Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.655
Filtrar
1.
Biochemistry ; 63(14): 1837-1857, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953497

RESUMO

Munc18-1 is an SM (sec1/munc-like) family protein involved in vesicle fusion and neuronal exocytosis. Munc18-1 is known to regulate the exocytosis process by binding with closed- and open-state conformations of Syntaxin1, a protein belonging to the SNARE family established to be central to the exocytosis process. Our previous work studied peptide p5 as a promising drug candidate for CDK5-p25 complex, an Alzheimer's disease (AD) pathological target. Experimental in vivo and in vitro studies suggest that Munc18-1 promotes p5 to selectively inhibit the CDK5-p25 complex without affecting the endogenous CDK5 activity, a characteristic of remarkable therapeutic implications. In this paper, we identify several binding modes of p5 with Munc18-1 that could potentially affect the Munc18-1 binding with SNARE proteins and lead to off-target effects on neuronal communication using molecular dynamics simulations. Recent studies indicate that disruption of Munc18-1 function not only disrupts neurotransmitter release but also results in neurodegeneration, exhibiting clinical resemblance to other neurodegenerative conditions such as AD, causing diagnostic and treatment challenges. We characterize such interactions between p5 and Munc18-1, define the corresponding pharmacophores, and provide guidance for the in vitro validation of our findings to improve therapeutic efficacy and safety of p5.


Assuntos
Exocitose , Simulação de Dinâmica Molecular , Proteínas Munc18 , Neurônios , Proteínas Munc18/metabolismo , Proteínas Munc18/química , Proteínas Munc18/genética , Exocitose/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Humanos , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/química , Ligação Proteica , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Animais
2.
Mikrochim Acta ; 191(7): 435, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38949689

RESUMO

A novel scaffold for in situ electrochemical detection of cell biomarkers was developed using electrospun nanofibers and commercial adhesive polymeric membranes. The electrochemical sensing of cell biomarkers requires the cultivation of the cells on/near the (bio)sensor surface in a manner to preserve an appropriate electroactive available surface and to avoid the surface passivation and sensor damage. This can be achieved by employing biocompatible nanofiber meshes that allow the cells to have a normal behavior and do not alter the electrochemical detection. For a better mechanical stability and ease of handling, nylon 6/6 nanofibers were collected on commercial polymeric membranes, at an optimal fiber density, obtaining a double-layered platform. To demonstrate the functionality of the fabricated scaffold, the screening of cellular stress has been achieved integrating melanoma B16-F10 cells and the (bio)sensor components on the transducer whereas the melanin exocytosis was successfully quantified using a commercial electrode. Either directly on the surface of the (bio)sensor or spatially detached from it, the integration of cell cultures in biosensing platforms based on electrospun nanofibers represents a powerful bioanalytical tool able to provide real-time information about the biomarker release, enzyme activity or inhibition, and monitoring of various cellular events.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanofibras , Nanofibras/química , Animais , Camundongos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Melaninas , Biomarcadores/análise , Alicerces Teciduais/química , Exocitose , Melanoma Experimental/patologia , Melanoma Experimental/diagnóstico
3.
Elife ; 122024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829367

RESUMO

After exocytosis, release sites are cleared of vesicular residues to replenish with transmitter-filled vesicles. Endocytic and scaffold proteins are thought to underlie this site-clearance mechanism. However, the physiological significance of this mechanism at diverse mammalian central synapses remains unknown. Here, we tested this in a physiologically optimized condition using action potential evoked EPSCs at fast calyx synapse and relatively slow hippocampal CA1 synapse, in post-hearing mice brain slices at 37°C and in 1.3 mM [Ca2+]. Pharmacological block of endocytosis enhanced synaptic depression at the calyx synapse, whereas it attenuated synaptic facilitation at the hippocampal synapse. Block of scaffold protein activity likewise enhanced synaptic depression at the calyx but had no effect at the hippocampal synapse. At the fast calyx synapse, block of endocytosis or scaffold protein activity significantly enhanced synaptic depression as early as 10 ms after the stimulation onset. Unlike previous reports, neither endocytic blockers nor scaffold protein inhibitors prolonged the recovery from short-term depression. We conclude that the release-site clearance by endocytosis can be a universal phenomenon supporting vesicle replenishment at both fast and slow synapses, whereas the presynaptic scaffold mechanism likely plays a specialized role in vesicle replenishment predominantly at fast synapses.


Assuntos
Endocitose , Vesículas Sinápticas , Endocitose/fisiologia , Animais , Camundongos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Sinapses/fisiologia , Hipocampo/fisiologia , Exocitose , Região CA1 Hipocampal/fisiologia
4.
J Am Chem Soc ; 146(26): 17747-17756, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38889317

RESUMO

Unveiling molecular mechanisms that dominate protein phase dynamics has been a pressing need for deciphering the intricate intracellular modulation machinery. While ions and biomacromolecules have been widely recognized for modulating protein phase separations, effects of small molecules that essentially constitute the cytosolic chemical atmosphere on the protein phase behaviors are rarely understood. Herein, we report that vitamin C (VC), a key small molecule for maintaining a reductive intracellular atmosphere, drives reentrant phase transitions of myosin II/F-actin (actomyosin) cytoskeletons. The actomyosin bundle condensates dissemble in the low-VC regime and assemble in the high-VC regime in vitro or inside neuronal cells, through a concurrent myosin II protein aggregation-dissociation process with monotonic VC concentration increase. Based on this finding, we employ in situ single-cell and single-vesicle electrochemistry to demonstrate the quantitative modulation of catecholamine transmitter vesicle exocytosis by intracellular VC atmosphere, i.e., exocytotic release amount increases in the low-VC regime and decreases in the high-VC regime. Furthermore, we show how VC regulates cytomembrane-vesicle fusion pore dynamics through counteractive or synergistic effects of actomyosin phase transitions and the intracellular free calcium level on membrane tensions. Our work uncovers the small molecule-based reversive protein phase regulatory mechanism, paving a new way to chemical neuromodulation and therapeutic repertoire expansion.


Assuntos
Actinas , Ácido Ascórbico , Exocitose , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Exocitose/efeitos dos fármacos , Actinas/metabolismo , Actinas/química , Transição de Fase , Animais , Miosina Tipo II/metabolismo , Miosina Tipo II/antagonistas & inibidores , Técnicas Eletroquímicas , Actomiosina/metabolismo , Actomiosina/química , Ratos
5.
Acta Histochem ; 126(4): 152170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38936136

RESUMO

We previously reported the presence of P2X3 purinoceptors (P2X3)-expressing subserosal afferent nerve endings consisting of net- and basket-like nerve endings in the rat gastric antrum. These nerve endings may morphologically be vagal mechanoreceptors activated by antral peristalsis. The present study investigated immunoreactivities for vesicular glutamate transporter (VGLUT) 1 and VGLUT2 as well as exocytosis-related proteins, i.e., core components of the SNARE complex (SNAP25, Stx1, and VAMP2) and synaptotagmin-1 (Syt1), in whole-mount preparations of the rat gastric antrum using double immunofluorescence. VGLUT1 immunoreactivity was not detected, whereas VGLUT2 immunoreactivity was observed in P2X3-immunoreactive subserosal nerve endings composed of both net- and basket-like endings. In net-like nerve endings, intense VGLUT2 immunoreactivity was localized in polygonal bulges of reticular nerve fibers and peripheral axon terminals. Furthermore, intense immunoreactivities for SNAP25, Stx1, and VAMP2 were localized in net-like nerve endings. Intense immunoreactivities for VAMP2 and Syt1 were observed in VGLUT2-immunoreactive net-like nerve endings. In basket-like nerve endings, VGLUT2 immunoreactivity was localized in pleomorphic terminal structures and small bulges surrounding the subserosal ganglion, whereas immunoreactivities for SNAP25, Stx1, and VAMP2 were weak in these nerve endings. VGLUT2-immunoreactive basket-like nerve endings were weakly immunoreactive for VAMP2 and Syt1. These results suggest that subserosal afferent nerve endings release glutamate by exocytosis mainly from net-like nerve endings to modulate their mechanoreceptor function.


Assuntos
Exocitose , Ácido Glutâmico , Imuno-Histoquímica , Terminações Nervosas , Antro Pilórico , Receptores Purinérgicos P2X3 , Proteína Vesicular 2 de Transporte de Glutamato , Animais , Masculino , Ratos , Receptores Purinérgicos P2X3/metabolismo , Ácido Glutâmico/metabolismo , Antro Pilórico/inervação , Antro Pilórico/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Terminações Nervosas/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Ratos Wistar , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Sintaxina 1/metabolismo
6.
J Cell Sci ; 137(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38899547

RESUMO

The Rho family of GTPases plays a crucial role in cellular mechanics by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in the Drosophila larval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, which in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 reach the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.


Assuntos
Proteínas de Drosophila , Exocitose , Miosina Tipo II , Proteínas rho de Ligação ao GTP , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miosina Tipo II/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Exocitose/fisiologia , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Larva/metabolismo , Glândulas Salivares/metabolismo , Glândulas Salivares/citologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Vesículas Secretórias/metabolismo
7.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38935075

RESUMO

Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Membrana Celular , Centrossomo , Proteínas de Drosophila , Drosophila melanogaster , Animais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/metabolismo , Membrana Celular/metabolismo , Centrossomo/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Dineínas/metabolismo , Exocitose , Microtúbulos/metabolismo
8.
Cell Physiol Biochem ; 58(3): 212-225, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38852193

RESUMO

BACKGROUND/AIMS: Adrenaline quickly inhibits the release of histamine from mast cells. Besides ß2-adrenergic receptors, several in vitro studies also indicate the involvement of α-adrenergic receptors in the process of exocytosis. Since exocytosis in mast cells can be detected electrophysiologically by the changes in the membrane capacitance (Cm), its continuous monitoring in the presence of drugs would determine their mast cell-stabilizing properties. METHODS: Employing the whole-cell patch-clamp technique in rat peritoneal mast cells, we examined the effects of adrenaline on the degranulation of mast cells and the increase in the Cm during exocytosis. We also examined the degranulation of mast cells in the presence or absence of α-adrenergic receptor agonists or antagonists. RESULTS: Adrenaline dose-dependently suppressed the GTP-γ-S-induced increase in the Cm and inhibited the degranulation from mast cells, which was almost completely erased in the presence of butoxamine, a ß2-adrenergic receptor antagonist. Among α-adrenergic receptor agonists or antagonists, high dose prazosin, a selective α1-adrenergic receptor antagonist, significantly reduced the ratio of degranulating mast cells and suppressed the increase in the Cm. Additionally, prazosin augmented the inhibitory effects of adrenaline on the degranulation of mast cells. CONCLUSION: This study provided electrophysiological evidence for the first time that adrenaline dose-dependently inhibited the process of exocytosis, confirming its usefulness as a potent mast cell-stabilizer. The pharmacological blockade of α1-adrenergic receptor by prazosin synergistically potentiated such mast cell-stabilizing property of adrenaline, which is primarily mediated by ß2-adrenergic receptors.


Assuntos
Degranulação Celular , Epinefrina , Exocitose , Mastócitos , Prazosina , Animais , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/citologia , Epinefrina/farmacologia , Ratos , Prazosina/farmacologia , Degranulação Celular/efeitos dos fármacos , Masculino , Exocitose/efeitos dos fármacos , Técnicas de Patch-Clamp , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Ratos Wistar
10.
Anal Chem ; 96(25): 10228-10236, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38867346

RESUMO

Exocytosis of a single cell has been extensively researched in recent years due to its close association with numerous diseases. However, current methods only investigate exocytosis at either the single-cell or multiple-cell level, and a method for simultaneously studying exocytosis at both levels has yet to be established. In this study, a combined device incorporating ultramicroelectrode (UME) electrochemistry and surface plasmon resonance (SPR) was developed, enabling the simultaneous monitoring of single-cell and multiple-cell exocytosis. PC12 cells were cultured directly on the SPR sensing Au film, with a carboxylated carbon nanopipette (c-CNP) electrode employed for electrochemical detection in the SPR reaction cell. Upon exocytosis, the released dopamine diffuses onto the inner wall of c-CNP, undergoing an electrochemical reaction to generate a current peak. Concurrently, exocytosis can also induce changes in the refractive index of the Au film surface, leading to the SPR signal. Consequently, the device enables real-time monitoring of exocytosis from both single and multiple cells with a high spatiotemporal resolution. The c-CNP electrode exhibited excellent resistance to protein contamination, high sensitivity for dopamine detection, and the capability to continuously monitor dopamine exocytosis over an extended period. Analysis of both SPR and electrochemical signals revealed a positive correlation between changes in the SPR signal and the frequency of exocytosis. This study introduces a novel method and platform for the simultaneous investigation of single-cell and multiple-cell exocytosis.


Assuntos
Dopamina , Técnicas Eletroquímicas , Exocitose , Microeletrodos , Ressonância de Plasmônio de Superfície , Células PC12 , Animais , Ratos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Dopamina/análise , Dopamina/metabolismo , Ouro/química , Análise de Célula Única/instrumentação
11.
Sci Rep ; 14(1): 12446, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816557

RESUMO

Thoroughbred stallions that carry a double-homozygous genotype A/A-A/A for SNPs rs397316122 and rs69101140 in exon 5 of the FKBP6 gene (chr13; EquCab3.0) are uniquely subfertile due to impaired acrosomal exocytosis (IAE). In this study, the sperm proteome in frozen/thawed semen from subfertile Thoroughbred stallions was studied and compared to that of frozen/thawed sperm from fertile Thoroughbred stallions. A total of 2,220 proteins was identified, of which 140 proteins were found to be differentially abundant in sperm from the subfertile stallions compared to that of fertile stallions (83 less and 57 more abundant). Proteins of differential abundance in sperm from the subfertile stallions were mainly overrepresented in the "metabolism" and the "metabolism of lipids" pathways. One of these proteins, arylsulfatase F (ARSF), was studied by immunofluorescence. A lower proportion of sperm displaying ARSF signal at the acrosome region was observed in sperm from subfertile Thoroughbred stallions. In addition, heterologous zona pellucida binding assays revealed that sperm from subfertile Thoroughbred stallions bound at a lower proportion to zonae pellucidae than sperm from fertile Thoroughbred stallions. In conclusion, a group of differential abundance proteins, including some of acrosome origin, were identified in sperm from subfertile stallions with acrosome dysfunction.


Assuntos
Reação Acrossômica , Proteômica , Espermatozoides , Animais , Masculino , Cavalos , Proteômica/métodos , Espermatozoides/metabolismo , Exocitose , Acrossomo/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/veterinária , Infertilidade Masculina/genética , Proteoma/metabolismo , Fertilidade/genética , Zona Pelúcida/metabolismo
12.
Am J Physiol Cell Physiol ; 327(1): C113-C121, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738312

RESUMO

During the process of decidualization, the stromal cells of the endometrium change dynamically to create a favorable environment for embryo implantation. Lysosome activity has often been associated with physiological changes in the endometrium during the preimplantation period and early pregnancy. In this study, the effect of para-nonylphenol (p-NP), an endocrine disruptor, on human immortalized endometrial stromal cells (tHESCs) was investigated. After exposure to p-NP (1 nM and 1 pM), the cells were examined for the decidualization markers connexin-43, insulin like growth factor binding protein 1 (IGFBP1), and prolactin. In addition, the effect of p-NP on lysosome biogenesis and exocytosis was investigated by examining the expression and localization of the transcription factor EB (TFEB) and that of the lysosomal-associated membrane protein 1 (LAMP-1). Finally, we evaluated the effect of p-NP on extracellular matrix (ECM) remodeling using a fibronectin assay. Our results showed that p-NP reduced the expression of prolactin protein, increased the nuclear localization of TFEB, and induced the increase and translocation of the lysosomal protein LAMP-1 to the membrane of tHESCs. The data indicate an impairment of decidualization and suggest an increase in lysosomal biogenesis and exocytosis, which is supported by the higher release of active cathepsin D by tHESCs. Given the importance of cathepsins in the processing and degradation of the ECM during trophoblast invasiveness and migration into the decidua, our results appear to be clear evidence of the negative effects of p-NP on endometrial processes that are fundamental to reproductive success and the establishment of pregnancy.NEW & NOTEWORTHY Endocrine disruptors, such as para-nonylphenol, affect the decidualization of human endometrial stromal cells with an impact on decidualization itself, lysosome biogenesis and exocytosis, and extracellular matrix remodeling. All these alterations may negatively impact embryo implantation with the success of reproduction and the establishment of pregnancy.


Assuntos
Endométrio , Lisossomos , Fenóis , Prolactina , Células Estromais , Humanos , Feminino , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/efeitos dos fármacos , Fenóis/farmacologia , Fenóis/toxicidade , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/citologia , Prolactina/metabolismo , Decídua/metabolismo , Decídua/efeitos dos fármacos , Decídua/citologia , Exocitose/efeitos dos fármacos , Implantação do Embrião/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Gravidez , Proteína 1 de Membrana Associada ao Lisossomo
13.
Angew Chem Int Ed Engl ; 63(30): e202403241, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38710651

RESUMO

Exocytosis involving the fusion of intracellular vesicles with cell membrane, is thought to be modulated by the mechanical cues in the microenvironment. Single-cell electrochemistry can offer unique information about the quantification and kinetics of exocytotic events; however, the effects of mechanical force on vesicular release have been poorly explored. Herein, we developed a stretchable microelectrode with excellent electrochemical stability under mechanical deformation by microfabrication of functionalized poly(3,4-ethylenedioxythiophene) conductive ink, which achieved real-time quantitation of strain-induced vesicular exocytosis from a single cell for the first time. We found that mechanical strain could cause calcium influx via the activation of Piezo1 channels in chromaffin cell, initiating the vesicular exocytosis process. Interestingly, mechanical strain increases the amount of catecholamines released by accelerating the opening and prolonging the closing of fusion pore during exocytosis. This work is expected to provide revealing insights into the regulatory effects of mechanical stimuli on vesicular exocytosis.


Assuntos
Células Cromafins , Exocitose , Células Cromafins/metabolismo , Microeletrodos , Animais , Microtecnologia/métodos , Cálcio/metabolismo , Estresse Mecânico , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/química
14.
Nanomedicine ; 59: 102754, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797223

RESUMO

Exocytosis is a critical factor for designing efficient nanocarriers and determining cytotoxicity. However, the research on the exocytosis mechanism of nanoparticles, especially the role of long non-coding RNAs (lncRNAs), has not been reported. In this study, the exocytosis of AuNPs in the KYSE70 cells and the involved molecular pathways of exocytosis are analyzed. It demonstrates that nanoparticles underwent time-dependent release from the cells by exocytosis, and the release of ß-hexosaminidase confirms that AuNPs are excreted through lysosomes. Mechanistic studies reveal that lncRNA ESCCAL-1 plays a vital role in controlling the exocytosis of AuNPs through activation of the MAPK pathway, including the phosphorylation of ERK and JNK. The study implies that the ESCCAL-1-mediated pathway plays an important role in the exocytosis of AuNPs in KYSE70 cells. This finding has implications for the role of ESCCAL-1 on the drug resistance of esophagus cancer by controlling lysosome-mediated exocytosis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Exocitose , Ouro , Nanopartículas Metálicas , RNA Longo não Codificante , Exocitose/efeitos dos fármacos , Humanos , Ouro/química , Nanopartículas Metálicas/química , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Linhagem Celular Tumoral , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética
15.
J Cell Sci ; 137(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690758

RESUMO

Exocytosis is a fundamental process used by eukaryotes to regulate the composition of the plasma membrane and facilitate cell-cell communication. To investigate exocytosis in neuronal morphogenesis, previously we developed computational tools with a graphical user interface to enable the automatic detection and analysis of exocytic events from fluorescence timelapse images. Although these tools were useful, we found the code was brittle and not easily adapted to different experimental conditions. Here, we developed and validated a robust and versatile toolkit, named pHusion, for the analysis of exocytosis, written in ImageTank, a graphical programming language that combines image visualization and numerical methods. We tested pHusion using a variety of imaging modalities and pH-sensitive fluorophores, diverse cell types and various exocytic markers, to generate a flexible and intuitive package. Using this system, we show that VAMP3-mediated exocytosis occurs 30-times more frequently in melanoma cells compared with primary oligodendrocytes, that VAMP2-mediated fusion events in mature rat hippocampal neurons are longer lasting than those in immature murine cortical neurons, and that exocytic events are clustered in space yet random in time in developing cortical neurons.


Assuntos
Exocitose , Animais , Ratos , Camundongos , Neurônios/metabolismo , Neurônios/citologia , Humanos , Concentração de Íons de Hidrogênio , Software , Hipocampo/metabolismo , Hipocampo/citologia
16.
Redox Biol ; 73: 103180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795546

RESUMO

This study unveils a novel role of pyrogallol (PG), a recognized superoxide generator, in inducing beta-amyloid (Aß) secretion in an Alzheimer's disease (AD) cellular model. Contrary to expectations, the analysis of dihydroethidium fluorescence and UV-VIS spectrum scanning reveals that Aß secretion arises from PG reaction intermediates rather than superoxide or other by-products. Investigation into Aß secretion mechanisms identifies dynasore-dependent endocytosis and BFA-dependent exocytosis as independent pathways, regulated by tiron, tempol, and superoxide dismutase. Cell-type specificity is observed, with 293sw cells showing both pathways, while H4sw cells and primary astrocytes from an AD animal model exclusively exhibit the Aß exocytosis pathway. This exploration contributes to understanding PG's chemical reactions and provides insights into the interplay between environmental factors, free radicals, and AD, linking occupational PG exposure to AD risk as reported in the literature.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Pirogalol , Superóxidos , Peptídeos beta-Amiloides/metabolismo , Humanos , Pirogalol/farmacologia , Pirogalol/análogos & derivados , Superóxidos/metabolismo , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Exocitose , Endocitose , Superóxido Dismutase/metabolismo , Óxidos N-Cíclicos/farmacologia
17.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722309

RESUMO

SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.


Assuntos
Linfócitos B , Linfócitos T CD4-Positivos , Proteínas Qa-SNARE , Animais , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Camundongos , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Feminino , Masculino , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral , Exocitose
18.
Cell Rep ; 43(5): 114218, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38758651

RESUMO

Glucose has long been considered a primary energy source for synaptic function. However, it remains unclear to what extent alternative fuels, such as lactate/pyruvate, contribute to powering synaptic transmission. By detecting individual release events in hippocampal synapses, we find that mitochondrial ATP production regulates basal vesicle release probability and release location within the active zone (AZ), evoked by single action potentials. Mitochondrial inhibition shifts vesicle release closer to the AZ center and alters the efficiency of vesicle retrieval by increasing the occurrence of ultrafast endocytosis. Furthermore, we uncover that terminals can use oxidative fuels to maintain the vesicle cycle during trains of activity. Mitochondria are sparsely distributed along hippocampal axons, and we find that terminals containing mitochondria display enhanced vesicle release and reuptake during high-frequency trains. Our findings suggest that mitochondria not only regulate several fundamental features of synaptic transmission but may also contribute to modulation of short-term synaptic plasticity.


Assuntos
Endocitose , Exocitose , Hipocampo , Mitocôndrias , Sinapses , Vesículas Sinápticas , Vesículas Sinápticas/metabolismo , Endocitose/fisiologia , Animais , Hipocampo/metabolismo , Sinapses/metabolismo , Mitocôndrias/metabolismo , Exocitose/fisiologia , Transmissão Sináptica/fisiologia , Ratos , Trifosfato de Adenosina/metabolismo , Masculino , Potenciais de Ação/fisiologia
19.
Neurochem Res ; 49(8): 2021-2037, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814360

RESUMO

Acetylcholine is the main neurotransmitter at the vertebrate neuromuscular junctions (NMJs). ACh exocytosis is precisely modulated by co-transmitter ATP and its metabolites. It is assumed that ATP/ADP effects on ACh release rely on activation of presynaptic Gi protein-coupled P2Y13 receptors. However, downstream signaling mechanism of ATP/ADP-mediated modulation of neuromuscular transmission remains elusive. Using microelectrode recording and fluorescent indicators, the mechanism underlying purinergic regulation was studied in the mouse diaphragm NMJs. Pharmacological stimulation of purinoceptors with ADP decreased synaptic vesicle exocytosis evoked by both low and higher frequency stimulation. This inhibitory action was suppressed by antagonists of P2Y13 receptors (MRS 2211), Ca2+ mobilization (TMB8), protein kinase C (chelerythrine) and NADPH oxidase (VAS2870) as well as antioxidants. This suggests the participation of Ca2+ and reactive oxygen species (ROS) in the ADP-triggered signaling. Indeed, ADP caused an increase in cytosolic Ca2+ with subsequent elevation of ROS levels. The elevation of [Ca2+]in was blocked by MRS 2211 and TMB8, whereas upregulation of ROS was prevented by pertussis toxin (inhibitor of Gi protein) and VAS2870. Targeting the main components of lipid rafts, cholesterol and sphingomyelin, suppressed P2Y13 receptor-dependent attenuation of exocytosis and ADP-induced enhancement of ROS production. Inhibition of P2Y13 receptors decreased ROS production and increased the rate of exocytosis during intense activity. Thus, suppression of neuromuscular transmission by exogenous ADP or endogenous ATP can rely on P2Y13 receptor/Gi protein/Ca2+/protein kinase C/NADPH oxidase/ROS signaling, which is coordinated in a lipid raft-dependent manner.


Assuntos
Microdomínios da Membrana , Junção Neuromuscular , Oxirredução , Transdução de Sinais , Transmissão Sináptica , Animais , Junção Neuromuscular/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Camundongos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Exocitose/fisiologia , Exocitose/efeitos dos fármacos , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Cálcio/metabolismo
20.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791143

RESUMO

In all cell types, small EVs, very abundant extracellular vesicles, are generated and accumulated within MVB endocytic cisternae. Upon MVB fusion and exocytosis with the plasma membrane, the EVs are released to the extracellular space. In the central nervous system, the release of neuronal EVs was believed to occur only from the surface of the body and dendrites. About 15 years ago, MVB cisternae and EVs were shown to exist and function at synaptic boutons, the terminals' pre- and post-synaptic structures essential for canonical neurotransmitter release. Recent studies have revealed that synaptic EVs are peculiar in many respects and heterogeneous with respect to other neuronal EVs. The distribution of synaptic EVs and the effect of their specific molecules are found at critical sites of their distribution. The role of synaptic EVs could consist of the modulation of canonical neurotransmitter release or a distinct, non-canonical form of neurotransmission. Additional roles of synaptic EVs are still not completely known. In the future, additional investigations will clarify the role of synaptic EVs in pathology, concerning, for example, circuits, trans-synaptic transmission, diagnosis and the therapy of diseases.


Assuntos
Vesículas Extracelulares , Neurônios , Transdução de Sinais , Sinapses , Transmissão Sináptica , Humanos , Vesículas Extracelulares/metabolismo , Animais , Neurônios/metabolismo , Sinapses/metabolismo , Exocitose , Neurotransmissores/metabolismo , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...