Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.270
Filtrar
1.
Chem Commun (Camb) ; 60(58): 7491-7494, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38946429

RESUMO

By employing an aptamer as the bridge and combining catalytic hairpin assembly with the Au aggregation amplification effect, a lateral flow assay (LFA) is designed for simultaneous detection of liver cancer-associated miRNA and exosomes. The LFA can differentiate between liver cancer patients and healthy individuals with simple operation and high accuracy.


Assuntos
Aptâmeros de Nucleotídeos , Exossomos , Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , Exossomos/química , Exossomos/metabolismo , Aptâmeros de Nucleotídeos/química , Ouro/química , Técnicas Biossensoriais
2.
Anal Chim Acta ; 1316: 342819, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969421

RESUMO

BACKGROUND: Exosomes, as emerging biomarkers in liquid biopsies in recent years, offer profound insights into cancer diagnostics due to their unique molecular signatures. The glycosylation profiles of exosomes have emerged as potential biomarkers, offering a novel and less invasive method for cancer diagnosis and monitoring. Colorectal cancer (CRC) represents a substantial global health challenge and burden. Thus there is a great need for the aberrant glycosylation patterns on the surface of CRC cell-derived exosomes, proposing them as potential biomarkers for tumor characterization. RESULTS: The interactions of 27 lectins with exosomes from three CRC cell lines (SW480, SW620, HCT116) and one normal colon epithelial cell line (NCM460) have been analyzed by the lectin microarray. The result indicates that Ulex Europaeus Agglutinin I (UEA-I) exhibits high affinity and specificity towards exosomes derived from SW480 cells. The expression of glycosylation related genes within cells has been analyzed by high-throughput quantitative polymerase chain reaction (HT-qPCR). The experimental result of HT-qPCR is consistent with that of lectin microarray. Moreover, the limit of detection (LOD) of UEA-I microarray is calculated to be as low as 2.7 × 105 extracellular vehicles (EVs) mL-1 (three times standard deviation (3σ) of blank sample). The UEA-I microarray has been successfully utilized to dynamically monitor the progression of tumors in mice-bearing SW480 CRC subtype, applicable in tumor sizes ranging from 2 mm to 20 mm in diameter. SIGNIFICANCE: The results reveal that glycan expression pattern of exosome is linked to specific CRC subtypes, and regulated by glycosyltransferase and glycosidase genes of mother cells. Our findings illuminate the potential of glycosylation molecules on the surface of exosomes as reliable biomarkers for diagnosis of tumor at early stage and monitoring of cancer progression.


Assuntos
Neoplasias Colorretais , Exossomos , Lectinas , Polissacarídeos , Exossomos/metabolismo , Exossomos/química , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/diagnóstico , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/química , Animais , Lectinas/metabolismo , Lectinas/química , Camundongos , Progressão da Doença , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo
3.
J Breath Res ; 18(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988301

RESUMO

Noninvasive sample sources of exosomes, such as exhaled breath and sputum, which are in close proximity to the tumor microenvironment and may contain biomarkers indicative of lung cancer, are far more permissive than invasive sample sources for biomarker screening. Standardized exosome extraction and characterization approaches for low-volume noninvasive samples are critically needed. We isolated and characterized exhaled breath condensate (EBC) and sputum exosomes from healthy nonsmokers (n= 30), tobacco smokers (n= 30), and lung cancer patients (n= 40) and correlated the findings with invasive sample sources. EBC samples were collected by using commercially available R-Tubes. To collect sputum samples the participants were directed to take deep breaths, hold their breath, and cough in a collection container. Dynamic light scattering, nanoparticle tracking analysis, and transmission electron microscopy were used to evaluate the exosome morphology. Protein isolation, western blotting, exosome quantification via EXOCET, and Fourier transform infrared spectroscopy were performed for molecular characterization. Exosomes were successfully isolated from EBC and sputum samples, and their yields were adequate and sufficiently pure for subsequent downstream processing and characterization. The exosomes were confirmed based on their size, shape, and surface marker expression. Remarkably, cancer exosomes were the largest in size not only in the plasma subgroups, but also in the EBC (p < 0.05) and sputum (p= 0.0036) subgroups, according to our findings. A significant difference in exosome concentrations were observed between the control sub-groups (p < 0.05). Our research confirmed that exosomes can be extracted from noninvasive sources, such as EBC and sputum, to investigate lung cancer diagnostic biomarkers for research, clinical, and early detection in smokers.


Assuntos
Biomarcadores Tumorais , Testes Respiratórios , Expiração , Exossomos , Neoplasias Pulmonares , Escarro , Humanos , Escarro/química , Neoplasias Pulmonares/diagnóstico , Exossomos/química , Testes Respiratórios/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/análise , Adulto , Idoso
4.
J Nanobiotechnology ; 22(1): 395, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965553

RESUMO

Messenger RNA (mRNA) has emerged as a promising therapeutic molecule with numerous clinical applications in treating central nervous system disorders, tumors, COVID-19, and other diseases. mRNA therapies must be encapsulated into safe, stable, and effective delivery vehicles to preserve the cargo from degradation and prevent immunogenicity. Exosomes have gained growing attention in mRNA delivery because of their good biocompatibility, low immunogenicity, small size, unique capacity to traverse physiological barriers, and cell-specific tropism. Moreover, these exosomes can be engineered to utilize the natural carriers to target specific cells or tissues. This targeted approach will enhance the efficacy and reduce the side effects of mRNAs. However, difficulties such as a lack of consistent and reliable methods for exosome purification and the efficient encapsulation of large mRNAs into exosomes must be addressed. This article outlines current breakthroughs in cell-derived vesicle-mediated mRNA delivery and its biomedical applications.


Assuntos
Exossomos , RNA Mensageiro , SARS-CoV-2 , Exossomos/metabolismo , Exossomos/química , Humanos , RNA Mensageiro/genética , Animais , COVID-19/terapia , Técnicas de Transferência de Genes , Neoplasias/terapia , Sistemas de Liberação de Medicamentos/métodos
5.
Anal Chem ; 96(29): 12084-12092, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39001802

RESUMO

Near-infrared (NIR) luminescent lanthanide materials hold great promise for bioanalysis, as they have anti-interference properties. The approach of efficient luminescence is sensitization through a reasonable chromophore to overcome the obstacle of the aqueous phase. The involvement of the surfactant motif is an innovative strategy to arrange the amphiphilic groups to be regularly distributed near the polymer to form a closed sensitized space. Herein, a lanthanide polymer (TCPP-PEI70K-FITC@Yb/SDBS) is designed in which the meso-tetra(4-carboxyphenyl)porphine (TCPP) ligand serves as both a sensitizer and photocatalytic switch. The surfactant sodium dodecyl benzenesulfonate (SDBS) wraps the photosensitive polymers to form a hydrophobic layer, which augments the light-harvesting ability and expedites its photocatalysis. TCPP-PEI70K-FITC@Yb/SDBS is subsequently applied as an amplified photocatalysis toolbox for universally regulating the generation of reactive oxygen species (ROS). Boosting 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to produce blue products, a dual-mode biosensor is fabricated for improving the diagnosis of programmed death ligand-1-positive (PDL1) cancer exosomes. Exosomes were captured by Fe3O4 modified by the PDL1 aptamer, enabling replacement of alkaline phosphatase (ALP)-labeled multiple hybridized chains; then, the isolated ALP triggered a hydrolysis reaction to block the generation of oxTMB. Detection sensitivity improves by 1 order of magnitude through SDBS modulation, down to 104 particles/mL. The sensor performed well clinically in distinguishing cancer patients from healthy individuals, expanding physiological applications of near-infrared lanthanide luminescence.


Assuntos
Elementos da Série dos Lantanídeos , Luz , Polímeros , Humanos , Elementos da Série dos Lantanídeos/química , Polímeros/química , Catálise , Exossomos/química , Exossomos/metabolismo , Raios Infravermelhos , Neoplasias/diagnóstico , Processos Fotoquímicos , Técnicas Biossensoriais , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
6.
J Nanobiotechnology ; 22(1): 421, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014370

RESUMO

BACKGROUND: Prostate cancer (PCa) is the most prevalent cancer among males, emphasizing the critical need for precise diagnosis and treatment to enhance patient prognosis. Recent studies have extensively utilized urine exosomes from patients with cancer for targeted delivery. This study aimed to employ highly sensitive magnetic particle imaging (MPI) and fluorescence molecular imaging (FMI) to monitor the targeted delivery of an exosome-loaded platform at the tumour site, offering insights into a potential combined photothermal and magnetic thermal therapy regime for PCa. RESULTS: MPI and FMI were utilized to monitor the in vivo retention performance of exosomes in a prostate tumour mouse model. The exosome-loaded platform exhibited robust homologous targeting ability during imaging (SPIONs@EXO-Dye:66·48%±3·85%; Dye-SPIONs: 34·57%±7·55%, **P<0·01), as verified by in vitro imaging and in vitro tissue Prussian blue staining. CONCLUSIONS: The experimental data underscore the feasibility of using MPI for in vivo PCa imaging. Furthermore, the exosome-loaded platform may contribute to the precise diagnosis and treatment of PCa.


Assuntos
Exossomos , Neoplasias da Próstata , Animais , Masculino , Exossomos/metabolismo , Exossomos/química , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Camundongos , Humanos , Linhagem Celular Tumoral , Imagem Óptica/métodos , Modelos Animais de Doenças , Terapia Fototérmica/métodos , Imagem Molecular/métodos , Camundongos Nus
7.
J Colloid Interface Sci ; 672: 179-199, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838627

RESUMO

Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.


Assuntos
Regeneração Óssea , Diferenciação Celular , Exossomos , Gelatina , Hidrogéis , Imunomodulação , Células-Tronco Mesenquimais , Osteogênese , Exossomos/química , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , Gelatina/química , Osteogênese/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Humanos , Camundongos , Diferenciação Celular/efeitos dos fármacos , Animais , Imunomodulação/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Células RAW 264.7 , Metacrilatos/química , Metacrilatos/farmacologia , Tamanho da Partícula , Células Cultivadas , Propriedades de Superfície , Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais/química
8.
Anal Methods ; 16(26): 4262-4267, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38884118

RESUMO

Exosomes have significant functions in intercellular communication, as well as in tumor migration and invasion. Nevertheless, the precise identification of exosomes poses a significant obstacle due to their low abundance in biofluids and potential disruption caused by free protein molecules, such as CD63 protein. In this study, we have developed a signal amplification method for precise detection of exosomes using a proximity ligation hybridization triggered structure-switching approach. The method involves the dual-recognition of exosomes by two probes: an aptamer probe that recognizes the exosomal surface protein CD63 (L1 probe), and a cholesterol probe that targets the biolipid layer of the exosomes (L2 probe). Based on the dual-recognition of exosomes, we have successfully developed an accurate and sensitive approach that integrates the proximity ligation hybridization technique with a structure-switching based signal cycle. This approach allows for the simultaneous analysis of two biomarkers, enabling both quantification and tracing of exosomes without the need for enzymes. Eventually, the proposed method exhibits a wide detection range of 5 orders of magnitude and a low limit of detection of 36 particles per µL, making it suitable for a wide range of applications in the fields of biological science, biomedical engineering, and personalized medicine.


Assuntos
Exossomos , Hibridização de Ácido Nucleico , Tetraspanina 30 , Exossomos/química , Exossomos/metabolismo , Humanos , Tetraspanina 30/metabolismo , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Técnicas Biossensoriais/métodos
9.
ACS Appl Mater Interfaces ; 16(26): 33053-33069, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38899855

RESUMO

The primary pathology of periodontitis involves the gradual deterioration of periodontal tissues resulting from the inflammatory reaction triggered by bacterial infection. In this study, a novel drug for periodontal pocket injection, known as the Shed-Cu-HA hydrogel, was developed by incorporating copper ions (Cu2+) and Shed-derived exosomes (Shed-exo) inside the hyaluronic acid (HA) hydrogel. Suitable concentrations of Cu2+ and Shed-exo released from Shed-Cu-HA enhanced cell viability and cell proliferation of human periodontal ligament stem cells. Additionally, the Shed-Cu-HA demonstrated remarkable antibacterial effects against the key periodontal pathogen (Aa) owing to the synergistic effect of Cu2+ and HA. Furthermore, the material effectively suppressed macrophage inflammatory response via the IL-6/JAK2/STAT3 pathway. Moreover, the Shed-Cu-HA, combining the inflammation-regulating properties of HA with the synergistic osteogenic activity of Shed-exo and Cu2+, effectively upregulated the expression of genes and proteins associated with osteogenic differentiation. The experimental findings from a mouse periodontitis model demonstrated that the administration of Shed-Cu-HA effectively reduced the extent of inflammatory cell infiltration and bacterial infections in gingival tissues and facilitated the regeneration of periodontal bone tissues and collagen after 2 and 4 weeks of injection. Consequently, it holds significant prospects for future applications in periodontitis treatment.


Assuntos
Antibacterianos , Regeneração Óssea , Cobre , Exossomos , Ácido Hialurônico , Hidrogéis , Osteogênese , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Osteogênese/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Camundongos , Cobre/química , Cobre/farmacologia , Regeneração Óssea/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/química , Ligamento Periodontal/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Periodontite/tratamento farmacológico , Periodontite/patologia , Periodontite/microbiologia , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
10.
Anal Chim Acta ; 1314: 342792, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38876514

RESUMO

Thyroid cancer is the most prevalent endocrine malignancy. The development of sensitive and reliable methods to detect the thyroid cancer is the currently urgent requirement. Herein, we developed an electrochemiluminescence (ECL) biosensor based on MBene derivative quantum dots (MoB QDs) and Ag NP-on-mirror (NPoM) nanocavity structure. On the one hand, MBene QDs as a novel luminescent material in the ECL process was reported for the first time, which can react with H2O2 as co-reactant. On the other hand, the NPoM nanostructure was successfully constructed with the Ag mirror and Ag NPs to provide highly localized hot spots. The NPoM structure had high degree of light field confinement and electromagnetic field enhancement, which can amplify the ECL signal as the signal modulator. Therefore, the synergistic effect of the nanocavity and localized surface plasmon resonance (LSPR) mode in the NPoM facilitated the enhancement of the ECL signal of MoB QDs over 21.7 times. Subsequently, the proposed ECL biosensing system was employed to analyze the expression level of miRNA-222-3p in the thyroid cancer exosome. The results indicated the relative association between miRNA-222-3p and BRAFV600E mutation. The MoB QDs/NPoM biosensor displayed the ideal potential in assessing thyroid cancer progression for advancing clinical diagnosis applications.


Assuntos
Exossomos , MicroRNAs , Pontos Quânticos , Neoplasias da Glândula Tireoide , MicroRNAs/análise , Pontos Quânticos/química , Humanos , Exossomos/química , Neoplasias da Glândula Tireoide/diagnóstico , Medições Luminescentes , Técnicas Eletroquímicas , Técnicas Biossensoriais , Prata/química , Nanopartículas Metálicas/química , Limite de Detecção
11.
ACS Sens ; 9(6): 3444-3454, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38847105

RESUMO

Programmed death ligand-1 (PD-L1)-expressing exosomes are considered a potential marker for diagnosis and classification of lung adenocarcinoma (LUAD). There is an urgent need to develop highly sensitive and accurate chemiluminescence (CL) immunosensors for the detection of PD-L1-expressing exosomes. Herein, N-(4-aminobutyl)-N-ethylisopropanol-functionalized nickel-cobalt hydroxide (NiCo-DH-AA) with a hollow nanoflower structure as a highly efficient CL nanoprobe was synthesized using gold nanoparticles as a "bridge". The resulting NiCo-DH-AA exhibited a strong and stable CL emission, which was ascribed to the exceptional catalytic capability and large specific surface area of NiCo-DH, along with the capacity of AuNPs to facilitate free radical generation. On this basis, an ultrasensitive sandwich CL immunosensor for the detection of PD-L1-expressing exosomes was constructed by using PD-L1 antibody-modified NiCo-DH-AA as an effective signal probe and rabbit anti-CD63 protein polyclonal antibody-modified carboxylated magnetic bead as a capture platform. The immunosensor demonstrated outstanding analytical performance with a wide detection range of 4.75 × 103-4.75 × 108 particles/mL and a low detection limit of 7.76 × 102 particles/mL, which was over 2 orders of magnitude lower than the reported CL method for detecting PD-L1-expressing exosomes. Importantly, it was able to differentiate well not only between healthy persons and LUAD patients (100% specificity and 87.5% sensitivity) but also between patients with minimally invasive adenocarcinoma and invasive adenocarcinoma (92.3% specificity and 52.6% sensitivity). Therefore, this study not only presents an ultrasensitive and accurate diagnostic method for LUAD but also offers a novel, simple, and noninvasive approach for the classification of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Antígeno B7-H1 , Cobalto , Exossomos , Neoplasias Pulmonares , Níquel , Humanos , Níquel/química , Cobalto/química , Antígeno B7-H1/análise , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/imunologia , Neoplasias Pulmonares/diagnóstico , Exossomos/química , Imunoensaio/métodos , Hidróxidos/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Ouro/química , Medições Luminescentes/métodos , Limite de Detecção
12.
Bioelectrochemistry ; 159: 108753, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38833812

RESUMO

MiR-1246 in breast cancer-derived exosomes was a promising biomarker for early diagnosis of breast cancer(BC). However, the low abundance, high homology and complex background interference make the accurate quantitative detection of miR-1246 facing great challenges. In this study, we developed an electrochemical biosensor based on the subtly combined of CRISPR/Cas12a, double-stranded specific nuclease(DSN) and magnetic nanoparticles(MNPs) for the detection of miR-1246 in BC-derived exosomes. Ascribed to the good synergistic effect of DSN, Cas12a and MNPs, the developed electrochemical biosensor exhibited excellent performance with the linear range from 500 aM to 5 pM, and the detection limit as low down to about 50 aM. The target-specific triggered enzyme-digest activity of DSN and Cas12a system, as well as the powerful separation ability of MNPs ensure the high specificity of developed electrochemical biosensor which can distinguish single base mismatches. In addition, the developed electrochemical biosensor has been successfully applied to detect miR-1246 in blood-derived exosomes and realize distinguishing the BC patients from the healthy individuals. It is expected that the well-designed biosensing platform will open up new avenues for clinical liquid biopsy and early screening of breast cancer, as well as provide deeper insights into clinical oncology treatment.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Sistemas CRISPR-Cas , Técnicas Eletroquímicas , Exossomos , MicroRNAs , Exossomos/química , Exossomos/metabolismo , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , MicroRNAs/análise , MicroRNAs/genética , Feminino , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas de Magnetita/química , Proteínas de Bactérias , Endodesoxirribonucleases , Proteínas Associadas a CRISPR
13.
Biosens Bioelectron ; 261: 116492, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38870828

RESUMO

Exosomes have been considered as promising biomarkers for cancer diagnosis due to their abundant information from originating cells. However, sensitive and reliable detection of exosomes is still facing technically challenges due to the lack of a sensing platform with high sensitivity and reproducibility. To address the challenges, here we propose a portable surface plasmon resonance (SPR) sensing of exosomes with a three-layer Au mirror/SiO2 spacer/Au nanohole sensor, fabricated by an economical polystyrene nanosphere self-assembly method. The SiO2 spacer can act as an optical cavity and induce mode hybridization, leading to excellent optimization of both sensitivity and full width at half maximum compared with normal single layer Au nanohole sensors. When modified with CD63 or EpCAM aptamers, a detection of limit (LOD) of as low as 600 particles/µL was achieved. The sensors showed good capability to distinguish between non-tumor derived L02 exosomes and tumor derived HepG2 exosomes. Additionally, high reproducibility was also achieved in detection of artificial serum samples with RSD as low as 2%, making it feasible for clinical applications. This mode hybridization plasmonic sensor provides an effective approach to optimize the detection sensitivity of exosomes, pushing SPR sensing one step further towards cancer diagnosis.


Assuntos
Exossomos , Ouro , Limite de Detecção , Dióxido de Silício , Ressonância de Plasmônio de Superfície , Exossomos/química , Humanos , Ouro/química , Dióxido de Silício/química , Aptâmeros de Nucleotídeos/química , Molécula de Adesão da Célula Epitelial , Tetraspanina 30 , Células Hep G2 , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Reprodutibilidade dos Testes , Desenho de Equipamento , Nanosferas/química , Hibridização de Ácido Nucleico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise
14.
Micron ; 184: 103662, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38838454

RESUMO

Blood is a two-component system with two levels of hierarchy: the macrosystem of blood formed elements and the dispersed system of blood nanoparticles. Biological nanoparticles are the key participants in communication between the irradiated and non-irradiated cells and inducers of the non-targeted effects of ionizing radiation. The work aimed at studying by atomic force microscopy the structural, mechanical, and electrical properties of exosomes and lipoproteins (LDL/VLDL) isolated from rat blood after its exposure to X-rays in vitro. MATERIALS AND METHODS: The whole blood of Wistar rats fed with a high-fat diet was irradiated with X-rays (1 and 100 Gy) in vitro. The structural and mechanical properties (the elastic modulus and nonspecific adhesion force) of exosome and lipoprotein isolates from the blood by ultracentrifugation method were studied using Bruker Bioscope Resolve atomic force microscope in PF QNM mode, their electric properties (the zeta-potential) was measured by electrophoretic mobility. RESULTS: Lipoproteins isolated from non-irradiated blood were softer (Me(LQ; UQ): 7.8(4.9;12.1) MPa) compared to blood nanoparticles of its exosome fraction (34.8(22.6;44.9) MPa) containing both exosomes and non-membrane nanoparticles. X-ray blood irradiation with a dose of 1 Gy significantly weakened the elastic properties of lipoproteins. Exposure of the blood to 100 Gy X-rays made lipoproteins stiffer and their nonspecific adhesive properties stronger. The radiation effects on the mechanical parameters of exosomes and non-membrane nanoparticles in exosome fractions differed. The significant radiation-induced change in electric properties of the studied nanoparticles was detected only for lipoproteins in the blood irradiated with 1 Gy X-rays. The low-dose radiation-induced changes in zeta-potential and increase in lipoprotein size with the appearance of a soft thick surface layer indicate the formation of the modified lipoproteins covered with a corona from macromolecules of irradiated blood. CONCLUSION: Our data obtained using the nanomechanical mapping mode of AFM are the first evidence of the significant radiation-induced changes in the structural and mechanical properties of the dispersed system of blood nanoparticles after the X-ray irradiation of the blood.


Assuntos
Exossomos , Lipoproteínas , Microscopia de Força Atômica , Ratos Wistar , Animais , Microscopia de Força Atômica/métodos , Raios X , Exossomos/efeitos da radiação , Exossomos/ultraestrutura , Exossomos/química , Ratos , Lipoproteínas/sangue , Lipoproteínas/efeitos da radiação , Masculino
15.
Anal Chem ; 96(26): 10686-10695, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885608

RESUMO

Exploiting the multiple properties of nanozymes for the multimode lateral flow assay (LFA) is urgently required to improve the accuracy and versatility. Herein, we developed a novel plasmonic Au nanostar@PtOs nanocluster (Au@PtOs) as a multimode signal tag for LFA detection. Based on the PtOs bimetallic nanocluster doping strategy, Au@PtOs can indicate both excellent SERS enhancement and nanozyme catalytic activity. Meanwhile, Au@PtOs displays a better photothermal effect than that of Au nanostars. Therefore, catalytic colorimetric/SERS/temperature three-mode signals can be read out based on the Au@PtOs nanocomposite. The Au@PtOs was combined with LFA and applied for breast cancer exosome detection. The detection limit for the colorimetric/SERS/temperature mode was 2.6 × 103/4.1 × 101/4.6 × 102 exosomes/µL, respectively, which was much superior to the common Au nanoparticles LFA (∼105 exosomes/µL). Moreover, based on the fingerprint molecular recognition ability of the SERS mode, exosome phenotypes derived from different breast cancer cell lines can be discriminated easily. Based on the convenient visual colorimetric mode and sensitive SERS/temperature quantitative modes, Au@PtOs driven LFA can satisfy the requirements of accurate and flexible multimodal sensing in different application scenarios.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Colorimetria , Exossomos , Ouro , Análise Espectral Raman , Humanos , Ouro/química , Exossomos/química , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Nanopartículas Metálicas/química , Platina/química , Linhagem Celular Tumoral , Limite de Detecção , Feminino
16.
Anal Chem ; 96(25): 10459-10466, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38866706

RESUMO

Exosomes, as an emerging biomarker, have exhibited remarkable promise in early cancer diagnosis. Here, a highly sensitive, selective, and automatic electrochemiluminescence (ECL) method for the detection of cancerous exosomes was developed. Specific aptamer-(EK)4 peptide-tagged magnetic beads (MBs-(EK)4-aptamer) were designed as a magnetic capture probe in which the (EK)4 peptide was used to reduce the steric binding hindrance of cancerous exosomes with a specific aptamer. One new universal ECL signal nanoprobe (CD9 Ab-PEG@SiO2ϵRu(bpy)32+) was designed and synthesized by using microporous SiO2 nanoparticles as the carrier for loading ECL reagent Ru(bpy)32+, polyethylene glycol (PEG) layer, and anticluster of differentiation 9 antibody (CD9 Ab). A "sandwich" biocomplex was formed on the surface of the magnetic capture probe after mixing the capture probe, target exosomes, and ECL signal nanoprobe, and then it was introduced into an automated ECL analyzer for rapid and automatic ECL measurement. It was found that the designed signal nanoprobe shows a 270-fold improvement in the signal-to-noise ratio than that of the ruthenium complex-labeled CD9 antibody signal probe. The relative ECL intensity was proportional to MCF-7 exosomes as a model in the range of 102 to 104 particle/µL, with a detection limit of 11 particle/µL. Furthermore, the ECL method was employed to discriminate cancerous exosomes based on fingerprint responses using the designed multiple magnetic capture probes and the universal ECL signal nanoprobe. This work demonstrates that the utilization of a designed automated ECL tactic using the MBs-(EK)4-aptamer capture probe and the CD9 Ab-PEG@SiO2ϵRu(bpy)32+ signal nanoprobe will provide a unique and robust method for the detection and discrimination of cancerous exosomes.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Eletroquímicas , Exossomos , Medições Luminescentes , Humanos , Exossomos/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Células MCF-7 , Dióxido de Silício/química , Técnicas Biossensoriais/métodos , Tetraspanina 29/análise , Polietilenoglicóis/química
17.
Biomater Sci ; 12(14): 3500-3521, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38828621

RESUMO

Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.


Assuntos
Exossomos , Exossomos/química , Exossomos/metabolismo , Humanos , Animais , Sistemas de Liberação de Medicamentos , Engenharia Celular
18.
Tissue Cell ; 88: 102427, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833940

RESUMO

Exosomes which are tiny extracellular vesicles (30-150 nm), transport vital proteins and gene materials such as miRNA, mRNA, or DNA, whose role in cell communication and epithelia regulation is critical. Many techniques have been developed as a result of studying exosomes' biochemical and physicochemical properties, although there is still no standard method to isolate exosomes simply with high yield. Commercial kits have gained popularity for exosome extraction despite concerns about their effectiveness in scientific research. On the other hand, ultracentrifugation remains the gold standard isolation method. This study compares these two common exosome isolation methods to determine their impact on the quality and quantity of exosomes isolated from bone marrow (BM) and Wharton's jelly (WJ)-derived mesenchymal stem cells. Isolated exosomes from the two sources of the cell's conditioned medium by two methods (polymer kit and ultracentrifuge) were characterized using western blotting, scanning electron microscopy (SEM), dynamic light scattering (DLS), and the Bradford assay. Western blot analysis confirmed separation efficiency based on CD81 and CD63 markers, with the absence of calnexin serving as a negative control. The Morphology of exosomes studied by SEM image analysis revealed a similar round shape appearance and their sizes (30-150 nm) were the same in both isolation techniques. The DLS analysis of the sample results was consistent with the SEM ones, showing a similar size range and very low disparity. The exosome protein content concentration analysis revealed that exosomes isolated by the polymer-based kits contained higher protein concentration density and purity (p <0.001). In general, though the protein yield was higher when the polymer-based kits were used, there were no significant differences in morphology, or size between WJ-derived and BM-derived exosomes, regardless of the isolation method employed.


Assuntos
Células da Medula Óssea , Exossomos , Células-Tronco Mesenquimais , Ultracentrifugação , Geleia de Wharton , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Exossomos/metabolismo , Exossomos/ultraestrutura , Exossomos/química , Humanos , Ultracentrifugação/métodos , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Polímeros/química
19.
Biosens Bioelectron ; 262: 116527, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941687

RESUMO

Programmed cell death-ligand 1 positive (PD-L1+) exosomes play a crucial role in the realm of cancer diagnosis and treatment. Nevertheless, due to the intricate nature of biological specimens, coupled with the heterogeneity, low refractive index (RI), and scant surface coverage density of exosomes, traditional surface plasmon resonance (SPR) sensors still do not meet clinical detection requirements. This study utilizes the exceptional electrical and optical attributes of single-walled carbon nanotubes (SWCNTs) as the substrate for SPR sensing, thereby markedly enhancing sensitivity. Furthermore, sp2 hybridized SWCNTs have the ability to load specific recognition elements. Additionally, through the coordination interaction of Ti with phosphate groups and the ferromagnetism of Fe3O4, efficient exosomes isolation and enrichment in complex samples are achievable with the aid of an external magnetic field. Owing to the high-quality and high-RI of Fe3O4@TiO2, the response signal experiences amplification, thus further improving the performance of the SPR biosensor. The linear range of the SPR biosensor constructed by this method is 1.0 × 103 to 1.0 × 107 particles/mL, with a limit of detection (LOD) of 31.9 particles/mL. In the analysis of clinical serum samples, cancer patients can be differentiated from healthy individuals with an Area Under Curve (AUC) of 0.9835. This study not only establishes a novel platform for exosomes direct detection but also offers new perspectives for the sensitive detection of other biomarkers.


Assuntos
Antígeno B7-H1 , Exossomos , Limite de Detecção , Nanotubos de Carbono , Ressonância de Plasmônio de Superfície , Titânio , Exossomos/química , Humanos , Titânio/química , Ressonância de Plasmônio de Superfície/métodos , Nanotubos de Carbono/química , Antígeno B7-H1/sangue , Antígeno B7-H1/análise , Antígeno B7-H1/isolamento & purificação , Técnicas Biossensoriais/métodos , Neoplasias/sangue
20.
ACS Appl Mater Interfaces ; 16(24): 30793-30809, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38833412

RESUMO

Both bone mesenchymal stem cells (BMSCs) and their exosomes suggest promising therapeutic tools for bone regeneration. Lithium has been reported to regulate BMSC function and engineer exosomes to improve bone regeneration in patients with glucocorticoid-induced osteonecrosis of the femoral head. However, the mechanisms by which lithium promotes osteogenesis have not been elucidated. Here, we demonstrated that lithium promotes the osteogenesis of BMSCs via lithium-induced increases in the secretion of exosomal Wnt10a to activate Wnt/ß-catenin signaling, whose secretion is correlated with enhanced MARK2 activation to increase the trafficking of the Rab11a and Rab11FIP1 complexes together with exosomal Wnt10a to the plasma membrane. Then, we compared the proosteogenic effects of exosomes derived from lithium-treated or untreated BMSCs (Li-Exo or Con-Exo) both in vitro and in vivo. We found that, compared with Con-Exo, Li-Exo had superior abilities to promote the uptake and osteogenic differentiation of BMSCs. To optimize the in vivo application of these hydrogels, we fabricated Li-Exo-functionalized gelatin methacrylate (GelMA) hydrogels, which are more effective at promoting osteogenesis and bone repair than Con-Exo. Collectively, these findings demonstrate the mechanism by which lithium promotes osteogenesis and the great promise of lithium for engineering BMSCs and their exosomes for bone regeneration, warranting further exploration in clinical practice.


Assuntos
Exossomos , Lítio , Células-Tronco Mesenquimais , Osteogênese , beta Catenina , Proteínas rab de Ligação ao GTP , Osteogênese/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Exossomos/química , Animais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proteínas rab de Ligação ao GTP/metabolismo , beta Catenina/metabolismo , Lítio/química , Lítio/farmacologia , Proteínas Wnt/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Ratos , Hidrogéis/química , Hidrogéis/farmacologia , Ratos Sprague-Dawley , Via de Sinalização Wnt/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...