Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.163
Filtrar
1.
Bioresour Technol ; 406: 131019, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908764

RESUMO

Basalt fiber (BF) was filled in constructed wetland-microbial fuel cell (CW-MFC) as bio-carrier for enhancement of operation performance under perfluorooctanoic acid (PFOA) exposure. In this study, although PFOA caused significant decline of ammonium removal by 7.5-7.7 %, slight promotion on nitrogen and phosphorus removal was observed with BF filling, compared to control. PFOA removal also increased by 1.7-3.4 % in BF filling group. Besides, improved electrochemical performance was discovered with BF filling, in which the highest power density increased by 86.6 % than control, even under PFOA stress. Enhanced stability and performance of CW-MFC resulted from stimulation of functional bacteria on electrodes like Dechloromonas, Thauera, Zoogloea, Gemmobacter, and Pseudomonas, which were further enriched on BF carrier. Higher abundance of nitrogen metabolism and related genes on electrodes and BF carrier was also discovered with BF filling. This study offered new findings on application of BF in CW-MFC systems with PFOA exposure.


Assuntos
Fontes de Energia Bioelétrica , Caprilatos , Fluorocarbonos , Áreas Alagadas , Caprilatos/farmacologia , Fluorocarbonos/química , Nitrogênio , Bactérias/metabolismo , Eletrodos , Fósforo/farmacologia , Poluentes Químicos da Água
2.
Bioresour Technol ; 406: 131014, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901746

RESUMO

Polyferric sulfate (PFS) and ferric chloride (FC) were compared for their efficiencies in capturing organic carbon and phosphorus, and their effects on the anaerobic fermentation process of sludge from a pilot-scale two-stage reactor were studied. Both PFS and FC promoted organic carbon and phosphorus capture. Further study revealed that PFS-based sludge with a dosage of 18 mg Fe/Lsewage showed a better volatile fatty acids (VFAs) production performance (202.97 ± 2.38 mg chemical oxygen demand (COD)/g volatile solids (VS)) than that of FC-based sludge (169.25 ± 1.56 mg COD/g VS). Besides, the high dosage of PFS effectively promoted the activities of the α-glucosidase and proteases. The dissimilatory iron reduction process enhanced sludge flocs disintegration and the conversion of carbohydrates and proteins to VFAs. Non-hydroxyapatite phosphorus predominated in the total phosphorus of all samples. This study contributes to developing strategies for optimizing iron-based sludge management and high-value product recovery.


Assuntos
Cloretos , Ácidos Graxos Voláteis , Fermentação , Compostos Férricos , Fósforo , Esgotos , Compostos Férricos/química , Cloretos/farmacologia , Anaerobiose , Fósforo/farmacologia , Reatores Biológicos , Análise da Demanda Biológica de Oxigênio , Carbono/farmacologia
3.
Colloids Surf B Biointerfaces ; 241: 114031, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878661

RESUMO

The therapy of the clear cell renal cell carcinoma (ccRCC) is crucial for the human healthcare due to its easy metastasis and recurrence, as well as resistance to radiotherapy and chemotherapy. In this work, we propose the synthesis of MoS2@red phosphorus (MoS2@RP) heterojunction to induce synergistic photodynamic and photothermal therapy (PDT/PTT) of ccRCC. The MoS2@RP heterojunction exhibits enhanced spectra absorption in the NIR range and produce local heat-increasing under the NIR laser irradiation compared with pure MoS2 and RP. The high photocatalytic activity of the MoS2@RP heterojunction contributes to effective transferring of the photo-excited electrons from the RP to MoS2, which promotes the production of various types of radical oxygen species (ROS) to kill the ccRCC cells. After the NIR irradiation, the MoS2@RP can effectively induce the apoptosis in the ccRCC cells through localized hyperthermia and the generation of ROS, while exhibiting low cytotoxicity towards normal kidney cells. In comparison to MoS2, the MoS2@RP heterojunction shows an approximate increase of 22 % in the lethality rate of the ccRCC cells and no significant change in toxicity towards normal cells. Furthermore, the PDT/PTT treatment using the MoS2@RP heterojunction effectively eradicates a substantial number of deep-tissue ccRCC cells in vivo without causing significant damage to major organs. This study presents promising effect of the MoS2@RP heterojunction-based photo-responsive therapy for effective ccRCC treatment.


Assuntos
Carcinoma de Células Renais , Dissulfetos , Neoplasias Renais , Molibdênio , Fósforo , Fotoquimioterapia , Terapia Fototérmica , Molibdênio/química , Molibdênio/farmacologia , Humanos , Dissulfetos/química , Dissulfetos/farmacologia , Dissulfetos/síntese química , Fósforo/química , Fósforo/farmacologia , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Neoplasias Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tamanho da Partícula , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Raios Infravermelhos , Propriedades de Superfície
4.
Food Chem ; 451: 139451, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703724

RESUMO

Active antibacterial materials play an important role in solving food safety problems caused by pathogen contamination. In this study, a composite active antibacterial material with the synergistic antibacterial effectiveness of photothermal, photodynamic and the surface charge of polyphenols was developed, where the multi-porous polyphenol functionalized metal-organic frameworks (ZIF-8-TA) were used as the framework carrier, and black phosphorus quantum dots (BPQDs) were used as the photosensitive source. The resulted ZIF-8-TA/PBQDs possesses excellent photothermal conversion efficiency (27.92%), photodynamic performance and surface charge, and these factors ensure the outstanding broad-spectrum antibacterial performance (100%). Multifunctional characteristics and excellent biocompatibility endow the materials with vast potential for foodstuff packaging. The results showed that the composite antibacterial film produced by doping ZIF-8-TA/PBQDs into chitosan could effectively prolong the shelf life of foodstuff compared with commercial membrane. The successful implementation of this research provides a new idea for controlling microbial contamination and developing multifunctional antibacterial materials.


Assuntos
Antibacterianos , Conservação de Alimentos , Estruturas Metalorgânicas , Polifenóis , Pontos Quânticos , Antibacterianos/farmacologia , Antibacterianos/química , Polifenóis/química , Polifenóis/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Pontos Quânticos/química , Conservação de Alimentos/métodos , Conservação de Alimentos/instrumentação , Fósforo/química , Fósforo/farmacologia , Embalagem de Alimentos/instrumentação , Testes de Sensibilidade Microbiana
5.
Plant Physiol Biochem ; 210: 108657, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670030

RESUMO

The continuously rising atmospheric CO2 concentration potentially increase plant growth through stimulating C metabolism; however, plant C:N:P stoichiometry in response to elevated CO2 (eCO2) under low P stress remains largely unknown. We investigated the combined effect of eCO2 and low phosphorus on growth, yield, C:N:P stoichiometry, and remobilization in rice cv. Kasalath (aus type), IR64 (a mega rice variety), and IR64-Pup1 (Pup1 QTL introgressed IR64). In response to eCO2 and low P, the C accumulation increased significantly (particularly at anthesis stage) while N and P concentration decreased leading to higher C:N and C:P ratios in all plant components (leaf, sheath, stem, and grain) than ambient CO2. The remobilization efficiencies of N and P were also reduced under low P with eCO2 as compared to control conditions. Among cultivars, the combined effect of eCO2 and low P was greater in IR64-Pup1 and produced higher biomass and grain yield as compared to IR64. However, IR64-Pup1 exhibited a lower N but higher P concentration than IR64, indicating that the Pup1 QTL improved P uptake but did not influence N uptake. Our study suggests that the P availability along with eCO2 would alter the C:N:P ratios due to their differential partitioning, thereby affecting growth and yield.


Assuntos
Dióxido de Carbono , Nitrogênio , Oryza , Fósforo , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Nitrogênio/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fósforo/metabolismo , Fósforo/farmacologia , Locos de Características Quantitativas
6.
J Nanobiotechnology ; 22(1): 87, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429776

RESUMO

Bone defects remain a significant challenge in clinical orthopedics, but no targeted medication can solve these problems. Inspired by inflammatory targeting properties of macrophages, inflammatory microenvironment of bone defects was exploited to develop a multifunctional nanocarrier capable of targeting bone defects and promoting bone regeneration. The avidin-modified black phosphorus nanosheets (BP-Avidin, BPAvi) were combined with biotin-modified Icaritin (ICT-Biotin, ICTBio) to synthesize Icaritin (ICT)-loaded black phosphorus nanosheets (BPICT). BPICT was then coated with macrophage membranes (MMs) to obtain MMs-camouflaged BPICT (M@BPICT). Herein, MMs allowed BPICT to target bone defects area, and BPICT accelerated the release of phosphate ions (PO43-) and ICT when exposed to NIR irradiation. PO43- recruited calcium ions (Ca2+) from the microenvironment to produce Ca3(PO4)2, and ICT increased the expression of osteogenesis-related proteins. Additionally, M@BPICT can decrease M1 polarization of macrophage and expression of pro-inflammatory factors to promote osteogenesis. According to the results, M@BPICT provided bone growth factor and bone repair material, modulated inflammatory microenvironment, and activated osteogenesis-related signaling pathways to promote bone regeneration. PTT could significantly enhance these effects. This strategy not only offers a solution to the challenging problem of drug-targeted delivery in bone defects but also expands the biomedical applications of MMs-camouflaged nanocarriers.


Assuntos
Avidina , Osteogênese , Avidina/metabolismo , Avidina/farmacologia , Biotina , Fototerapia , Macrófagos/metabolismo , Regeneração Óssea , Fósforo/farmacologia , Fosfatos
7.
Chemosphere ; 353: 141655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460851

RESUMO

This study explored the feasibility of calcium peroxide (CaO2) to inhibit cyanobacterial blooms of the outbreak and dormancy stages. Our previous studies have found that CaO2 has a high inhibitory effect on cyanobacteria. In order to explore the application effect of CaO2 in actual cyanobacteria lake water, we conducted this study to clarify the effect of CaO2 on inhibiting cyanobacteria in outbreak and dormancy stages. The results showed that CaO2 inhibited the growth of cyanobacteria in the outbreak and dormancy stages by 98.7% and 97.6%, respectively. The main inhibitory mechanism is: (1) destroy the cell structure and make the cells undergo programmed cell death by stimulating the oxidation balance of cyanobacteria cells; (2) EPS released by cyanobacteria resist stimulation and combine calcium to form colonies, and accelerate cell settlement. In addition to causing direct damage to cyanobacteria, CaO2 can also improve water quality and sediment microbial diversity, and reduce the release of sediment to phosphorus, so as to further contribute to cyanobacterial inhibition. Finally, the results of qRT-PCR analysis confirmed the promoting effect of CaO2 on the downregulation of photosynthesis-related genes (rbcL and psaB), microcystn (mcyA and mcyD) and peroxiredoxin (prx), and verified the mechanism of CaO2 inhibition of cyanobacteria. In conclusion, this study provides new findings for the future suppression of cyanobacterial bloom, by combining water quality, cyanobacterial inhibition mechanisms, and sediment microbial diversity.


Assuntos
Cianobactérias , Microbiota , Qualidade da Água , Lagos/microbiologia , Fósforo/farmacologia , Fósforo/análise , Eutrofização
8.
PeerJ ; 12: e17138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529308

RESUMO

Background: The continuous establishment of Chinese fir (Cunninghamia lanceolata) plantations across multiple generations has led to the limited impact of soil phosphorus (P) on tree growth. This challenge poses a significant obstacle in maintaining the sustainable management of Chinese fir. Methods: To investigate the effects of Arbuscular mycorrhizal fungi (AMF) on the growth and physiological characteristics of Chinese fir under different P supply treatments. We conducted an indoor pot simulation experiment in the greenhouse of the Forestry College of Fujian Agriculture and Forestry University with one-and-half-year-old seedlings of Chinese fir from March 2019 to June 2019, with the two P level treatment groups included a normal P supply treatment (1.0 mmol L-1 KH2PO4, P1) and a no P supply treatment (0 mmol L-1 KH2PO4, P0). P0 and P1 were inoculated with Funneliformis mosseae (F.m) or Rhizophagus intraradices (R.i) or not inoculated with AMF treatment. The AMF colonization rate in the root system, seedling height (SH), root collar diameter (RCD) growth, chlorophyll (Chl) photosynthetic characteristics, enzyme activities, and endogenous hormone contents of Chinese fir were estimated. Results: The results showed that the colonization rate of F.m in the roots of Chinese fir seedlings was the highest at P0, up to 85.14%, which was 1.66 times that of P1. Under P0 and P1 treatment, root inoculation with either F.m or R.i promoted SH growth, the SH of R.i treatment was 1.38 times and 1.05 times that of F.m treatment, respectively. In the P1 treatment, root inoculation with either F.m or R.i inhibited RCD growth. R.i inhibited RCD growth more aggressively than F.m. In the P0 treatment, root inoculation with F.m and R.i reduced the inhibitory effect of phosphorus deficiency on RCD. At this time, there was no significant difference in RCD between F.m, R.i and CK treatments (p < 0.05). AMF inoculation increased Fm, Fv, Fv/Fm, and Fv/Fo during the chlorophyll fluorescence response in the tested Chinese fir seedlings. Under the two phosphorus supply levels, the trend of Fv and Fm of Chinese fir seedlings in different treatment groups was F.m > R.i > CK. Under P0 treatment, The values of Fv were 235.86, 221.86 and 147.71, respectively. The values of Fm were 287.57, 275.71 and 201.57, respectively. It increased the antioxidant enzyme activity and reduced the leaf's malondialdehyde (MDA) content to a certain extent. Conclusion: It is concluded that AMF can enhance the photosynthetic capacity of the host, regulate the distribution of endogenous hormones in plants, and promote plant growth by increasing the activity of antioxidant enzymes. When the P supply is insufficient, AMF is more helpful to plants, and R.i is more effective than F.m in alleviating P starvation stress in Chinese fir.


Assuntos
Cunninghamia , Fungos , Micorrizas , Humanos , Lactente , Plântula , Simbiose , Antioxidantes/farmacologia , Clorofila/farmacologia , Fósforo/farmacologia
9.
Biochem Pharmacol ; 222: 116121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461906

RESUMO

Liver fibrosis is a chronic liver disease characterized by a progressive wound healing response caused by chronic liver injury. Currently, there are no approved clinical treatments for liver fibrosis. Sevelamer is used clinically to treat hyperphosphatemia and has shown potential therapeutic effects on liver diseases. However, there have been few studies evaluating the therapeutic effects of sevelamer on liver fibrosis, and the specific mechanisms are still unclear. In this study, we investigated the antifibrotic effects of sevelamer-induced low inorganic phosphate (Pi) stress in vitro and in vivo and analyzed the detailed mechanisms. We found that low Pi stress could inhibit the proliferation of activated hepatic stellate cells (HSCs) by promoting apoptosis, effectively suppressing the migration and epithelial-mesenchymal transition (EMT) of hepatic stellate cells. Additionally, low Pi stress significantly increased the antioxidant stress response. It is worth noting that low Pi stress indirectly inhibited the activation and migration of HSCs by suppressing transforming growth factor ß (TGF-ß) expression in macrophages. In a rat model of liver fibrosis, oral administration of sevelamer significantly decreased blood phosphorus levels, improved liver function, reduced liver inflammation, and increased the antioxidant stress response in the liver. Our study revealed that the key mechanism by which sevelamer inhibited liver fibrosis involved binding to gastrointestinal phosphate, resulting in a decrease in blood phosphorus levels, the downregulation of TGF-ß expression in macrophages, and the inhibition of HSC migration and fibrosis-related protein expression. Therefore, our results suggest that sevelamer-induced low Pi stress can attenuate hepatic stellate cell activation and inhibit the progression of liver fibrosis, making it a potential option for the treatment of liver fibrosis and other refractory chronic liver diseases.


Assuntos
Células Estreladas do Fígado , Hepatopatias , Ratos , Animais , Sevelamer/efeitos adversos , Antioxidantes/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fósforo/metabolismo , Fósforo/farmacologia , Fósforo/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo
10.
Ecotoxicol Environ Saf ; 274: 116219, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492483

RESUMO

Cadmium (Cd) is one of the most toxic elements in soil, affecting morphological, physiological, and biochemical processes in plants. Mineral plant nutrition was tested as an effective approach to mitigate Cd stress in several crop species. In this regard, the present study aimed to elucidate how different phosphorus (P) fertilization regimes can improve some bio-physiological processes in tomato plants exposed to Cd stress. In a hydroponic experiment, the impact of two phosphorus fertilizer forms (Polyphosphate (poly-P): condensed P-form with 100% polymerization rate and orthophosphate (ortho-P): from orthophosphoric acid) on the photosynthetic activity, plant growth, and nutrient uptake was assessed under three levels of Cd stress (0, 12, and 25 µM of CdCl2). The obtained results confirmed the negative effects of Cd stress on the chlorophyll content and the efficiency of the photosynthesis machinery. The application of poly-P fertilizer significantly improved the chlorophyll stability index (82%) under medium Cd stress (Cd12), as compared to the ortho-P form (55%). The analysis of the chlorophyll α fluorescence transient curve revealed that the amplitude of Cd effect on the different steps of electron transfer between PSII and PSI was significantly reduced under the poly-P fertilization regime compared to ortho-P, especially under Cd12. The evaluation of the RE0/RC parameter showed that the electron flux reducing end electron acceptors at the PSI acceptor side per reaction center was significantly improved in the poly-P treatment by 42% under Cd12 compared to the ortho-P treatment. Moreover, the use of poly-P fertilizer enhanced iron uptake and its stoichiometric homeostasis in the shoot tissue which maintained an adequate absorption of iron under Cd stress conditions. Findings from this study revealed for the first time that inorganic polyphosphate fertilizers can reduce Cd toxicity in tomato plants by enhancing photosynthesis activity, nutrient uptake, plant growth, and biomass accumulation despite the high level of cadmium accumulation in shoot tissues.


Assuntos
Poluentes do Solo , Solanum lycopersicum , Cádmio/análise , Polifosfatos/farmacologia , Fertilizantes/análise , Fotossíntese , Clorofila/análise , Plantas , Ferro/análise , Fósforo/farmacologia , Fertilização , Poluentes do Solo/análise
11.
Sci Rep ; 14(1): 2725, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302601

RESUMO

Microalgal lipids are precursors to the production of biodiesel, as well as a source of valuable dietary components in the biotechnological industries. So, this study aimed to assess the effects of nutritional (nitrogen, and phosphorus) starvations and salinity stress (NaCl) on the biomass, lipid content, fatty acids profile, and predicted biodiesel properties of green microalga Monoraphidium braunii. The results showed that biomass, biomass productivity, and photosynthetic pigment contents (Chl. a, b, and carotenoids) of M. braunii were markedly decreased by nitrogen and phosphorus depletion and recorded the maximum values in cultures treated with full of N and P concentrations (control, 100%). These parameters were considerably increased at the low salinity level (up to 150 mM NaCl), while an increasing salinity level (up to 250 mM NaCl) reduces the biomass, its productivity, and pigment contents. Nutritional limitations and salt stress (NaCl) resulted in significantly enhanced accumulation of lipid and productivity of M. braunii, which represented more than twofold of the control. Furthermore, these conditions have enhanced the profile of fatty acid and biodiesel quality-related parameters. The current study exposed strategies to improve M. braunii lipid productivity for biodiesel production on a small scale in vitro in terms of fuel quality under low nutrients and salinity stress.


Assuntos
Clorofíceas , Microalgas , Biocombustíveis , Biomassa , Cloreto de Sódio/farmacologia , Ácidos Graxos/química , Nutrientes , Salinidade , Nitrogênio/farmacologia , Fósforo/farmacologia , Estresse Salino
12.
Mar Pollut Bull ; 200: 116124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325204

RESUMO

The combined effects of phosphorus (P) forms and zinc (Zn) concentrations on diatom silicification remain unclear. In this study, we investigate the effects of different Zn concentrations on the growth, cellular silicon content and sinking rate of Thalassiosira weissflogii under different P forms. The results showed that under the dissolved inorganic phosphorus (DIP) treatments, the specific growth rate of T. weissflogii in Zn limitation culture was significantly lower than that in Zn-replete culture. However, T. weissflogii cellular silicon content and sinking rate increased. Moreover, the reduced specific growth rate (7 %, p < 0.05), enhanced ALP activity (63 %, p < 0.05), and sinking rate (20 %, p < 0.05) for Zn-deplete T. weissflogii implied that the bioavailability of dissolved organic phosphorus (DOP) was depressed under Zn deplete medium. This study demonstrates that the physiological ecology and sinking rate of the diatom T. weissflogii were affected by both individual and combined changes in P forms and Zn concentrations.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Zinco , Fósforo/farmacologia , Silício , Ecologia
13.
Ecotoxicol Environ Saf ; 272: 116041, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350213

RESUMO

Although PFOS has been banned as a persistent organic pollutant, it still exists in large quantities within the environment, thus impacting the health of aquatic ecosystems. Previous studies focused solely on high PFOS concentrations, disregarding the connection with environmental factors. To gain a more comprehensive understanding of the PFOS effects on aquatic ecosystems amidst changing environmental conditions, this study investigated the cellular responses of Microcystis aeruginosa to varying PFOS concentrations under heatwave and nutrient stress conditions. The results showed that PFOS concentrations exceeding 5.0 µg/L had obvious effects on multiple physiological responses of M. aeruginosa, resulting in the suppression of algal cell growth and the induction of oxidative damage. However, PFOS concentration at levels below 20.0 µg/L has been found to enhance the growth of algal cells and trigger significant oxidative damage under heatwave conditions. Heatwave conditions could enhance the uptake of PFOS in algal cells, potentially leading to heightened algal growth when PFOS concentration was equal to or less than 5.0 µg/L. Conversely, deficiency or limitation of nitrogen and phosphorus significantly decreased algal abundance and chlorophyll content, inducing severe oxidative stress that could be mitigated by exposure to PFOS. This study holds significance in managing the impact of PFOS on algal growth across diverse environmental conditions.


Assuntos
Microcystis , Ecossistema , Clorofila , Estresse Oxidativo , Fósforo/farmacologia
14.
Sci Rep ; 14(1): 4058, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374275

RESUMO

The effect of hydrodynamic mixing on controlling Microcystis blooms or changing the algal community to diatom dominance has been widely studied; however, the effects of colonial Microcystis biomass on the development of the algal community are poorly known. Here, in order to study the changes in Microcystis blooms under continuous aeration mixing, an experiment was carried out in a greenhouse with factors of varying biomass of Microcystis and inorganic nitrogen and phosphorus enrichment in summer. There were three chlorophyll a (Chl-a) levels in six treatments: low Chl-a level of 68.4 µg L-1 (treatments L, L-E), medium Chl-a level of 468.7 µg L-1 (treatments M, M-E), and high Chl-a level of 924.1 µg L-1 (treatments H, H-E). Treatments L-E, M-E and H-E were enriched with the same inorganic nitrogen and phosphorus nutrients. During the experiment of 30 days, the concentration of Microcystis and Chl-a decreased, and diatom Nitzschia palea cells appeared in all the treatments, which became dominant in treatments M, M-E, H and H-E, with the highest biomass of 9.41 ± 1.96 mg L-1 Nitzschia in treatment H-E on day 30. The rank order of the biomass of Nitzschia from low to high was (L = L-E) < (M = M-E) < H < H-E (P < 0.05). In addition, Nitzschia cells were aggregates attached to Microcystis colonies in all the treatments. The results showed that the initial biomass of colonial Microcystis affected the algal shift from Microcystis dominance to Nitzschia dominance. However, the enriched inorganic nitrogen and phosphorus was beneficial for the Nitzschia increase in the high biomass treatment alone. The shift from Microcystis dominance to diatom dominance under continuous aeration mixing may be caused by low light conditions as well as the nutrients released from Microcystis decay. Moreover, the aerobic condition caused by aeration mixing maintained the colonial mucilaginous sheath to support the growth of Nitzschia cells in aggregation. This study found for the first time that Microcystis blooms could shift to diatom Nitzschia dominance in aggregates. It provided a method to control and manipulate Microcystis blooms to diatom dominance through continuous aeration mixing to proper biomass of Microcystis colonies. The shift to diatoms dominance would provide more high quality food organisms for aquaculture and be beneficial to the material cycling and energy flowing in food web dynamics.


Assuntos
Diatomáceas , Microcystis , Biomassa , Clorofila A , Fósforo/farmacologia , Nitrogênio/farmacologia
15.
ACS Nano ; 18(4): 3553-3574, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38226901

RESUMO

Large full-thickness skin lesions have been one of the most challenging clinical problems in plastic surgery repair and reconstruction. To achieve in situ skin regeneration and perfect clinical outcomes, we must address two significant obstacles: angiogenesis deficiency and inflammatory dysfunction. Recently, black phosphorus has shown great promise in wound healing. However, few studies have explored the bio-effects of BP to promote in situ skin regeneration based on its nanoproperties. Here, to investigate whether black phosphorus nanosheets have positive bio-effects on in situ skin repair, we verified black phosphorus nanosheets' positive effects on angiogenic and anti-inflammatory abilities in vitro. Next, the in vivo evaluation performed on the rat large full-thickness excisional wound splinting model more comprehensively showed that the positive bio-effects of black phosphorus nanosheets are multilevel in wound healing, which can effectively enhance anti-inflammatory ability, angiogenesis, collagen deposition, and skin re-epithelialization. Then, multiomics analysis was performed to explore further the mechanism of black phosphorus nanosheets' regulation of endothelial cells in depth. Molecular mechanistically, black phosphorus nanosheets activated the JAK-STAT-OAS signaling pathway to promote cellular function and mitochondrial energy metabolism in endothelial cells. This study can provide a theoretical basis for applying two-dimensional black phosphorus nanosheets as nanomedicine to achieve in situ tissue regeneration in complex human pathological microenvironments, guiding the subsequent optimization of black phosphorus.


Assuntos
Células Endoteliais , Fósforo , Ratos , Humanos , Animais , Fósforo/farmacologia , Cicatrização , Pele , Anti-Inflamatórios/farmacologia
16.
Chemosphere ; 351: 141265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246497

RESUMO

Plant enrichment and tolerance to heavy metals are crucial for the phytoremediation of coal gangue mountain. However, understanding of how plants mobilize and tolerate heavy metals in coal gangue is limited. This study conducted potted experiments using Setaria viridis as a pioneer remediation plant to evaluate its tolerance to coal gangue, its mobilization and enrichment of metals, and its impact on the soil environment. Results showed that the addition of 40% gangue enhanced plant metal and oxidative stress resistance, thereby promoting plant growth. However, over 80% of the gangue inhibited the chlorophyll content, photoelectron conduction rate, and biomass of S. viridis, leading to cellular peroxidative stress. An analysis of metal resistance showed that endogenous S in coal gangue promoted the accumulation of glutathione, plant metal chelators, and non-protein thiols, thereby enhancing its resistance to metal stress. Setaria viridis cultivation affected soil properties by decreasing nitrogen, phosphorus, conductivity, and urease and increasing sucrase and acid phosphatase in the rhizosphere soil. In addition, S. viridis planting increased V, Cr, Ni, As, and Zn in the exchangeable and carbonate-bound states within the gangue, effectively enriching Cd, Cr, Fe, S, U, Cu, and V. The increased mobility of Cd and Pb was correlated with a higher abundance of Proteobacteria and Acidobacteria. Heavy metals, such as As, Fe, V, Mn, Ni, and Cu, along with environmental factors, including total nitrogen, total phosphorus, urease, and acid phosphatase, were the primary regulatory factors for Sphingomonas, Gemmatimonas, and Bryobacter. In summary, S. viridis adapted to gangue stress by modulating antioxidant and elemental enrichment systems and regulating the release and uptake of heavy metals through enhanced bacterial abundance and the recruitment of gangue-tolerant bacteria. These findings highlight the potential of S. viridis for plant enrichment in coal gangue areas and will aid the restoration and remediation of these environments.


Assuntos
Metais Pesados , Setaria (Planta) , Poluentes do Solo , Cádmio/farmacologia , Setaria (Planta)/metabolismo , Carvão Mineral , Urease , Metais Pesados/análise , Plantas/metabolismo , Fósforo/farmacologia , Bactérias/metabolismo , Enxofre/farmacologia , Solo , Fosfatase Ácida , Nitrogênio/farmacologia , Poluentes do Solo/análise
17.
J Phycol ; 60(3): 624-638, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38163284

RESUMO

Polyphosphates (polyP) are ubiquitous biomolecules that play a multitude of physiological roles in many cells. We have studied the presence and role of polyP in a unicellular alga, the freshwater diatom Achnanthidium minutissimum. This diatom stores up to 2.0 pg·cell-1 of polyP, with chain lengths ranging from 130 to 500 inorganic phosphate units (Pi). We applied energy dispersive X-ray spectroscopy, Raman/fluorescence microscopy, and biochemical assays to localize and characterize the intracellular polyP granules that were present in large apical vacuoles. We investigated the fate of polyP in axenic A. minutissimum cells grown under phosphorus (P), replete (P(+)), or P deplete (P(-)) cultivation conditions and observed that in the absence of exogenous P, A. minutissimum rapidly utilizes their internal polyP reserves, maintaining their intrinsic growth rates for up to 8 days. PolyP-depleted A. minutissimum cells rapidly took up exogenous P a few hours after Pi resupply and generated polyP three times faster than cells that were not initially subjected to P limitation. Accordingly, we propose that A. minutissimum deploys a succession of acclimation strategies regarding polyP dynamics where the production or consumption of polyP plays a central role in the homeostasis of the diatom.


Assuntos
Diatomáceas , Fósforo , Polifosfatos , Diatomáceas/metabolismo , Diatomáceas/crescimento & desenvolvimento , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Fósforo/metabolismo , Fósforo/farmacologia , Espectrometria por Raios X , Água Doce , Microscopia de Fluorescência , Análise Espectral Raman
18.
J Environ Sci Health B ; 59(2): 37-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38088334

RESUMO

One of the major insect pests in Pisum sativum L. (is Acyrthosiphon pisum Harris (Hemiptera: pests in Pisum sativum L. (Hemiptera: Aphididae) is Acyrthosiphon pisum Harris (Hemiptera: Aphididae). An effective strategy for aphid control is the resistant host plant use. The current study aimed to identify resistance mechanisms and assess biochemical and morphological markers of pea aphid resistance in pea accessions. Meteorological variables affected the pea aphid density, which positively correlated with temperature, while precipitation amount and humidity negatively impacted. The aphid number was significantly and positively associated with the leaf area and the nitrogen content but negatively correlated with calcium and phosphorus levels. The pea aphid-resistant cultivars L 123-7-11, L 128-1and L 125-5 had small leaf areas, and high phosphorus and calcium content but a low nitrogen level. In the mutual influence of the plant indicators, phosphorus concentration had the highest negative impact on pea aphid density, followed by calcium. The plant marker inclusion in the pea breeding process is an efficient tool for a substantial selection program improvement for aphid resistance. Therefore, resistant host plants are essential tools promoting considerable selection program improvement for aphid resistance in the P. sativum breeding process and helping develop sustainable and environmentally friendly agriculture.


Assuntos
Afídeos , Pisum sativum , Animais , Cálcio , Nitrogênio , Fósforo/farmacologia
19.
Adv Healthc Mater ; 13(4): e2302058, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972607

RESUMO

Medical device-associated infections (MDAI) caused by planktonic pathogens are of serious concern worldwide due to the emergence of drug resistance resulting from continuous overuse or misuse of antibiotics. Therefore, the design of non-antibiotics-based treatment for MDAI is of crucial importance. Black phosphorus (BP), a novel 2D material, has recently received much attention owing to its remarkable physical, chemical, mechanical, and functional features. However, the intricacy of the fabrication process has severely hampered the development of BP in prospective applications. In this study, a simple and eco-friendly liquid-phase exfoliation method of phytic acid (PA)-promoted exfoliation of BP nanosheets (PA@BP NSs) is developed for their potential application in antibacterial photothermal therapy. To impart the antimicrobial effects, the polydimethylsiloxane surfaces are functionalized with quaternized polymer (polyquaternium-2 or PQ) and PA@BP NSs, leading to the formation of PA-BP-PQ composite coatings. In addition to the contact-killing antibacterial effect of the cationic PQ, the PA-BP-PQ coating exhibits remarkable near-infrared irradiation-triggered bactericidal effects with low cytotoxicity both in vitro and in vivo. This study proposes a simple liquid-phase exfoliation technique for the fabrication of BP NSs and a one-step approach for the construction of PA-BP-PQ composite coatings for bi-modal (contact-killing and photothermal) antimicrobial therapy.


Assuntos
Indanos , Fósforo , Ácido Fítico , Ácido Fítico/farmacologia , Fósforo/farmacologia , Fototerapia/métodos , Antibacterianos/farmacologia
20.
Physiol Plant ; 175(6): e14093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148186

RESUMO

Soil phosphorus (P) application is the most common fertilisation technique but may involve constraints due to chemical fixation and microbial immobilisation. Furthermore, excessive P fertilisation leads to P runoff into water bodies, threatening ecosystems, so targeted foliar P fertilisation is an interesting alternative. This study aimed to determine the importance of leaf surface characteristics for foliar P uptake in P-deficient maize (Zea mays L.). The leaf surface of four maize cultivars was characterised by electron microscopy, Fourier transform infrared spectroscopy and contact angle measurements. Uptake of foliar-applied P by maize cultivars was estimated, measuring also leaf photosynthetic rates after foliar P spraying. Plants of cultivar P7948 were found to be wettable from the 4th leaf in acropetal direction, whereas other cultivars were unwettable until the 6th leaf had developed. Minor variations in stomatal number and cuticle composition were recorded, but no differences in foliar P absorption were observed between cultivars. Nevertheless, cultivars showed variation in the improvement of photosynthetic capacity following foliar P application. Phosphorus deficiency resulted in ultrastructural disorganisation of mesophyll cells and chloroplasts, which impaired photosynthetic performance, yet there was no effect on stomatal frequency and leaf wettability. This study provides new insights into the influence of P deficiency and cultivar on leaf surface characteristics, foliar P uptake and its effect on physiological processes. Understanding the relationships between leaf characteristics and P uptake allows a more targeted evaluation of foliar P fertilisation as an application technique and contributes to the understanding of foliar uptake mechanisms.


Assuntos
Ecossistema , Zea mays , Zea mays/fisiologia , Fósforo/farmacologia , Folhas de Planta/fisiologia , Fotossíntese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...