Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.474
Filtrar
1.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955468

RESUMO

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Assuntos
Citosol , Mitocôndrias , Proibitinas , RNA de Cadeia Dupla , RNA Mitocondrial , Humanos , Citosol/metabolismo , Mitocôndrias/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Linhagem Celular Tumoral , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transporte de RNA , Exorribonucleases/metabolismo , Exorribonucleases/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Mitocondriais
2.
Nat Commun ; 15(1): 5550, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956014

RESUMO

Oocyte in vitro maturation is a technique in assisted reproductive technology. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (MII) oocytes compared to those matured in vivo in bovines, mice, and humans. The mechanisms underlying this phenomenon are poorly understood. Here, we use poly(A) inclusive RNA isoform sequencing (PAIso-seq) for profiling the transcriptome-wide poly(A) tails in both in vivo and in vitro matured mouse and human oocytes. Our results demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes. Moreover, the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes, contributing to reduced translation of these deadenylase machinery components and subsequently impaired global maternal mRNA deadenylation. Our findings highlight impaired maternal mRNA deadenylation as a distinct molecular defect in in vitro MII oocytes.


Assuntos
Oócitos , Poliadenilação , Oócitos/metabolismo , Animais , Humanos , Feminino , Camundongos , Poli A/metabolismo , Técnicas de Maturação in Vitro de Oócitos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transcriptoma , RNA Mensageiro Estocado/metabolismo , RNA Mensageiro Estocado/genética , Metáfase , Exorribonucleases , Proteínas Repressoras , Proteínas de Ciclo Celular
3.
Biochem Soc Trans ; 52(3): 1243-1251, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38884788

RESUMO

Mitochondrial DNA replication is initiated by the transcription of mitochondrial RNA polymerase (mtRNAP), as mitochondria lack a dedicated primase. However, the mechanism determining the switch between continuous transcription and premature termination to generate RNA primers for mitochondrial DNA (mtDNA) replication remains unclear. The pentatricopeptide repeat domain of mtRNAP exhibits exoribonuclease activity, which is required for the initiation of mtDNA replication in Drosophila. In this review, we explain how this exonuclease activity contributes to primer synthesis in strand-coupled mtDNA replication, and discuss how its regulation might co-ordinate mtDNA replication and transcription in both Drosophila and mammals.


Assuntos
Replicação do DNA , DNA Mitocondrial , Mitocôndrias , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Animais , Mitocôndrias/metabolismo , Mitocôndrias/genética , Humanos , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Drosophila/genética , Drosophila/metabolismo , Exorribonucleases/metabolismo , Exorribonucleases/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
4.
Yeast ; 41(7): 458-472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38874348

RESUMO

The yeast Saccharomyces cerevisiae and most eukaryotes carry two 5' → 3' exoribonuclease paralogs. In yeast, they are called Xrn1, which shuttles between the nucleus and the cytoplasm, and executes major cytoplasmic messenger RNA (mRNA) decay, and Rat1, which carries a strong nuclear localization sequence (NLS) and localizes to the nucleus. Xrn1 is 30% identical to Rat1 but has an extra ~500 amino acids C-terminal extension. In the cytoplasm, Xrn1 can degrade decapped mRNAs during the last round of translation by ribosomes, a process referred to as "cotranslational mRNA decay." The division of labor between the two enzymes is still enigmatic and serves as a paradigm for the subfunctionalization of many other paralogs. Here we show that Rat1 is capable of functioning in cytoplasmic mRNA decay, provided that Rat1 remains cytoplasmic due to its NLS disruption (cRat1). This indicates that the physical segregation of the two paralogs plays roles in their specific functions. However, reversing segregation is not sufficient to fully complement the Xrn1 function. Specifically, cRat1 can partially restore the cell volume, mRNA stability, the proliferation rate, and 5' → 3' decay alterations that characterize xrn1Δ cells. Nevertheless, cotranslational decay is only slightly complemented by cRat1. The use of the AlphaFold prediction for cRat1 and its subsequent docking with the ribosome complex and the sequence conservation between cRat1 and Xrn1 suggest that the tight interaction with the ribosome observed for Xrn1 is not maintained in cRat1. Adding the Xrn1 C-terminal domain to Rat1 does not improve phenotypes, which indicates that lack of the C-terminal is not responsible for partial complementation. Overall, during evolution, it appears that the two paralogs have acquired specific characteristics to make functional partitioning beneficial.


Assuntos
Exorribonucleases , Estabilidade de RNA , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exorribonucleases/metabolismo , Exorribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Citoplasma/metabolismo , Biossíntese de Proteínas
5.
Aging (Albany NY) ; 16(11): 9727-9752, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843383

RESUMO

This study explored the role of 14-3-3σ in carbon ion-irradiated pancreatic adenocarcinoma (PAAD) cells and xenografts and clarified the underlying mechanism. The clinical significance of 14-3-3σ in patients with PAAD was explored using publicly available databases. 14-3-3σ was silenced or overexpressed and combined with carbon ions to measure cell proliferation, cell cycle, and DNA damage repair. Immunoblotting and immunofluorescence (IF) assays were used to determine the underlying mechanisms of 14-3-3σ toward carbon ion radioresistance. We used the BALB/c mice to evaluate the biological behavior of 14-3-3σ in combination with carbon ions. Bioinformatic analysis revealed that PAAD expressed higher 14-3-3σ than normal pancreatic tissues; its overexpression was related to invasive clinicopathological features and a worse prognosis. Knockdown or overexpression of 14-3-3σ demonstrated that 14-3-3σ promoted the survival of PAAD cells after carbon ion irradiation. And 14-3-3σ was upregulated in PAAD cells during DNA damage (carbon ion irradiation, DNA damaging agent) and promotes cell recovery. We found that 14-3-3σ resulted in carbon ion radioresistance by promoting RPA2 and RAD51 accumulation in the nucleus in PAAD cells, thereby increasing homologous recombination repair (HRR) efficiency. Blocking the HR pathway consistently reduced 14-3-3σ overexpression-induced carbon ion radioresistance in PAAD cells. The enhanced radiosensitivity of 14-3-3σ depletion on carbon ion irradiation was also demonstrated in vivo. Altogether, 14-3-3σ functions in tumor progression and can be a potential target for developing biomarkers and treatment strategies for PAAD along with incorporating carbon ion irradiation.


Assuntos
Proteínas 14-3-3 , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas , Reparo de DNA por Recombinação , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Regulação para Baixo , Tolerância a Radiação/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , Radioterapia com Íons Pesados , Carbono , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Dano ao DNA , Feminino
6.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792173

RESUMO

The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.


Assuntos
Antivirais , Inibidores Enzimáticos , Metiltransferases , Simulação de Dinâmica Molecular , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Metiltransferases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Antivirais/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Avaliação Pré-Clínica de Medicamentos , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Sítios de Ligação , Exorribonucleases
7.
Hum Mol Genet ; 33(R1): R26-R33, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38779774

RESUMO

Mitochondria are vital organelles present in almost all eukaryotic cells. Although most of the mitochondrial proteins are nuclear-encoded, mitochondria contain their own genome, whose proper expression is necessary for mitochondrial function. Transcription of the human mitochondrial genome results in the synthesis of long polycistronic transcripts that are subsequently processed by endonucleases to release individual RNA molecules, including precursors of sense protein-encoding mRNA (mt-mRNA) and a vast amount of antisense noncoding RNAs. Because of mitochondrial DNA (mtDNA) organization, the regulation of individual gene expression at the transcriptional level is limited. Although transcription of most protein-coding mitochondrial genes occurs with the same frequency, steady-state levels of mature transcripts are different. Therefore, post-transcriptional processes are important for regulating mt-mRNA levels. The mitochondrial degradosome is a complex composed of the RNA helicase SUV3 (also known as SUPV3L1) and polynucleotide phosphorylase (PNPase, PNPT1). It is the best-characterized RNA-degrading machinery in human mitochondria, which is primarily responsible for the decay of mitochondrial antisense RNA. The mechanism of mitochondrial sense RNA decay is less understood. This review aims to provide a general picture of mitochondrial genome expression, with a particular focus on mitochondrial RNA (mtRNA) degradation.


Assuntos
Mitocôndrias , Polirribonucleotídeo Nucleotidiltransferase , Estabilidade de RNA , RNA Mitocondrial , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Estabilidade de RNA/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , RNA Helicases/metabolismo , RNA Helicases/genética , RNA/metabolismo , RNA/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Endorribonucleases , Exorribonucleases , Complexos Multienzimáticos
8.
Biochem Biophys Res Commun ; 721: 150003, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772212

RESUMO

BACKGROUND: In recent years, the incidence rate of nonalcoholic fatty liver disease (NAFLD) has ascended with the increasing number of metabolic diseases such as obesity and diabetes, which will bring great medical burden to society. At present, multiple scientific experiments have found that the CCR4-NOT complex can participate in regulating obesity and energy metabolism. This study is designed to explore the role and mechanism of CCR4-NOT transcription complex subunit 7 (CNOT7), a subunit of the CCR4-NOT complex in liver lipid deposition. METHODS: To establish the NAFLD cell model, palmitic acid (PA) was utilized to stimulate HepG2 cells and LO2 cells, promoting intracellular lipid deposition. CNOT7 was knockdown by siRNA and lentivirus to evaluate the effect of CNOT7 in NAFLD. RESULTS: Our results demonstrated that the expression of CNOT7 was increased in the NAFLD cell model. After knocking down CNOT7, the lipid deposition declined in HepG2 or LO2 cells treated by PA reduced. We found the lipid synthesis genes and the lipid uptake and transport factors in the CNOT7 knockdown group were significantly downregulated compared to the non-knockdown group. Furthermore, knockdown of CNOT7 might promote fatty acid oxidation. CONCLUSION: Knocking down CNOT7 can improve lipid deposition and CNOT7 may be a potential therapeutic target for NAFLD.


Assuntos
Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Células Hep G2 , Técnicas de Silenciamento de Genes , Ácido Palmítico/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fígado/metabolismo , Fígado/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Exorribonucleases
9.
Nucleic Acids Res ; 52(10): 5841-5851, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716877

RESUMO

Therapeutic fluoropyrimidines 5-fluorouracil (5-FU) and 5-fluorocytosine (5-FC) are in long use for treatment of human cancers and severe invasive fungal infections, respectively. 5-Fluorouridine triphosphate represents a bioactive metabolite of both drugs and is incorporated into target cells' RNA. Here we use the model fungus Saccharomyces cerevisiae to define fluorinated tRNA as a key mediator of 5-FU and 5-FC cytotoxicity when specific tRNA methylations are absent. tRNA methylation deficiency caused by loss of Trm4 and Trm8 was previously shown to trigger an RNA quality control mechanism resulting in partial destabilization of hypomodified tRNAValAAC. We demonstrate that, following incorporation into tRNA, fluoropyrimidines strongly enhance degradation of yeast tRNAValAAC lacking Trm4 and Trm8 dependent methylations. At elevated temperature, such effect occurs already in absence of Trm8 alone. Genetic approaches and quantification of tRNA modification levels reveal that enhanced fluoropyrimidine cytotoxicity results from additional, drug induced uridine modification loss and activation of tRNAValAAC decay involving the exonuclease Xrn1. These results suggest that inhibition of tRNA methylation may be exploited to boost therapeutic efficiency of 5-FU and 5-FC.


Assuntos
Flucitosina , Fluoruracila , RNA de Transferência , Saccharomyces cerevisiae , Exorribonucleases/metabolismo , Exorribonucleases/genética , Flucitosina/farmacologia , Fluoruracila/farmacologia , Metilação , Estabilidade de RNA/efeitos dos fármacos , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , tRNA Metiltransferases/metabolismo , tRNA Metiltransferases/genética , Uridina/metabolismo
10.
Genome Biol ; 25(1): 140, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807229

RESUMO

RNA-binding proteins (RBPs) regulate key aspects of RNA processing including alternative splicing, mRNA degradation and localization by physically binding RNA molecules. Current methods to map these interactions, such as CLIP, rely on purifying single proteins at a time. Our new method, ePRINT, maps RBP-RNA interaction networks on a global scale without purifying individual RBPs. ePRINT uses exoribonuclease XRN1 to precisely map the 5' end of the RBP binding site and uncovers direct and indirect targets of an RBP of interest. Importantly, ePRINT can also uncover RBPs that are differentially activated between cell fate transitions, including neural progenitor differentiation into neurons.


Assuntos
Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Exorribonucleases/metabolismo , Humanos , RNA/metabolismo , Animais , Ligação Proteica
11.
J Mol Graph Model ; 131: 108803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38815531

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome encodes 29 proteins including four structural, 16 nonstructural (nsps), and nine accessory proteins (https://epimedlab.org/sars-cov-2-proteome/). Many of these proteins contain potential targetable sites for the development of antivirals. Despite the widespread use of vaccinations, the emergence of variants necessitates the investigation of new therapeutics and antivirals. Here, the EpiMed Coronabank Chemical Collection (https://epimedlab.org/crl/) was utilized to investigate potential antivirals against the nsp14 exoribonuclease (ExoN) domain. Molecular docking was performed to evaluate the binding characteristics of our chemical library against the nsp14 ExoN site. Based on the initial screen, trisjuglone, ararobinol, corilagin, and naphthofluorescein were identified as potential lead compounds. Molecular dynamics (MD) simulations were subsequently performed, with the results highlighting the stability of the lead compounds in the nsp14 ExoN site. Protein-RNA docking revealed the potential for the lead compounds to disrupt the interaction with RNA when bound to the ExoN site. Moreover, hypericin, cyanidin-3-O-glucoside, and rutin were previously identified as lead compounds targeting the papain-like protease (PLpro) naphthalene binding site. Through performing MD simulations, the stability and interactions of lead compounds with PLpro were further examined. Overall, given the critical role of the exonuclease activity of nsp14 in ensuring viral fidelity and the multifunctional role of PLpro in viral pathobiology and replication, these nsps represent important targets for antiviral drug development. Our databases can be utilized for in silico studies, such as the ones performed here, and this approach can be applied to other potentially druggable SARS-CoV-2 protein targets.


Assuntos
Antivirais , Simulação de Acoplamento Molecular , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , SARS-CoV-2/efeitos dos fármacos , Humanos , Exorribonucleases/metabolismo , Exorribonucleases/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Naftalenos/química , Naftalenos/farmacologia , Ligação Proteica , Tratamento Farmacológico da COVID-19 , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Simulação de Dinâmica Molecular , Domínios Proteicos
12.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569554

RESUMO

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Assuntos
Adenosina , Adenosina/análogos & derivados , RNA Helicases DEAD-box , Exorribonucleases , Instabilidade Genômica , Metiltransferases , Estruturas R-Loop , RNA Polimerase II , Terminação da Transcrição Genética , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Dano ao DNA , Células HeLa , RNA/metabolismo , RNA/genética , Transcrição Gênica , Metilação de RNA
13.
Exp Mol Med ; 56(5): 1080-1106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689093

RESUMO

Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.


Assuntos
Exorribonucleases , Regulação Neoplásica da Expressão Gênica , Hepacivirus , MicroRNAs , Neoplasias , Proteínas de Ligação a RNA , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Neoplasias/genética , Neoplasias/metabolismo , Exorribonucleases/metabolismo , Exorribonucleases/genética , Animais , Hepacivirus/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Hepatite C/metabolismo , Hepatite C/genética , Hepatite C/virologia
14.
Nature ; 628(8009): 887-893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538796

RESUMO

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Assuntos
Microscopia Crioeletrônica , Exorribonucleases , RNA Polimerase II , RNA Mensageiro , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminação da Transcrição Genética , Exorribonucleases/química , Exorribonucleases/metabolismo , Exorribonucleases/ultraestrutura , Modelos Moleculares , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/ultraestrutura , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Domínios Proteicos , RNA Fúngico/biossíntese , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/ultraestrutura
15.
Biochem J ; 481(7): 481-498, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38440860

RESUMO

The protein kinase Gcn2 and its effector protein Gcn1 are part of the general amino acid control signalling (GAAC) pathway best known in yeast for its function in maintaining amino acid homeostasis. Under amino acid limitation, Gcn2 becomes activated, subsequently increasing the levels of phosphorylated eIF2α (eIF2α-P). This leads to the increased translation of transcriptional regulators, such as Gcn4 in yeast and ATF4 in mammals, and subsequent re-programming of the cell's gene transcription profile, thereby allowing cells to cope with starvation. Xrn1 is involved in RNA decay, quality control and processing. We found that Xrn1 co-precipitates Gcn1 and Gcn2, suggesting that these three proteins are in the same complex. Growth under starvation conditions was dependent on Xrn1 but not on Xrn1-ribosome association, and this correlated with reduced eIF2α-P levels. Constitutively active Gcn2 leads to a growth defect due to eIF2α-hyperphosphorylation, and we found that this phenotype was independent of Xrn1, suggesting that xrn1 deletion does not enhance eIF2α de-phosphorylation. Our study provides evidence that Xrn1 is required for efficient Gcn2 activation, directly or indirectly. Thus, we have uncovered a potential new link between RNA metabolism and the GAAC.


Assuntos
Fator de Iniciação 2 em Eucariotos , Exorribonucleases , Fatores de Alongamento de Peptídeos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aminoácidos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Mamíferos/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo
16.
RNA ; 30(6): 662-679, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38443115

RESUMO

Despite being predicted to lack coding potential, cytoplasmic long noncoding (lnc)RNAs can associate with ribosomes. However, the landscape and biological relevance of lncRNA translation remain poorly studied. In yeast, cytoplasmic Xrn1-sensitive unstable transcripts (XUTs) are targeted by nonsense-mediated mRNA decay (NMD), suggesting a translation-dependent degradation process. Here, we report that XUTs are pervasively translated, which impacts their decay. We show that XUTs globally accumulate upon translation elongation inhibition, but not when initial ribosome loading is impaired. Ribo-seq confirmed ribosomes binding to XUTs and identified ribosome-associated 5'-proximal small ORFs. Mechanistically, the NMD-sensitivity of XUTs mainly depends on the 3'-untranslated region length. Finally, we show that the peptide resulting from the translation of an NMD-sensitive XUT reporter exists in NMD-competent cells. Our work highlights the role of translation in the posttranscriptional metabolism of XUTs. We propose that XUT-derived peptides could be exposed to natural selection, while NMD restricts XUT levels.


Assuntos
Exorribonucleases , Degradação do RNAm Mediada por Códon sem Sentido , Biossíntese de Proteínas , RNA Longo não Codificante , Ribossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Exorribonucleases/metabolismo , Exorribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Regiões 3' não Traduzidas , Fases de Leitura Aberta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA
17.
Nucleic Acids Res ; 52(11): 6441-6458, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499483

RESUMO

Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.


Assuntos
Metiltransferases , RNA Viral , SARS-CoV-2 , Proteínas não Estruturais Virais , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Metiltransferases/metabolismo , Metiltransferases/genética , Metiltransferases/química , Metilação , RNA Viral/metabolismo , RNA Viral/química , RNA Viral/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , Humanos , Ligação Proteica , Capuzes de RNA/metabolismo , Capuzes de RNA/genética , Regulação Alostérica , COVID-19/virologia , COVID-19/genética , Multimerização Proteica , Replicação Viral/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/química , Proteínas Virais Reguladoras e Acessórias
18.
Cancer Lett ; 592: 216761, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490326

RESUMO

Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with limited treatment options and poor prognosis. In this study, we reveal the pivotal role of Stratifin (SFN), also recognized as 14-3-3σ, in driving HCC progression. Our investigation underscores a substantial upregulation of SFN within HCC tissues, manifesting a significant association with worse prognostic outcomes among HCC patients. In vitro and in vivo experiments reveal that SFN overexpression significantly amplifies proliferation, mitigates sorafenib-induced effects on HCC cells, and enhances tumorigenesis. While SFN silencing exerts converse effects on HCC progression. Additionally, we unveil a critical interaction between SFN and AKT, where SFN boosts AKT kinase activity by disrupting the binding of PHLPP2 and AKT, thereby intensifying the malignant progression of HCC cells. In conclusion, this study identifies the oncogenic role of SFN and elucidates the regulatory mechanism of the SFN/AKT axis in HCC, which may provide valuable insights into the mechanisms of HCC progression and potential targets for therapeutic intervention.


Assuntos
Proteínas 14-3-3 , Carcinoma Hepatocelular , Proliferação de Células , Progressão da Doença , Exorribonucleases , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Exorribonucleases/metabolismo , Exorribonucleases/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pessoa de Meia-Idade
19.
Front Biosci (Elite Ed) ; 16(1): 1, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38538525

RESUMO

BACKGROUND: Xrn1 exoribonuclease is the major mRNA degradation enzyme in Saccharomyces cerevisiae. In exponentially growing cells, Xrn1 is localised in the yeast cells and directs the degradation of mRNA molecules. Xrn1 is gradually deposited and presumably inactivated in the processing bodies (P-bodies) as the yeast population ages. Xrn1 can also localise to the membrane compartment of the arginine permease Can1/eisosome compartment at the yeast plasma membrane. This localisation correlates with the metabolic (diauxic) shift from glucose fermentation to respiration, although the relevance of this Xrn1 localisation remains unknown. METHODS: We monitored the growth rates and morphology of Xrn1-green fluorescent protein (GFP) cells compared to wild-type and Δxrn1 cells and observed the Xrn1-GFP localisation pattern in different media types for up to 72 hours using fluorescence microscopy. RESULTS: We present the dynamic changes in the localisation of Xrn1 as a versatile tool for monitoring the growth of yeast populations at the single-cell level using fluorescence microscopy. CONCLUSIONS: The dynamic changes in the localisation of Xrn1 can be a versatile tool for monitoring the growth of yeast populations at the single-cell level. Simultaneously, Xrn1 localisation outside of P-bodies in post-diauxic cells supports its storage and cytoprotective function, yet the role of P-bodies in cell metabolism has still not yet been entirely elucidated.


Assuntos
Exorribonucleases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Crescimento Demográfico , RNA Mensageiro/metabolismo
20.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38418089

RESUMO

ISG20 is an IFN-induced 3'-5' RNA exonuclease that acts as a broad antiviral factor. At present, the features that expose RNA to ISG20 remain unclear, although recent studies have pointed to the modulatory role of epitranscriptomic modifications in the susceptibility of target RNAs to ISG20. These findings raise the question as to how cellular RNAs, on which these modifications are abundant, cope with ISG20. To obtain an unbiased perspective on this topic, we used RNA-seq and biochemical assays to identify elements that regulate the behavior of RNAs against ISG20. RNA-seq analyses not only indicate a general preservation of the cell transcriptome, but they also highlight a small, but detectable, decrease in the levels of histone mRNAs. Contrarily to all other cellular ones, histone mRNAs are non-polyadenylated and possess a short stem-loop at their 3' end, prompting us to examine the relationship between these features and ISG20 degradation. The results we have obtained indicate that poly(A)-binding protein loading on the RNA 3' tail provides a primal protection against ISG20, easily explaining the overall protection of cellular mRNAs observed by RNA-seq. Terminal stem-loop RNA structures have been associated with ISG20 protection before. Here, we re-examined this question and found that the balance between resistance and susceptibility to ISG20 depends on their thermodynamic stability. These results shed new light on the complex interplay that regulates the susceptibility of different classes of viruses against ISG20.


Assuntos
Exonucleases , Exorribonucleases , Exonucleases/genética , Exonucleases/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Histonas , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...