Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 225, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39135122

RESUMO

BACKGROUND: Long non-coding RNAs (LncRNAs) have been implicated as critical regulators of cancer tumorigenesis and progression. However, their functions and molecular mechanisms in colorectal cancer (CRC) still remain to be further elucidated. METHODS: LINC00460 was identified by differential analysis between human CRC and normal tissues and verified by in situ hybridization (ISH) and qRT-PCR. We investigated the biological functions of LINC00460 in CRC by in vitro and in vivo experiments. We predicted the mechanism and downstream functional molecules of LINC00460 by bioinformatics analysis, and confirmed them by dual luciferase reporter gene assay, RNA immunoprecipitation (RIP), RNA pull-down, etc. RESULTS: LINC00460 was found to be significantly overexpressed in CRC and associated with poor prognosis. Overexpression of LINC00460 promoted CRC cell immune escape and remodeled a suppressive tumor immune microenvironment, thereby promoting CRC proliferation and metastasis. Mechanistic studies showed that LINC00460 served as a molecular sponge for miR-186-3p, and then promoted the expressions of MYC, CD47 and PD-L1 to facilitate CRC cell immune escape. We also demonstrated that MYC upregulated LINC00460 expression at the transcriptional level and formed a positive feedback loop. CONCLUSIONS: The LINC00460/miR-186-3p/MYC feedback loop promotes CRC cell immune escape and subsequently facilitates CRC proliferation and metastasis. Our findings provide novel insight into LINC00460 as a CRC immune regulator, and provide a potential therapeutic target for CRC patients.


Assuntos
Antígeno B7-H1 , Antígeno CD47 , Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/imunologia , MicroRNAs/genética , Antígeno CD47/metabolismo , Antígeno CD47/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Animais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Evasão Tumoral/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Masculino , Feminino , Proliferação de Células , Retroalimentação Fisiológica , Prognóstico , Camundongos Nus
3.
Sci Adv ; 10(28): eadk2091, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996030

RESUMO

The mechanism by which interferon regulatory factor 8 (IRF8) mutation contributes to lymphomagenesis is unknown. We modeled IRF8 variants in B cell lymphomas and found that they affected the expression of regulators of antigen presentation. Expression of IRF8 mutants in murine B cell lymphomas suppressed CD4, but not CD8, activation elicited by antigen presentation and downmodulated CD74 and human leukocyte antigen (HLA) DM, intracellular regulators of antigen peptide processing/loading in the major histocompatibility complex (MHC) II. Concordantly, mutant IRF8 bound less efficiently to the promoters of these genes. Mice harboring IRF8 mutant lymphomas displayed higher tumor burden and remodeling of the tumor microenvironment, typified by depletion of CD4, CD8, and natural killer cells, increase in regulatory T cells and T follicular helper cells. Deconvolution of bulk RNA sequencing data from IRF8-mutant human diffuse large B cell lymphoma (DLBCL) recapitulated part of the immune remodeling detected in mice. We concluded that IRF8 mutations contribute to DLBCL biology by facilitating immune escape.


Assuntos
Apresentação de Antígeno , Antígenos de Diferenciação de Linfócitos B , Antígenos de Histocompatibilidade Classe II , Fatores Reguladores de Interferon , Mutação , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Animais , Apresentação de Antígeno/imunologia , Apresentação de Antígeno/genética , Humanos , Camundongos , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Microambiente Tumoral/imunologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Linhagem Celular Tumoral , Evasão Tumoral/genética , Regulação Neoplásica da Expressão Gênica
4.
Elife ; 132024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008536

RESUMO

Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of ß-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Evasão Tumoral , beta Catenina , Proteínas rab27 de Ligação ao GTP , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Exossomos/metabolismo , Exossomos/genética , beta Catenina/metabolismo , beta Catenina/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Evasão Tumoral/genética , Proteínas rab27 de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP/genética , Microambiente Tumoral/imunologia , Mutação , Regulação Neoplásica da Expressão Gênica
6.
Nat Commun ; 15(1): 5851, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992029

RESUMO

Tumor cells reprogram their metabolism to produce specialized metabolites that both fuel their own growth and license tumor immune evasion. However, the relationships between these functions remain poorly understood. Here, we report CRISPR screens in a mouse model of colo-rectal cancer (CRC) that implicates the dual specificity phosphatase 18 (DUSP18) in the establishment of tumor-directed immune evasion. Dusp18 inhibition reduces CRC growth rates, which correlate with high levels of CD8+ T cell activation. Mechanistically, DUSP18 dephosphorylates and stabilizes the USF1 bHLH-ZIP transcription factor. In turn, USF1 induces the SREBF2 gene, which allows cells to accumulate the cholesterol biosynthesis intermediate lanosterol and release it into the tumor microenvironment (TME). There, lanosterol uptake by CD8+ T cells suppresses the mevalonate pathway and reduces KRAS protein prenylation and function, which in turn inhibits their activation and establishes a molecular basis for tumor cell immune escape. Finally, the combination of an anti-PD-1 antibody and Lumacaftor, an FDA-approved small molecule inhibitor of DUSP18, inhibits CRC growth in mice and synergistically enhances anti-tumor immunity. Collectively, our findings support the idea that a combination of immune checkpoint and metabolic blockade represents a rationally-designed, mechanistically-based and potential therapy for CRC.


Assuntos
Linfócitos T CD8-Positivos , Colesterol , Neoplasias Colorretais , Fosfatases de Especificidade Dupla , Animais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Camundongos , Humanos , Colesterol/biossíntese , Colesterol/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/antagonistas & inibidores , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/genética , Feminino
8.
Oncoimmunology ; 13(1): 2376264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988824

RESUMO

Functional roles of SIGLEC15 in hepatocellular carcinoma (HCC) were not clear, which was recently found to be an immune inhibitor with similar structure of inhibitory B7 family members. SIGLEC15 expression in HCC was explored in public databases and further examined by PCR analysis. SIGLEC15 and PD-L1 expression patterns were examined in HCC samples through immunohistochemistry. SIGLEC15 expression was knocked-down or over-expressed in HCC cell lines, and CCK8 tests were used to examine cell proliferative ability in vitro. Influences of SIGLEC15 expression on tumor growth were examined in immune deficient and immunocompetent mice respectively. Co-culture system of HCC cell lines and Jurkat cells, flow cytometry analysis of tumor infiltrated immune cells and further sequencing analyses were performed to investigate how SIGLEC15 could affect T cells in vitro and in vivo. We found SIGLEC15 was increased in HCC tumor tissues and was negatively correlated with PD-L1 in HCC samples. In vitro and in vivo models demonstrated inhibition of SIGLEC15 did not directly influence tumor proliferation. However, SIGLEC15 could promoted HCC immune evasion in immune competent mouse models. Knock-out of Siglec15 could inhibit tumor growth and reinvigorate CD8+ T cell cytotoxicity. Anti-SIGLEC15 treatment could effectively inhibit tumor growth in mouse models with or without mononuclear phagocyte deletion. Bulk and single-cell RNA sequencing data of treated mouse tumors demonstrated SIGLEC15 could interfere CD8+ T cell viability and induce cell apoptosis. In all, SIGLEC15 was negatively correlated with PD-L1 in HCC and mainly promote HCC immune evasion through inhibition of CD8+ T cell viability and cytotoxicity.


Assuntos
Apoptose , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Imunoglobulinas , Neoplasias Hepáticas , Proteínas de Membrana , Animais , Feminino , Humanos , Masculino , Camundongos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Evasão da Resposta Imune , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Evasão Tumoral/genética
9.
Clin Epigenetics ; 16(1): 83, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915093

RESUMO

BACKGROUND: Gastrointestinal malignancies encompass a diverse group of cancers that pose significant challenges to global health. The major histocompatibility complex (MHC) plays a pivotal role in immune surveillance, orchestrating the recognition and elimination of tumor cells by the immune system. However, the intricate regulation of MHC gene expression is susceptible to dynamic epigenetic modification, which can influence functionality and pathological outcomes. MAIN BODY: By understanding the epigenetic alterations that drive MHC downregulation, insights are gained into the molecular mechanisms underlying immune escape, tumor progression, and immunotherapy resistance. This systematic review examines the current literature on epigenetic mechanisms that contribute to MHC deregulation in esophageal, gastric, pancreatic, hepatic and colorectal malignancies. Potential clinical implications are discussed of targeting aberrant epigenetic modifications to restore MHC expression and 0 the effectiveness of immunotherapeutic interventions. CONCLUSION: The integration of epigenetic-targeted therapies with immunotherapies holds great potential for improving clinical outcomes in patients with gastrointestinal malignancies and represents a compelling avenue for future research and therapeutic development.


Assuntos
Epigênese Genética , Neoplasias Gastrointestinais , Complexo Principal de Histocompatibilidade , Humanos , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/imunologia , Epigênese Genética/genética , Complexo Principal de Histocompatibilidade/genética , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Metilação de DNA/genética , Evasão Tumoral/genética , Evasão Tumoral/efeitos dos fármacos
10.
Genome Biol ; 25(1): 168, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926878

RESUMO

BACKGROUND: Carcinogenesis is driven by interactions between genetic mutations and the local tumor microenvironment. Recent research has identified hundreds of cancer driver genes; however, these studies often include a mixture of different molecular subtypes and ecological niches and ignore the impact of the immune system. RESULTS: In this study, we compare the landscape of driver genes in tumors that escaped the immune system (escape +) versus those that did not (escape -). We analyze 9896 primary tumors from The Cancer Genome Atlas using the ratio of non-synonymous to synonymous mutations (dN/dS) and find 85 driver genes, including 27 and 16 novel genes, in escape - and escape + tumors, respectively. The dN/dS of driver genes in immune escaped tumors is significantly lower and closer to neutrality than in non-escaped tumors, suggesting selection buffering in driver genes fueled by immune escape. Additionally, we find that immune evasion leads to more mutated sites, a diverse array of mutational signatures and is linked to tumor prognosis. CONCLUSIONS: Our findings highlight the need for improved patient stratification to identify new therapeutic targets for cancer treatment.


Assuntos
Mutação , Neoplasias , Evasão Tumoral , Humanos , Neoplasias/genética , Neoplasias/imunologia , Evasão Tumoral/genética , Evasão da Resposta Imune/genética , Evolução Molecular , Microambiente Tumoral/genética
11.
Int Immunopharmacol ; 136: 112415, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38850791

RESUMO

The microenvironment of hepatocellular carcinoma (HCC) is characterized by hypoxia, which leads to immune evasion of HCC. Therefore, gaining a comprehensive understanding of the mechanism underlying the impact of hypoxia on HCC cells may provide valuable insights into immune checkpoint therapy. Based on analysis of databases and clinical samples, we observed that expression level of programmed cell death ligand 1 (PD-L1) and long non-coding RNA (lncRNA) MIR155HG in patients in the hypoxia group were higher than those in the non-hypoxia group. Furthermore, there was a positive correlation between the expression of PD-L1 and MIR155HG with that of HIF-1α. In vitro experiments using hypoxic treatment demonstrated an increase in PD-L1 and MIR155HG expression levels in HCC cells. While the hypoxia-induced upregulation of PD-L1 could be reversed by knocking down MIR155HG. Mechanistically, as a transcription factor, HIF-1α binds to the promoter region of MIR155HG to enhance its transcriptional activity under hypoxic conditions. Hypoxia acts as a stressor promoting nuclear output of ILF3 leading to increased binding of ILF3 to MIR155HG, thereby enhancing stability for HIF-1α mRNA. In vivo, knocking down MIR155HG inhibit subcutaneous tumor growth, reduce the expression of HIF-1α and PD-L1 within tumors; additionally, it enhances anti-tumor immunity response. These findings suggested that through inducing MIR155HG to interact with ILF3, hypoxia increases HIF-1α mRNA stability resulting in elevated PD-L1 expression in HCC and thus promoting immune escape. In summary, this study provides new insights into the effects of hypoxia on HCC immunosuppression.


Assuntos
Antígeno B7-H1 , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Estabilidade de RNA , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Evasão Tumoral/genética , Microambiente Tumoral/imunologia
12.
Crit Rev Eukaryot Gene Expr ; 34(5): 69-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842205

RESUMO

Gastric cancer is a most malignancy in digestive tract worldwide. This study aimed to investigate the roles of protein arginine methyltransferase 6 (PRMT6) in gastric cancer. Immunohistochemistry was performed to detect PRMT6 expression in gastric tumors. Real-time transcriptase-quantitative polymerase chain reaction (RT-qPCR) was used to detected mRNA levels. Protein expression was determined using western blot. Gastric cancer cells were co-cultured with CD8+ T cells. Colony formation assay was performed to detect cell proliferation. Flow cytometry was performed to determine CD8+ T cell function and tumor cell apoptosis. PRMT6 was overexpressed in gastric tumors. High level of PRMT6 predicted poor outcomes of gastric cancer patients and inhibition of CD8+ T cell infiltration. PRMT6 promoted proliferation of CD8+ T cells and enhanced its tumor killing ability. Moreover, PRMT6 upregulated annexin A1 (ANXA1) and promoted ANXA1 protein stability. ANXA1 overexpression suppressed the proliferation of CD8+ T cells and promoted tumor cell survival. PRMT6 functions as an oncogene in gastric cancer. PRMT6-mediated protein stability inhibits the infiltration of CD8+ T cells, resulting in immune evasion of gastric cancer. The PRMT6-ANXA1 may be a promising strategy for gastric cancer.


Assuntos
Anexina A1 , Linfócitos T CD8-Positivos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Anexina A1/genética , Anexina A1/metabolismo , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação para Cima , Apoptose , Evasão Tumoral/genética , Masculino , Evasão da Resposta Imune , Feminino , Proteínas Nucleares
13.
Nat Commun ; 15(1): 4319, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773080

RESUMO

The landscape of non-coding mutations in cancer progression and immune evasion is largely unexplored. Here, we identify transcrptome-wide somatic and germline 3' untranslated region (3'-UTR) variants from 375 gastric cancer patients from The Cancer Genome Atlas. By performing gene expression quantitative trait loci (eQTL) and immune landscape QTL (ilQTL) analysis, we discover 3'-UTR variants with cis effects on expression and immune landscape phenotypes, such as immune cell infiltration and T cell receptor diversity. Using a massively parallel reporter assay, we distinguish between causal and correlative effects of 3'-UTR eQTLs in immune-related genes. Our approach identifies numerous 3'-UTR eQTLs and ilQTLs, providing a unique resource for the identification of immunotherapeutic targets and biomarkers. A prioritized ilQTL variant signature predicts response to immunotherapy better than standard-of-care PD-L1 expression in independent patient cohorts, showcasing the untapped potential of non-coding mutations in cancer.


Assuntos
Regiões 3' não Traduzidas , Locos de Características Quantitativas , Neoplasias Gástricas , Evasão Tumoral , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Evasão Tumoral/genética , Regiões 3' não Traduzidas/genética , Regulação Neoplásica da Expressão Gênica , Mutação , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Imunoterapia/métodos , Feminino , Masculino
14.
J Cell Mol Med ; 28(10): e18411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780505

RESUMO

Hepatocellular carcinoma (HCC) represents a significant global health burden, necessitating an in-depth exploration of its molecular underpinnings to facilitate the development of effective therapeutic strategies. This investigation delves into the complex role of long non-coding RNAs (lncRNAs) in the modulation of hypoxia-induced HCC progression, with a specific emphasis on delineating and functionally characterizing the novel KLF4/Lnc18q22.2/ULBP3 axis. To elucidate the effects of hypoxic conditions on HCC cells, we established in vitro models under both normoxic and hypoxic environments, followed by lncRNA microarray analyses. Among the lncRNAs identified, Lnc18q22.2 was found to be significantly upregulated in HCC cells subjected to hypoxia. Subsequent investigations affirmed the oncogenic role of Lnc18q22.2, highlighting its critical function in augmenting HCC cell proliferation and migration. Further examination disclosed that Kruppel-like factor 4 (KLF4) transcriptionally governs Lnc18q22.2 expression in HCC cells, particularly under hypoxic stress. KLF4 subsequently enhances the tumorigenic capabilities of HCC cells through the modulation of Lnc18q22.2 expression. Advancing downstream in the molecular cascade, our study elucidates a novel interaction between Lnc18q22.2 and UL16-binding protein 3 (ULBP3), culminating in the stabilization of ULBP3 protein expression. Notably, ULBP3 was identified as a pivotal element, exerting dual functions by facilitating HCC tumorigenesis and mitigating immune evasion in hypoxia-exposed HCC cells. The comprehensive insights gained from our research delineate a hitherto unidentified KLF4/Lnc18q22.2/ULBP3 axis integral to the understanding of HCC tumorigenesis and immune escape under hypoxic conditions. This newly unveiled molecular pathway not only enriches our understanding of hypoxia-induced HCC progression but also presents novel avenues for therapeutic intervention.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , RNA Longo não Codificante/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Animais , Movimento Celular/genética , Evasão Tumoral/genética , Camundongos , Hipóxia Celular/genética , Transdução de Sinais
15.
J Cell Mol Med ; 28(10): e18379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752750

RESUMO

Gastric cancer is a prevalent and deadly malignancy, and the response to immunotherapy varies among patients. This study aimed to develop a prognostic model for gastric cancer patients and investigate immune escape mechanisms using deep machine learning and single-cell sequencing analysis. Data from public databases were analysed, and a prediction model was constructed using 101 algorithms. The high-AIDPS group, characterized by increased AIDPS expression, exhibited worse survival, genomic variations and immune cell infiltration. These patients also showed immunotherapy tolerance. Treatment strategies targeting the high-AIDPS group identified three potential drugs. Additionally, distinct cluster groups and upregulated AIDPS-associated genes were observed in gastric adenocarcinoma cell lines. Inhibition of GHRL expression suppressed cancer cell activity, inhibited M2 polarization in macrophages and reduced invasiveness. Overall, AIDPS plays a critical role in gastric cancer prognosis, genomic variations, immune cell infiltration and immunotherapy response, and targeting GHRL expression holds promise for personalized treatment. These findings contribute to improved clinical management in gastric cancer.


Assuntos
Algoritmos , Regulação Neoplásica da Expressão Gênica , Análise de Célula Única , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Análise de Célula Única/métodos , Prognóstico , Evasão Tumoral/genética , Linhagem Celular Tumoral , Imunoterapia/métodos , Biomarcadores Tumorais/genética , Aprendizado de Máquina
16.
J Biochem Mol Toxicol ; 38(5): e23715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704830

RESUMO

Long noncoding RNA MIR17HG was involved with the progression of non-small-cell lung cancer (NSCLC), but specific mechanisms of MIR17HG-mediated immune escape of NSCLC cells were still unknown. The present study investigated the function of MIR17HG on regulatory T cell (Treg)-mediated immune escape and the underlying mechanisms in NSCLC. Expression of MIR17HG and miR-17-5p in NSCLC tissue samples were detected using quantitative real-time PCR (qRT-PCR). A549 and H1299 cells were transfected with sh-MIR17HG, miR-17-5p inhibitor, or sh-MIR17HG + miR-17-5p inhibitor, followed by cocultured with Tregs. Cell proliferation was measured using 5-ethynyl-20-deoxyuridine (Edu) staining assay and cell counting kit-8 (CCK-8) assay. Flow cytometry was used for determining positive numbers of FOXP3+CD4+/CD25+/CD8+ Tregs. Through subcutaneous injection with transfected A549 cells, a xenograft nude mouse model was established. Weights and volumes of xenograft tumors were evaluated. Additionally, the expressions of immune-related factors including transforming growth factor beta (TGF-ß), vascular endothelial growth factor A (VEGF-A), interleukin-10 (IL-10), IL-4, and interferon-gamma (IFN-γ) in cultured cells, were evaluated by enzyme-linked immunosorbent assay and western blot analysis. Then, miR-17-5p was decreased and MIR17HG was enhanced in both NSCLC tissues and cell lines. MIR17HG knockdown significantly suppressed cell proliferation, tumorigenicity, and immune capacity of Tregs in A549 and H1299 cells, whereas sh-MIR17HG significantly reduced expression levels of VEGF-A, TGF-ß, IL-4, and IL-10 but promoted the IFN-γ level in vitro and in vivo. Moreover, downregulation of miR-17-5p significantly reversed the effects of sh-MIR17HG. Additionally, we identified that runt- related transcription factor 3 (RUNX3) was a target of miR-17-5p, and sh-MIR17HG and miR-17-5p mimics downregulated RUNX3 expression. In conclusion, downregulation of MIR17HG suppresses tumorigenicity and Treg-mediated immune escape in NSCLC through downregulating the miR-17-5p/RUNX3 axis, indicating that this axis contains potential biomarkers for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Subunidade alfa 3 de Fator de Ligação ao Core , Regulação para Baixo , Neoplasias Pulmonares , Camundongos Nus , MicroRNAs , RNA Longo não Codificante , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , MicroRNAs/genética , RNA Longo não Codificante/genética , Linfócitos T Reguladores/imunologia , Evasão Tumoral/genética
17.
Adv Sci (Weinh) ; 11(26): e2306348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696655

RESUMO

Patients who have non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations are more prone to brain metastasis (BM) and poor prognosis. Previous studies showed that the tumor microenvironment of BM in these patients is immunosuppressed, as indicated by reduced T-cell abundance and activity, although the mechanism of this immunosuppression requires further study. This study shows that reactive astrocytes play a critical role in promoting the immune escape of BM from EGFR-mutated NSCLC by increasing the apoptosis of CD8+ T lymphocytes. The increased secretion of interleukin 11(IL11) by astrocytes promotes the expression of PDL1 in BM, and this is responsible for the increased apoptosis of T lymphocytes. IL11 functions as a ligand of EGFR, and this binding activates EGFR and downstream signaling to increase the expression of PDL1, culminating in the immune escape of tumor cells. IL11 also promotes immune escape by binding to its intrinsic receptor (IL11Rα/glycoprotein 130 [gp130]). Additional in vivo studies show that the targeted inhibition of gp130 and EGFR suppresses the growth of BM and prolongs the survival time of mice. These results suggest a novel therapeutic strategy for treatment of NSCLC patients with EGFR mutations.


Assuntos
Astrócitos , Antígeno B7-H1 , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Interleucina-11 , Neoplasias Pulmonares , Regulação para Cima , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Camundongos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/imunologia , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Humanos , Astrócitos/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Regulação para Cima/genética , Evasão Tumoral/genética , Modelos Animais de Doenças , Mutação/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral
18.
Cancer Sci ; 115(8): 2588-2601, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38811341

RESUMO

Insufficient understanding about the immune evasion mechanism leads to the inability in predicting current immunotherapy effects in clear cell renal cell carcinoma (ccRCC) and sensitizing ccRCC to immunotherapy. RNA binding proteins (RBPs) can promote tumor progression and immune evasion. However, research on RBPs, particularly m6A reader YTHDF3, in ccRCC development and immune evasion is limited. In this study, we found that YTHDF3 level was downregulated in ccRCC and was an independent prognostic biomarker for ccRCC. Decreased YTHDF3 expression was correlated with the malignancy, immune evasion, and poor response to anti-programmed death ligand 1 (PD-L1)/CTLA-4 in ccRCC. YTHDF3 overexpression restrained ccRCC cell malignancy, PD-L1 expression, CD8+ T cell infiltration and activities in vivo, indicating its inhibitory role in ccRCC development and immune evasion. Mechanistically, YTHDF3 WT was found to have phase separation characteristics and suppress ccRCC malignancy and immune evasion. Whereas YTHDF3 mutant, which disrupted phase separation, abolished its function. YTHDF3 enhanced the degradation of its target mRNA HSPA13 by phase separation and recruiting DDX6, resulting in the downregulation of the downstream immune checkpoint PD-L1. HSPA13 overexpression restored ccRCC malignancy and immune evasion suppressed by YTHDF3 overexpression. In all, our results identify a new model of YTHDF3 in regulating ccRCC progression and immune evasion through phase separation.


Assuntos
Antígeno B7-H1 , Carcinoma de Células Renais , Proteínas de Choque Térmico HSP70 , Neoplasias Renais , Proteínas de Ligação a RNA , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/imunologia , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/imunologia , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Camundongos , Linhagem Celular Tumoral , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Prognóstico , Evasão da Resposta Imune , Regulação para Baixo , Evasão Tumoral/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Separação de Fases
19.
Front Biosci (Landmark Ed) ; 29(4): 134, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682180

RESUMO

BACKGROUND: Immune escape is a key factor influencing survival rate of lung adenocarcinoma (LUAD) patients, but molecular mechanism of ubiquitin binding enzyme E2T (UBE2T) affecting immune escape of LUAD remains unclear. The objective was to probe role of UBE2T in LUAD. METHODS: Bioinformatics means were adopted for analyzing UBE2T and forkhead box A1 (FOXA1) expression in LUAD tissues, the gene binding sites, the pathway UBE2T regulates, and the correlation between UBE2T and glycolysis genes. Dual luciferase and chromatin immunoprecipitation (ChIP) assays were conducted for validating the binding relationship between the two genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot were employed to evaluate UBE2T, FOXA1, and programmed death ligand 1 (PD-L1) levels in cancer cells. MTT assay was conducted for detecting cell viability. Cytotoxicity assay detected CD8+T cell toxicity. Cytokine expression was assayed by enzyme linked immunosorbent assay (ELISA). Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were assayed by extracellular flow analyzer. Glycolytic gene expression was analyzed by qRT-PCR, and glycolysis-related indicators were detected by ELISA. Immunohistochemistry (IHC) detected CD8+T cell infiltration in tumor tissues. RESULTS: FOXA1 and UBE2T were up-regulated in LUAD, and a binding site existed between UBE2T and FOXA1. Overexpressing UBE2T could increase PD-L1 expression and inhibit toxicity of CD8+T cells to LUAD cells. Overexpressing UBE2T repressed CD8+T cell activity in LUAD by activating the glycolysis pathway, and the addition of glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed the above results. Mechanistically, FOXA1 promoted the immune escape of LUAD by up-regulating UBE2T and thus mediating glycolysis. In vivo experiments revealed that UBE2T knockdown hindered tumor growth, inhibited PD-L1 expression, and facilitated CD8+T cell infiltration. CONCLUSION: FOXA1 up-regulated the expression of UBE2T, which activated glycolysis, and thus inhibited activity of CD8+T cells, causing immune escape of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Linfócitos T CD8-Positivos , Fator 3-alfa Nuclear de Hepatócito , Neoplasias Pulmonares , Enzimas de Conjugação de Ubiquitina , Animais , Feminino , Humanos , Masculino , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicólise , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Evasão Tumoral/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
20.
Oncogene ; 43(23): 1757-1768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622203

RESUMO

Childhood onset of colorectal signet-ring cell carcinoma (CR-SRCC) is extremely rare and featured as highly malignant with poor prognosis. Here we reported a CR-SRCC case of 11-year-old boy with a novel inherited X-linked KDM6AA694T mutation. The H3K27me3 demethylase KDM6A was frequently mutated in varieties of tumors and acts as a tumor suppressor. In vivo H3K27me3 demethylation assay demonstrated that KDM6AA694T had dampened H3K27me3 demethylase activity. Overexpression of KDM6AA694T in SRCC cell line KATO3 promoted cell proliferation, invasion and migration, which were further confirmed in vivo by constructing orthotopic tumor growth and lung metastasis model. Besides, expression of KDM6AA694T in immune cells suppresses inflammatory macrophage response and effector T cell response. In conclusion, we characterized a novel inherited KDM6AA694T mutant from a childhood-onset SRCC case and demonstrated that the mutant with impaired H3K27me3 demethylase activity could potentiate tumor malignancy and suppress antitumor immunity.


Assuntos
Carcinoma de Células em Anel de Sinete , Neoplasias Colorretais , Histona Desmetilases , Criança , Humanos , Masculino , Carcinoma de Células em Anel de Sinete/genética , Carcinoma de Células em Anel de Sinete/patologia , Carcinoma de Células em Anel de Sinete/imunologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Mutação , Evasão Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...