Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 13(8): 1232-1244, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35312284

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder. Pathologically, the disease is characterized by the deposition of amyloid beta (Aß) plaques and the presence of neurofibrillary tangles. These drive microglia neuroinflammation and consequent neurodegeneration. While the means to affect Aß plaque accumulation pharmacologically was achieved, how it affects disease outcomes remains uncertain. Cerium oxide (CeO2) reduces Aß plaques, oxidative stress, inflammation, and AD signs and symptoms. In particular, CeO2 nanoparticles (CeO2NPs) induce free-radical-scavenging and cell protective intracellular signaling. This can ameliorate the pathobiology of an AD-affected brain. To investigate whether CeO2NPs affect microglia neurotoxic responses, a novel formulation of europium-doped CeO2NPs (EuCeO2NPs) was synthesized. We then tested EuCeO2NPs for its ability to generate cellular immune homeostasis in AD models. EuCeO2NPs attenuated microglia BV2 inflammatory activities after Aß1-42 exposure by increasing the cells' phagocytic and Aß degradation activities. These were associated with increases in the expression of the CD36 scavenger receptor. EuCeO2NPs facilitated Aß endolysosomal trafficking and abrogated microglial inflammatory responses. We posit that EuCeO2NPs may be developed as an AD immunomodulator.


Assuntos
Doença de Alzheimer , Nanopartículas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Cério , Európio/metabolismo , Homeostase , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/metabolismo
2.
J Mater Chem B ; 10(2): 247-261, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34878486

RESUMO

The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle-cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.


Assuntos
Corantes Fluorescentes/química , Pontos Quânticos/química , Animais , Európio/química , Európio/metabolismo , Európio/toxicidade , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/toxicidade , Manganês/química , Manganês/metabolismo , Manganês/toxicidade , Camundongos , Microscopia de Fluorescência , Pontos Quânticos/metabolismo , Pontos Quânticos/toxicidade , Células RAW 264.7 , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Compostos de Selênio/toxicidade , Sulfetos/química , Sulfetos/metabolismo , Sulfetos/toxicidade , Compostos de Zinco/química , Compostos de Zinco/metabolismo , Compostos de Zinco/toxicidade
3.
Org Biomol Chem ; 20(3): 596-605, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34951618

RESUMO

Sulfotransferases constitute a ubiquitous class of enzymes which are poorly understood due to the lack of a convenient tool for screening their activity. These enzymes use the anion PAPS (adenosine-3'-phosphate-5'-phosphosulfate) as a donor for a broad range of acceptor substrates, including carbohydrates, producing sulfated compounds and PAP (adenosine-3',5'-diphosphate) as a side product. We present a europium(III)-based probe that binds reversibly to both PAPS and PAP, producing a larger luminescence enhancement with the latter anion. We exploit this greater emission enhancement with PAP to demonstrate the first direct real-time assay of a heparan sulfate sulfotransferase using a multi-well plate format. The selective response of our probe towards PAP over structurally similar nucleoside phosphate anions, and over other anions, is investigated and discussed. This work opens the possibility of investigating more fully the roles played by this enzyme class in health and disease, including operationally simple inhibitor screening.


Assuntos
Complexos de Coordenação/metabolismo , Európio/metabolismo , Fosfoadenosina Fosfossulfato/metabolismo , Sulfotransferases/metabolismo , Ânions/química , Ânions/metabolismo , Cátions/química , Cátions/metabolismo , Complexos de Coordenação/química , Európio/química , Estrutura Molecular , Fosfoadenosina Fosfossulfato/química , Sulfotransferases/química , Fatores de Tempo
4.
Metallomics ; 13(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34694395

RESUMO

Europium is a lanthanide metal that is highly valued in optoelectronics. Even though europium is used in many commercial products, its toxicological profile has only been partially characterized, with most studies focusing on identifying lethal doses in different systems or bioaccumulation in vivo. This paper describes a genome-wide toxicogenomic study of europium in Saccharomyces cerevisiae, which shares many biological functions with humans. By using a multidimensional approach and functional and network analyses, we have identified a group of genes and proteins associated with the yeast responses to ameliorate metal toxicity, which include metal discharge paths through vesicle-mediated transport, paths to regulate biologically relevant cations, and processes to reduce metal-induced stress. Furthermore, the analyses indicated that europium promotes yeast toxicity by disrupting the function of chaperones and cochaperones, which have metal-binding sites. Several of the genes and proteins highlighted in our study have human orthologues, suggesting they may participate in europium-induced toxicity in humans. By identifying the endogenous targets of europium as well as the already existing paths that can decrease its toxicity, we can determine specific genes and proteins that may help to develop future therapeutic strategies.


Assuntos
Európio/toxicidade , Genoma Fúngico , Saccharomyces cerevisiae/efeitos dos fármacos , Európio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Toxicogenética
5.
J Agric Food Chem ; 68(36): 9664-9672, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786836

RESUMO

Designing an effective and simple detection method to quantify glyphosate (GLY) herbicide is desirable. Current chromatography-mass spectrometry and electrochemical methods can be used for this purpose, but these methods are difficult to be made portable and need high-cost equipment. Here, we evaluate a luminescent ß-diketonate-Eu-ethylenediaminetetraacetic acid complex for GLY quantification in aqueous media on the basis of the luminescent quenching process. This complex successfully measured GLY at concentrations ranging from 5 × 10-7 to 10-5 mol L-1. Theoretical methods (LUMPAC) are also performed to identify the complex most probable structure in solution. We also demonstrate that the metal-organic frameworks HKUST-1 and IRMOF-3, easily synthesized, effectively adsorb GLY in water in about 30 min of contact.


Assuntos
Európio/metabolismo , Glicina/análogos & derivados , Herbicidas/metabolismo , Estruturas Metalorgânicas/química , Compostos Organometálicos/química , Adsorção , Európio/química , Glicina/química , Glicina/metabolismo , Herbicidas/química , Luminescência , Espectrometria de Massas , Poluentes da Água/química , Poluentes da Água/metabolismo , Glifosato
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 118014, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31923791

RESUMO

Eu(III) 2-{4-[(2-oxocyclopentyl)methyl]phenyl}propanoic acid complex (Eu-LPF), a novel low-toxic luminescent material based on energy transfer between the LPF ligand and Eu3+ ion, was synthesized and characterized by means of elemental analysis, thermogravimetric analyses, and FT-IR spectra. The spectroscopic properties of Eu-LPF were studied using UV-vis absorption spectroscopy and steady/transient state luminescence spectroscopy. Furthermore, the cytotoxicity of Eu-LPF on MCF-7 cells was investigated by MTT assay and flow cytometry. Its biocompatibility and utilization for cell imaging were studied as well. The results showed that Eu-LPF exhibited favorable luminescence properties, low toxicity and good biocompatibility, which endowed Eu-LPF with a potential capability for bioimaging and optical detection.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Neoplasias da Mama/patologia , Európio/metabolismo , Luminescência , Substâncias Luminescentes/metabolismo , Imagem Molecular/métodos , Fenilpropionatos/metabolismo , Anti-Inflamatórios não Esteroides/química , Apoptose , Neoplasias da Mama/metabolismo , Ciclo Celular , Proliferação de Células , Európio/química , Feminino , Humanos , Ligantes , Substâncias Luminescentes/química , Fenilpropionatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células Tumorais Cultivadas
7.
J Trace Elem Med Biol ; 58: 126432, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31778963

RESUMO

BACKGROUND: The rare earth elements (REE) are non-essential elements for plants. They stimulate plant growth at low doses, but at high levels are phytotoxic. There are differences in concentrations of REE in various organs of the same plant species, but the normalized REE patterns can be very similar in samples of the same species collected in different locations. Here we compare normalized REE curves in above-ground samples of Juncus effusus L. (common rush, soft rush) collected from sites with different land-use types. METHODS: The concentrations of rare earth elements were measured in 55 shoot samples of J. effusus L. The samples were collected from 15 sampling sites located in the Holy Cross Mts., south-central Poland and analyzed with the use of inductively coupled plasma mass spectrometry (ICP-MS). The results were normalized to the North American Shale Composite and anomalies of different elements were calculated. RESULTS: Total REE concentrations varied from 0.028 mg/kg to 2.7 mg/kg. The samples were enriched in the light REE (from La to Eu) with the highest concentrations of La and Ce. The North American Shale Composite (NASC)-normalized REE curves were roughly similar in all samples except for two samples collected in the acid mine drainageaffected areas. CONCLUSION: All samples showed positive europium anomalies in NASC-normalized REE concentration patterns. The most probable explanation of this is that the uptake and translocation of Eu in J. effusus (and possibly in other wetland plants) is caused by a short-term decrease of the redox potential in a rhizosphere favoring reduction of Eu3+ to Eu2+ and thus enhancing Eu mobility in the soil-plant environment.


Assuntos
Európio/metabolismo , Brotos de Planta/metabolismo , Poaceae/metabolismo , Geografia , Sedimentos Geológicos/química , Líquens/metabolismo , Polônia
8.
Sci Rep ; 9(1): 14339, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586093

RESUMO

The biorecovery of europium (Eu) from primary (mineral deposits) and secondary (mining wastes) resources is of interest due to its remarkable luminescence properties, important for modern technological applications. In this study, we explored the tolerance levels, reduction and intracellular bioaccumulation of Eu by a site-specific bacterium, Clostridium sp. 2611 isolated from Phalaborwa carbonatite complex. Clostridium sp. 2611 was able to grow in minimal medium containing 0.5 mM Eu3+. SEM-EDX analysis confirmed an association between Eu precipitates and the bacterium, while TEM-EDX analysis indicated intracellular accumulation of Eu. According to the HR-XPS analysis, the bacterium was able to reduce Eu3+ to Eu2+ under growth and non-growth conditions. Preliminary protein characterization seems to indicate that a cytoplasmic pyruvate oxidoreductase is responsible for Eu bioreduction. These findings suggest the bioreduction of Eu3+ by Clostridium sp. as a resistance mechanism, can be exploited for the biorecovery of this metal.


Assuntos
Bioacumulação , Clostridium/metabolismo , Európio/metabolismo , Microbiologia do Solo , Anaerobiose , Clostridium/química , Clostridium/isolamento & purificação , Európio/química , Microbiologia Industrial , Mineração , Oxirredução , Solo/química
9.
Environ Sci Pollut Res Int ; 26(9): 9352-9364, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30721439

RESUMO

In addition to geological, geochemical, and geophysical aspects, also, microbial aspects have to be taken into account when considering the final storage of high-level radioactive waste in a deep geological repository. Rock salt is a potential host rock formation for such a repository. One indigenous microorganism, that is, common in rock salt, is the halophilic archaeon Halobacterium noricense DSM15987T, which was used in our study to investigate its interactions with the trivalent actinide curium and its inactive analogue europium as a function of time and concentration. Time-resolved laser-induced fluorescence spectroscopy was applied to characterize formed species in the micromolar europium concentration range. An extended evaluation of the data with parallel factor analysis revealed the association of Eu(III) to a phosphate compound released by the cells (F2/F1 ratio, 2.50) and a solid phosphate species (F2/F1 ratio, 1.80). The association with an aqueous phosphate species and a solid phosphate species was proven with site-selective TRLFS. Experiments with Cm(III) in the nanomolar concentration range showed a time- and pCH+-dependent species distribution. These species were characterized by red-shifted emission maxima, 600-602 nm, in comparison to the free Cm(III) aqueous ion, 593.8 nm. After 24 h, 40% of the luminescence intensity was measured on the cells corresponding to 0.18 µg Cm(III)/gDBM. Our results demonstrate that Halobacterium noricense DSM15987T interacts with Eu(III) by the formation of phosphate species, whereas for Cm(III), a complexation with carboxylic functional groups was also observed.


Assuntos
Archaea/fisiologia , Cúrio/metabolismo , Európio/metabolismo , Resíduos Radioativos , Archaea/metabolismo , Európio/química , Lasers , Tolerância ao Sal , Espectrometria de Fluorescência/métodos
10.
Chempluschem ; 84(12): 1796-1804, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31943861

RESUMO

This study investigates the significantly different luminescent and chiroptical properties of tetracycline (TC) when coordinated to Eu(III). The approach involves understanding the 1) speciation of TC and 2) conformation and species formed between Eu(III) and TC in a ratio of 1 : 1 in a dimethylformamide (DMF) solution and as a function of the pH value. By identifying the conformational changes of the various 1 : 1 Eu(III) : TC species, the results from this study explain information on the local microenvironment about the Eu(III) metal center. In particular, 5 D0 ←7 F0 Eu(III) laser excitation spectroscopy was employed to distinguish the different types of species found in solution in order to understand the interaction between Eu(III) and TC. On the other hand, circularly polarized luminescence (CPL) spectroscopy was used to understand the structural changes within the 1 : 1 Eu(III) : TC complex that could be related to the chirality of the Eu(III)-containing species. The CPL spectrum serves as a "fingerprint" to indicate the conformational changes within the 1 : 1 Eu(III) : TC complex as a result of the chiroptical signal arising from the various Eu(III) : TC species.


Assuntos
Európio/química , Luminescência , Tetraciclina/química , Dicroísmo Circular/métodos , Európio/metabolismo , Medições Luminescentes/métodos , Conformação Molecular , Rotação Ocular , Soluções , Estereoisomerismo , Tetraciclina/metabolismo
11.
Metallomics ; 10(1): 169-179, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29292464

RESUMO

Zinc is an essential trace element presenting in particularly high concentration in the brain. In some regions, e.g. lateral amygdala, subiculum and hippocampus, rapidly-exchangeable zinc may transiently reach even up to 600 µM. To explore the possible roles of high-concentration Zn2+ in regulating the blood-brain barrier (BBB), we investigated the effects of Zn2+ on the functions and structures of the tight junction (TJ) with an in vitro model of a Madin-Darby canine kidney (MDCK) cell monolayer. The experimental results indicated that high concentrations (>200 µM) of Zn2+ can affect the TJ integrity in a polarized manner. Basolateral addition of Zn2+ led to reversible TJ opening with pore paths of r ∼ 2 nm or more depending on Zn2+ concentration. The efflux/influx ratios of different sized probes were found to be ∼4.6 for FD4 (MW 4000) and ∼1.8 for Eu-DTPA (MW 560), suggesting that the Zn2+-induced paracelluar channels favour efflux especially for macromolecules. Further mechanistic studies revealed that the elevated intracellular Zn2+ taken from the basolateral side can increase phosphorylation of glycogen synthase kinase (GSK) 3ß, primarily due to the inhibition of calcineurin (CaN), thus resulting in the elevation of the snail transcriptional repressors. Subsequently, Zn2+ can cause the down-regulation of claudin-1, breakage of occludin and ZO-1 rings, and collapse of basolateral F-actin structures. These overall factors result in the formation of a trumpet-like paracellular channel, which allows asymmetric solute permeation. The ERK1/2 and JNK1/2 pathways may also be involved in the Zn2+-induced TJ opening process, while the activation of matrix metalloproteinase was not observed. Our results may suggest a potential role of zinc in regulation of BBB permeability associated with brain clearance of metabolites through the glymphatic system.


Assuntos
Barreira Hematoencefálica , Regulação da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais , Junções Íntimas/fisiologia , Zinco/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/metabolismo , Cães , Európio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Madin Darby de Rim Canino , Ácido Pentético/metabolismo , Fosforilação , Fatores de Transcrição da Família Snail/metabolismo , Junções Íntimas/efeitos dos fármacos
12.
Chemosphere ; 196: 135-144, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29294427

RESUMO

This study investigated the interaction of inorganic aqueous Eu(III), Pb(II), and U(VI) with Paramecium sp., a representative single-celled protozoan that lives in freshwater. Living and prekilled Paramecium cells were tested. The prekilled cells were killed with a fixative. After 24 h exposure of the cells to inorganic aqueous solutions containing Eu(III) or U(VI), analyses by microparticle-induced X-ray emission with a focused beam (<1 µm) did not detect Eu and U in the living cells, whereas Eu and U were detected in the prekilled cells. Size exclusion chromatography coupled with on-line ultraviolet-visible detection and elemental detection by inductively coupled plasma mass spectrometry of the aqueous phases collected after the living cell experiments revealed that a fraction of the Eu, Pb, and U in the aqueous phase bound to a large (ca. 250 kDa) Paramecium biomolecule and formed a metal-organic complex. The characteristics of the biomolecule were consistent with those of the soluble glycoproteins covering the surfaces of Paramecium cells. These results show that Paramecium cells transform inorganic aqueous Eu, Pb, and U to organic complexes. This paper discusses the relation between this novel complexation and the sorption of these heavy elements on Paramecium cells.


Assuntos
Európio/metabolismo , Glicoproteínas/metabolismo , Chumbo/metabolismo , Paramecium/metabolismo , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Adsorção , Cromatografia em Gel , Complexos de Coordenação/análise , Água Doce/química , Concentração de Íons de Hidrogênio
13.
ACS Nano ; 11(12): 12210-12218, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29182310

RESUMO

Hydrogen peroxide (H2O2) is an abundant molecule associated with biological functions and reacts with natural enzymes, such as catalase. Even though direct H2O2 measurement can be used to diagnose pathological conditions, such as infection and inflammation, H2O2 quantification further enables the detection of disease biomarkers in enzyme-linked assays (e.g., ELISA) in which enzymatic reactions may generate or consume H2O2. Such a quantification is often measured optically with organic dyes in biological media that suffer, however, from poor stability. Currently, the optical H2O2 biosensing without organic-dyes in biological media and at low, submicromolar, concentrations has yet to be achieved. Herein, we rationally design biomimetic artificial enzymes based on antioxidant CeO2 nanoparticles that become luminescent upon their Eu3+ doping. We vary systematically their diameter from 4 to 16 nm and study their catalase-mimetic antioxidant activity, manifested as catalytic H2O2 decomposition in aqueous solutions, revealing a strong nanoparticle surface area dependency. The interaction with H2O2 influences distinctly the particle luminescence rendering them highly sensitive H2O2 biosensors down to 0.15 µM (5.2 ppb) in solutions for biological assays. Our results link two, so far, unrelated research domains, the CeO2 nanoparticle antioxidant activity and luminescence by rare-earth doping. When these enzyme-mimetic nanoparticles are coupled with alcohol oxidase, biosensing can be extended to ethanol exemplifying how their detection potential can be broadened to additional biologically relevant metabolites. The enzyme-mimetic nanomaterial developed here could serve as a starting point of sophisticated in vitro assays toward the highly sensitive detection of disease biomarkers.


Assuntos
Oxirredutases do Álcool/química , Antioxidantes/química , Técnicas Biossensoriais , Catalase/química , Peróxido de Hidrogênio/análise , Substâncias Luminescentes/química , Nanopartículas/química , Oxirredutases do Álcool/metabolismo , Antioxidantes/metabolismo , Biocatálise , Catalase/metabolismo , Cério/química , Cério/metabolismo , Európio/química , Európio/metabolismo , Substâncias Luminescentes/metabolismo , Nanopartículas/metabolismo
14.
Anal Sci ; 33(9): 989-991, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890499

RESUMO

Luminescent europium-doped layered titanates (Eu-TiOx) were synthesized and complexed with horseradish peroxidase (HRP) and glucose oxidase (GOx). The emission of a resultant Eu-TiOx/HRP/GOx complex decreased upon the addition of glucose in the presence of guaiacol. The emission decrease was dependent on the concentrations of glucose, and the detection limit for glucose was 3.1 µM. The proposed system would be promising as a new detection method for glucose.


Assuntos
Técnicas Biossensoriais , Európio/química , Glucose Oxidase/metabolismo , Glucose/análise , Peroxidase do Rábano Silvestre/metabolismo , Titânio/química , Európio/metabolismo , Fluorescência , Glucose Oxidase/química , Peroxidase do Rábano Silvestre/química , Espectrometria de Fluorescência , Fatores de Tempo , Titânio/metabolismo
15.
Bioconjug Chem ; 28(7): 1834-1841, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28482148

RESUMO

The use of phage display to identify peptides with an ability to bind and synthesize Eu2O3 nanoparticles is demonstrated in this report. This is the first report of modified phages specifically binding a lanthanide. The peptides exposed on virions revealed very strong binding to Eu2O3 nanoparticles and the ability to catalyze Eu2O3 nanoparticles' formation from Eu(OH)3 and Eu(NO3)3 solutions. The luminescence emission spectrum of Eu3+ ions indicated that these ions existed mostly in sites deviated from the inversion symmetry in crystalline Eu2O3 aggregates and gelatinous Eu(OH)3 precipitate. The ability of phage-displayed peptides to catalyze formation of Eu2O3 nanoparticles provides a useful tool for a low-cost and effective synthesis of lanthanide nanoparticles, which serve as attractive biomedical sensors or fluorescent labels, among their other applications.


Assuntos
Bacteriófagos/metabolismo , Európio/química , Nanopartículas/química , Biblioteca de Peptídeos , Catálise , Európio/metabolismo , Hidróxidos , Nanopartículas/metabolismo , Nitratos , Peptídeos , Vírion/química
16.
Nanomedicine ; 13(3): 843-852, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27884640

RESUMO

Biodegradable zinc oxide nanoparticles (ZnO NPs) are considered promising materials for future biomedical applications. To fulfil this potential, biodistribution and elimination patterns of ZnO NPs in the living organism need to be resolved. In order to investigate gastrointestinal absorption of ZnO NPs and their intra-organism distribution, water suspension of ZnO or fluorescent ZnO:Eu (Europium-doped zinc oxide) NPs (10mg/ml; 0.3ml/mouse) was alimentary-administered (IG: intra-gastric) to adult mice. Internal organs collected at key time-points after IG were evaluated by AAS for Zn concentration and analysed by cytometric techniques. We found that Zn-based NPs were readily absorbed and distributed (3 h post IG) in the nanoparticle form throughout the organism. Results suggest, that liver and kidneys were key organs responsible for NPs elimination, while accumulation was observed in the spleen and adipose tissues. We also showed that ZnO/ZnO:Eu NPs were able to cross majority of biological barriers in the organism (including blood-brain-barrier).


Assuntos
Európio/metabolismo , Európio/farmacocinética , Nanopartículas/análise , Nanopartículas/metabolismo , Óxido de Zinco/metabolismo , Óxido de Zinco/farmacocinética , Animais , Barreira Hematoencefálica/metabolismo , Sistema Digestório/metabolismo , Európio/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacocinética , Absorção Gastrointestinal , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Distribuição Tecidual , Óxido de Zinco/administração & dosagem
17.
AIDS Res Hum Retroviruses ; 32(6): 612-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26978478

RESUMO

Accurate detection and quantification of HIV-1 group O viruses have been challenging for currently available HIV assays. We have developed a novel time-resolved fluorescence (TRF) europium nanoparticle immunoassay for HIV-1 group O detection using a conventional microplate enzyme-linked immunosorbent assay (ELISA) and a microchip platform. We screened several antibodies for optimal reactivity with several HIV-1 group O strains and identified antibodies that can detect all the strains of HIV-1 group O that were available for testing. The antibodies were used to develop a conventional ELISA format assay and an in-house developed europium nanoparticle-based assay for sensitivity. The method was evaluated on both microwell plate and microchip platforms. We identified two specific and sensitive antibodies among the six we screened. The antibodies, C65691 and ANT-152, were able to quantify 15 and detect all 17 group O viruses, respectively, as they were broadly cross-reactive with all HIV-1 group O strains and yielded better signals compared with other antibodies. We have developed a sensitive assay that reflects the actual viral load in group O samples by using an appropriate combination of p24 antibodies that enhance group O detection and a highly sensitive TRF-based europium nanoparticle for detection. The combination of ANT-152 and C65690M in the ratio 3:1 was able to give significantly higher signals in our europium-based assay compared with using any single antibody.


Assuntos
Európio/metabolismo , Fluorometria/métodos , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Imunoensaio/métodos , Nanopartículas/metabolismo , Carga Viral/métodos , Humanos , Sensibilidade e Especificidade
18.
Dalton Trans ; 45(21): 8724-33, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-26866402

RESUMO

The complexation of Eu(iii) and Cm(iii) with the protein α-amylase (Amy), a major enzyme in saliva and pancreatic juice, was investigated over wide ranges of pH and concentration at both ambient and physiological temperatures. Macroscopic sorption experiments demonstrated a strong and fast binding of Eu(iii) to Amy between pH 5 and 8. The protein provides three independent, non-cooperative binding sites for Eu(iii). The overall association constant of these three binding sites on the protein was calculated to be log K = 6.4 ± 0.1 at ambient temperature. With potentiometric titration, the averaged deprotonation constant of the carboxyl groups (the aspartic and glutamic acid residues) of Amy was determined to be pKa = 5.23 ± 0.14 at 25 °C and 5.11 ± 0.24 at 37 °C. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) revealed two different species for both Eu(iii) and Cm(iii) with Amy. In the case of the Eu(iii) species, the stability constants were determined to be log ß11 = 4.7 ± 0.2 and log ß13 = 12.0 ± 0.4 for Eu : Amy = 1 : 1 and 1 : 3 complexes, respectively, whereas the values for the respective Cm(iii) species were log ß11 = 4.8 ± 0.1 and log ß13 = 12.1 ± 0.1. Furthermore, the obtained stability constants were extrapolated to infinite dilution to make our data compatible with the existing thermodynamic database.


Assuntos
Cúrio/metabolismo , Európio/metabolismo , alfa-Amilases/metabolismo , Adsorção , Cúrio/química , Európio/química , Concentração de Íons de Hidrogênio , Cinética , Potenciometria , Ligação Proteica , Espectrometria de Fluorescência , Temperatura , alfa-Amilases/química
19.
Sci Rep ; 5: 13177, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26346817

RESUMO

The biodistribution of biodegradable nanoparticles can be difficult to quantify. We report a method using time resolved fluorescence (TRF) from a lanthanide chelate to minimize background autofluorescence and maximize the signal to noise ratio to detect biodegradable nanoparticle distribution in mice. Specifically, antenna chelates containing europium were entrapped within nanoparticles composed of polylactic acid-polyethylene glycol diblock copolymers. Tissue accumulation of nanoparticles following intravenous injection was quantified in mice. The TRF of the nanoparticles was found to diminish as a second order function in the presence of serum and tissue compositions interfered with the europium signal. Both phenomena were corrected by linearization of the signal function and calculation of tissue-specific interference, respectively. Overall, the method is simple and robust with a detection limit five times greater than standard fluorescent probes.


Assuntos
Materiais Biocompatíveis , Quelantes/metabolismo , Európio/metabolismo , Nanopartículas , Animais , Materiais Biocompatíveis/química , Lactatos , Camundongos , Nanopartículas/química , Polietilenoglicóis , Espectrometria de Fluorescência/métodos , Distribuição Tecidual
20.
Chembiochem ; 16(14): 1993-6, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26266490

RESUMO

Two reaction systems based on vanadium nitrogenase were previously shown to reduce CO2 to hydrocarbons: 1) an enzyme-based system that used both components of V nitrogenase for ATP-dependent reduction of CO2 to ≤C2 hydrocarbons; and 2) a cofactor-based system that employed SmI2 to supply electrons to the isolated V cluster for an ATP-independent reduction of CO2 to ≤C3 hydrocarbons. Here, we report ATP-independent reduction of CO2 to hydrocarbons by a reaction system comprising Eu(II) DTPA and the VFe protein of V nitrogenase. Combining features of both enzyme- and cofactor-based systems, this system exhibits improved C-C coupling and a broader product profile of ≤C4 hydrocarbons. The C-C coupling does not employ CO2 -derived CO, and it is significantly enhanced in D2 O. These observations afford initial insights into the characteristics of this unique reaction and provide a potential template for future design of catalysts to recycle the greenhouse gas CO2 into useful products.


Assuntos
Azotobacter vinelandii/enzimologia , Dióxido de Carbono/metabolismo , Hidrocarbonetos/metabolismo , Nitrogenase/metabolismo , Azotobacter vinelandii/química , Azotobacter vinelandii/metabolismo , Monóxido de Carbono/metabolismo , Európio/metabolismo , Hidrocarbonetos/química , Modelos Moleculares , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...