-assisted device was successfully developed based on Eu3+-functionalized COF, which is an attractive candidate for further applications of fluorescence sensing and visual detection.


Assuntos
Európio , Limite de Detecção , Estruturas Metalorgânicas , Smartphone , Espectrometria de Fluorescência , Tetraciclina , Tetraciclina/análise , Európio/química , Espectrometria de Fluorescência/métodos , Estruturas Metalorgânicas/química , Fluorescência , Corantes Fluorescentes/química
11.
Food Chem ; 455: 139706, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824723

RESUMO

An organic-inorganic hybrid nanoprobe, namely LML-D-SBA@Eu3+-Gd3+, was constructed, with SBA-15 acting as the carrier material, and luminol and Eu3+ acting as fluorescence channels to achieve ratiometric signals that eliminate external interference (accurate detection). Gd3+ was used as a sensitizer to amplify the red emission of Eu3+ (ultrasensitive detection). In TCs detection, the luminol emission at 428 nm was quenched due to the photoinduced electron transfer mechanism, and the Eu3+ emission at 617 nm was sensitized due to the synergistic energy transfer from TCs and Gd3+ to Eu3+. The fluorescence intensity at 617 and 428 nm showed ratiometric changes as indicated by notable color changes from blue to red. The detection limits for TC and OTC were 0.21 and 0.08 ng/mL, respectively. To realize a facile, rapid, and cost-effective detection, we constructed a portable intelligent sensing platform based on smartphones, and it demonstrated great potential for on-site detection of TCs.


Assuntos
Antibacterianos , Európio , Luminol , Dióxido de Silício , Smartphone , Tetraciclina , Luminol/química , Dióxido de Silício/química , Európio/química , Antibacterianos/análise , Tetraciclina/análise , Tetraciclina/química , Gadolínio/química , Contaminação de Alimentos/análise , Limite de Detecção , Espectrometria de Fluorescência/métodos , Porosidade
12.
Environ Res ; 257: 119372, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852832

RESUMO

The reduction of carbon dioxide (CO2) and nitrogen (N2) to value-added products is a substantial area of research in the fields of sustainable chemistry and renewable energy that aims at reducing greenhouse gas emissions and the production of alternative fuels and chemicals. The current work deals with the synthesis of pyrochlore-type europium stannate (Eu2Sn2O7: EuSnO), tungsten disulfide (WS2:WS), and novel EuSnO/WS heterostructure by a simple and facile co-precipitation-aided hydrothermal method. Using different methods, the morphological and structural analyses of the prepared samples were characterized. It was confirmed that a heterostructure was formed between the cubic EuSnO and the layered WS. Synthesized materials were used for photocatalytic CO2 and N2 reduction under UV and visible light. The amount of CO and CH4 evolved due to CO2 reduction is high in EuSnO/WS (CO = 104, CH4 = 64 µmol h-1 g-1) compared to pure EuSnO (CO = 36, CH4 = 70 µmol h-1 g-1) and WS (CO = 22, CH4 = 1.8 µmol h-1 g-1) under visible light. The same trend was observed even in the N2 fixation reaction under visible light, and the amount of NH4+ produced was found to be 13, 26, and 41 µmol h-1 g-1 in the presence of WS, EuSnO and EuSnO/WS, respectively. Enhanced light-driven activity towards CO2 and N2 reduction reactions in EuSnO/WS is due to the efficient charge separation through the formation of type-II heterostructure, which is in part associated with photocurrent response, photoluminescence, and electrochemical impedence spectroscopic (EIS) results. The EuSnO/WS heterostructure's exceptional stability and reusability may pique the attention of pyrochlore-based composite materials in photocatalytic energy and environmental applications.


Assuntos
Dióxido de Carbono , Fixação de Nitrogênio , Dióxido de Carbono/química , Luz , Európio/química , Dissulfetos/química , Oxirredução , Tungstênio/química , Catálise , Compostos de Tungstênio/química
13.
ACS Nano ; 18(22): 14207-14217, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38767706

RESUMO

Abnormal secretion and dysrhythmias of cortisol (CORT) are associated with various diseases such as sleep disorders, depression, and chronic fatigue. Wearable devices are a cutting-edge technology for point-of-care detection and dynamic monitoring of CORT with inspiring convenience. Herein, we developed a minimally invasive skin-worn device with the advanced integration of both interstitial fluid (ISF) sampling and target molecule sensing for simultaneous detection of CORT via a microneedle-based sensor with high sensitivity, excellent efficiency, and outstanding reproducibility. In the microneedle patch, swellable hydrogel was employed as the adsorption matrix for ISF extraction. Meanwhile, europium metal-organic frameworks (Eu-MOF) wrapped in the matrix played a vital role in CORT recognition and quantitative analysis. The wearable and label-free Eu-MOF-loaded microneedle patch exhibited high sensitivity in CORT detection with the detection limit reaching 10-9 M and excellent selectivity. Molecular dynamics simulation-driven mechanism exploration revealed that the strong interface interaction promoted fluorescence quenching of Eu-MOF. Moreover, in vitro and in vivo investigation confirmed the feasibility and reliability of the sensing method, and excellent biocompatibility was validated. Overall, a sensitive approach based on the wearable Eu-MOF microneedle (MN) patch was established for the simultaneous detection of CORT via visible fluorescence quenching with exciting clinical-translational ability.


Assuntos
Hidrocortisona , Estruturas Metalorgânicas , Agulhas , Dispositivos Eletrônicos Vestíveis , Estruturas Metalorgânicas/química , Humanos , Hidrocortisona/análise , Animais , Európio/química , Técnicas Biossensoriais/instrumentação , Camundongos
14.
Int J Biol Macromol ; 271(Pt 2): 132529, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777010

RESUMO

The poor UV shielding property of PLA limit it further applications on food packaging. The rare-earth complex Eu(DBM)3phen converts absorbed ultraviolet (UV) light to red light, which inspires the development of new UV shielding materials. However, this complex has low photostability and decomposes easily under UV irradiation. Thus, we prepared a long-lasting rare-earth complex transluminant Eu(DBM)2(BP-2)phen by introducing BP-2 into Eu(DBM)3phen, and blended it with PLA to obtain PLA/Eu(DBM)2(BP-2)phen composite films. The test results showed that the complex could reduce the UV transmittance of PLA films by emitting luminescence and heat. The UV transmittance of the composite film with 0.5 % mass fraction decreased from 87.4 % to 7.7 %, compared to pure PLA films, and remained at 11.6 % after 12 days of UV aging. The film had long-lasting UV shielding performance, good transparency and mechanical properties. Finally, In the storage experiments of flaxseed oil, the P/E25 film effectively retarded the oxidation process of the oil.


Assuntos
Európio , Embalagem de Alimentos , Poliésteres , Raios Ultravioleta , Poliésteres/química , Európio/química , Embalagem de Alimentos/métodos , Óleo de Semente do Linho/química
15.
Food Chem ; 454: 139756, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797097

RESUMO

A high-performance fluorescent "turn-on" aptasensor (Eu-MOFs@SMZ-Apt) for sulfamethazine (SMZ) determination was designed using dual-emitting europium metal-organic frameworks (Eu-MOFs) as a signal transducer and an amplifier. Eu-MOFs featuring dual emission peaks (430 nm and 620 nm) were first prepared via a facile self-assembly strategy employing Eu (III) ions and 2-aminoterephthalic acid as precursors. The high-affinity aptamer was bonded with Eu-MOFs to form Eu-MOFs@SMZ-Apt through the amidation reaction. Benefiting from the integration of inherent virtues from Eu-MOFs and aptamer, the Eu-MOFs@SMZ-Apt-based sensor allowed sensitive and selective determination of SMZ with good linear relationships in a range of 1.4-40 ng mL-1 and a low detection line (0.379 ng mL-1). This sensor was successfully applied to the determination of trace SMZ in real samples with satisfactory recoveries (86.47-113.52%) and a relative standard deviation (<6.51). Consequently, the Eu-MOFs@SMZ-Apt ratiometric fluorescence sensor furnishes new possibilities for the accurate detection of various pollutants in food.


Assuntos
Aptâmeros de Nucleotídeos , Európio , Contaminação de Alimentos , Estruturas Metalorgânicas , Sulfametazina , Európio/química , Estruturas Metalorgânicas/química , Sulfametazina/análise , Sulfametazina/química , Contaminação de Alimentos/análise , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Fluorescência , Espectrometria de Fluorescência , Corantes Fluorescentes/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Animais
16.
Food Chem ; 453: 139652, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761737

RESUMO

Diclazuril (DIC) is a broad-spectrum anti-coccidiosis drug of the triazine class, widely used in poultry farming. The overuse of DIC may lead to its accumulation in animal bodies, which may enter the food chain and threaten human health. In this work, we fabricated a stable Eu3+-doped UiO-66 fluorescence sensor (EuUHIPA-30) for the sensitive detection of DIC. Among 20 veterinary drugs, the fluorescence of EuUHIPA-30 selectively responds to DIC, with a low detection limit (0.19 µM) and fast response (10 s). EuUHIPA-30 is recyclable and can detect DIC in chicken and eggs with good recoveries. Moreover, a smartphone-integrated paper-based sensor enables the instrument-free, rapid, visual, and intelligent detection of DIC in chickens and eggs. This work provides a promising candidate for practical fluorescent DIC sensing in animal-derived food to promote food safety.


Assuntos
Galinhas , Ovos , Európio , Contaminação de Alimentos , Estruturas Metalorgânicas , Nitrilas , Triazinas , Triazinas/análise , Animais , Ovos/análise , Nitrilas/química , Nitrilas/análise , Contaminação de Alimentos/análise , Estruturas Metalorgânicas/química , Európio/química , Limite de Detecção , Espectrometria de Fluorescência/métodos , Coccidiostáticos/análise
17.
Analyst ; 149(13): 3547-3554, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38767669

RESUMO

A novel nanocomposite, [Eu(BTD)3(DPBT)]-BSA@MnO2, is reported to serve as an effective nanoprobe for bimodal time-gated luminescence (TGL) and magnetic resonance (MR) imaging of H2O2in vitro and in vivo. The nanoprobe was fabricated by immobilizing visible-light-excitable Eu3+ complexes in bovine serum albumin (BSA)-coated lamellar MnO2 nanosheets. The TGL of the Eu3+ complex was effectively quenched by the MnO2 nanosheets. Upon exposure to H2O2, the MnO2 nanosheets underwent reduction to Mn2+, which simultaneously triggered rapid, selective and sensitive "turn-on" responses toward H2O2 in both TGL and MR detection modes. The presence of a protective "corona" formed by BSA enables the nanoprobe to withstand high concentrations of glutathione (GSH), a strong reducing agent of MnO2 nanosheets. This capability allows the nanoprobe to be utilized for detecting H2O2 in living biosamples. The combined utilization of TGL and MR detection modes enables the nanoprobe to image H2O2 across a wide range of resolutions, from the subcellular level to the whole body, without any depth limitations. The results obtained from these modes can be cross-validated, enhancing the accuracy of the detection. The capability of the nanoprobe was validated by TGL imaging of endogenous and exogenous H2O2 in live HeLa cells, as well as bimodal TGL-MR imaging of H2O2 in tumor-bearing mice. The research achievements suggest that the integration of luminescent lanthanide complexes with protein-coated MnO2 nanosheets offers a promising bimodal TGL-MR sensing platform for H2O2in vitro and in vivo.


Assuntos
Európio , Peróxido de Hidrogênio , Imageamento por Ressonância Magnética , Compostos de Manganês , Óxidos , Soroalbumina Bovina , Peróxido de Hidrogênio/química , Soroalbumina Bovina/química , Európio/química , Compostos de Manganês/química , Animais , Óxidos/química , Imageamento por Ressonância Magnética/métodos , Humanos , Camundongos , Células HeLa , Medições Luminescentes/métodos , Nanoestruturas/química , Bovinos , Luminescência , Nanocompostos/química , Complexos de Coordenação/química , Limite de Detecção
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124401, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703414

RESUMO

A transition metal coordination polymer (CP), [Cd(Hdpcp)]n (Cd-CP) was prepared based on 3-(2,4-dicarboxyphenyl)-6-carboxypyridine ligand (H3dpcp), and then its composite Eu@Cd-CP was synthesized by the post-modification through loading Eu3+ ions on Cd-CP. Eu@Cd-CP has outstanding fluorescence stability in aqueous solution with a wide range of pH. Furthermore, Eu@Cd-CP can distinguish sodium salicylate (SS) and sodium dehydroacetate (SA) in some food additives by quenching the characteristic fluorescence of Eu3+ ion. Eu@Cd-CP is the first known CP-based fluorescent probe for selective detection of SS and SA. In addition, the fluorescence mechanisms of discerning above analytes by Eu@Cd-CP have been thoroughly evaluated. It has found that synergistic effect of the dynamic process, photoinduced electron transfer (PET) process, energy absorption competition, and formation of Eu-O bonding interactions in sensing SA lead to the fluorescence quenching of Eu@Cd-CP. The fluorescence response mechanism of Eu@Cd-CP with SA is ascribed to the combination of the dynamic process, PET process, and energy absorption competition. A series of portable devices based on Eu@Cd-CP including fluorescence test strips, lamp beads, and composite films were developed to discern SS and SA via visual changes in luminescence color. This composite material can be potentially used as a multifunctional fluorescent probe for practical applications.


Assuntos
Európio , Corantes Fluorescentes , Aditivos Alimentares , Espectrometria de Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Európio/química , Aditivos Alimentares/análise , Polímeros/química , Concentração de Íons de Hidrogênio
19.
Biosens Bioelectron ; 258: 116356, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705073

RESUMO

In this work, the dual-ligand lanthanide metal-organic framework (MOF)-based electrochemiluminescence (ECL) sensor was constructed for the detection of miRNA-128 in glioblastoma (GBM) diagnosis. The luminescent Eu-MOF (EuBBN) was synthesized with terephthalic acid (BDC) and 2-amino terephthalic acid (BDC-NH2) as dual-ligand. Due to the antenna effect, EuBBN with conjugated-π structure exhibited strong luminescent signal and high quantum efficiency, which can be employed as ECL nanoprobe. Furthermore, the novel plasmonic CuS@Au heterostructure array has been prepared. The localized surface plasmon resonance coupling effect of the CuS@Au heterostructure array can amplify the ECL signal of EuBBN significantly. The EuBBN/CuS@Au heterostructure array-based sensing system has been prepared for the detection of miRNA-128 with a wide linear range from 1 fM to 1 nM and a detection limit of 0.24 fM. Finally, miRNA-128 in the clinic GBM tissue sample has been analysis for the distinguish of tumor grade successfully. The results demonstrated that the dual-ligand MOF/CuS@Au heterostructure array-based ECL sensor can provide important support for the development of GBM diagnosis.


Assuntos
Técnicas Biossensoriais , Európio , Glioblastoma , Ouro , Estruturas Metalorgânicas , MicroRNAs , MicroRNAs/análise , Glioblastoma/diagnóstico , Humanos , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Ouro/química , Európio/química , Limite de Detecção , Medições Luminescentes/métodos , Ligantes , Técnicas Eletroquímicas/métodos , Neoplasias Encefálicas/diagnóstico , Ácidos Ftálicos/química , Nanopartículas Metálicas/química , Cobre/química
20.
Talanta ; 276: 126200, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735243

RESUMO

Herein, a dual-emission Eu metal-organic framework (Eu-MOF) is prepared and used as the ratiometric fluorescence probe for ultrasensitive detection of aminoglycoside antibiotics (AGs). Due to the strong hydrogen bond interactions between AGs and Eu-MOF, the blue emission is enhanced while the red emission has little fluctuation in Eu-MOF with the addition of AGs, thus a good linear relationship with the logarithm of AGs concentrations from 0.001 to 100 µg/mL can be established for quantitative analysis. Good sensitivity with the detection limit of 0.33 ng/mL for apramycin, 0.32 ng/mL for amikacin and 0.30 ng/mL for kanamycin is achieved. The proposed assay demonstrates good selectivity and applicability for determination of AGs in real milk and honey samples. The Eu-MOF materials are further fabricated as fluorescent test papers for facile visual detection. The as-established ratio fluorescence platform offers a portable and economical way for rapid monitoring AGs residues in complex food samples.


Assuntos
Aminoglicosídeos , Corantes Fluorescentes , Contaminação de Alimentos , Mel , Estruturas Metalorgânicas , Leite , Espectrometria de Fluorescência , Estruturas Metalorgânicas/química , Leite/química , Mel/análise , Corantes Fluorescentes/química , Aminoglicosídeos/análise , Aminoglicosídeos/química , Contaminação de Alimentos/análise , Espectrometria de Fluorescência/métodos , Európio/química , Animais , Antibacterianos/análise , Ligantes , Limite de Detecção , Análise de Alimentos/métodos , Canamicina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...