Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.111
Filtrar
1.
BMC Plant Biol ; 24(1): 615, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937722

RESUMO

Amorphophallus is a perennial monocotyledonous herbaceous plant native to the southwestern region of China, widely used in various fields such as food processing, biomedicine and chemical agriculture. However, Amorphophallus is a typical thermolabile plant, and the continuous high temperature in summer have seriously affected the growth, development and economic yield of Amorphophallus in recent years. Calmodulin (CaM), a Ca2+ sensor ubiquitous in eukaryotes, is the most important multifunctional receptor protein in plant cells, which affects plant stress resistance by participating in the activities of a variety of signaling molecules. In this study, the key gene AaCaM3 for the Ca2+-CaM regulatory pathway was obtained from A. albus, the sequence analysis confirmed that it is a typical calmodulin. The qRT-PCR results demonstrated that with the passage of heat treatment time, the expression of AaCaM3 was significantly upregulated in A. albus leaves. Subcellular localization analysis revealed that AaCaM3 localized on the cytoplasm and nucleus. Meanwhile, heterologous transformation experiments have shown that AaCaM3 can significantly improve the heat tolerance of Arabidopsis under heat stress. The promoter region of AaCaM3 was sequenced 1,338 bp by FPNI-PCR and GUS staining assay showed that the promoter of AaCaM3 was a high-temperature inducible promoter. Yeast one-hybrid analysis and Luciferase activity reporting system analysis showed that the AaCaM3 promoter may interact with AaHSFA1, AaHSFA2c, AaHSP70, AaDREB2a and AaDREB2b. In conclusion, this study provides new ideas for further improving the signal transduction network of high-temperature stress in Amorphophallus.


Assuntos
Arabidopsis , Calmodulina , Proteínas de Plantas , Calmodulina/metabolismo , Calmodulina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Temperatura Alta , Fabaceae/genética , Fabaceae/fisiologia , Fabaceae/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Regiões Promotoras Genéticas
2.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928379

RESUMO

Stylo (Stylosanthes spp.) is an important pasture legume with strong aluminum (Al) resistance. However, the molecular mechanisms underlying its Al tolerance remain fragmentary. Due to the incomplete genome sequence information of stylo, we first conducted full-length transcriptome sequencing for stylo root tips treated with and without Al and identified three Snakin/GASA genes, namely, SgSnakin1, SgSnakin2, and SgSnakin3. Through quantitative RT-PCR, we found that only SgSnakin1 was significantly upregulated by Al treatments in stylo root tips. Histochemical localization assays further verified the Al-enhanced expression of SgSnakin1 in stylo root tips. Subcellular localization in both tobacco and onion epidermis cells showed that SgSnakin1 localized to the cell wall. Overexpression of SgSnakin1 conferred Al tolerance in transgenic Arabidopsis, as reflected by higher relative root growth and cell vitality, as well as lower Al concentration in the roots of transgenic plants. Additionally, overexpression of SgSnakin1 increased the activities of SOD and POD and decreased the levels of O2·- and H2O2 in transgenic Arabidopsis in response to Al stress. These findings indicate that SgSnakin1 may function in Al resistance by enhancing the scavenging of reactive oxygen species through the regulation of antioxidant enzyme activities.


Assuntos
Alumínio , Arabidopsis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Alumínio/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Fabaceae/metabolismo , Fabaceae/genética , Fabaceae/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/efeitos dos fármacos
3.
Food Funct ; 15(14): 7314-7332, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38898712

RESUMO

Pulse-based diets are attracting attention for their potential in combating diet-related non-communicable diseases. However, limited research studies have focused on the digestive and fermentative properties of pulses, which are crucial for exerting benefits. Here, we investigated the in vitro digestibility of starch/protein, along with the fermentation characteristics, of eight pulses and their pastes, including white kidney beans, adzuki beans, cowpeas, broad beans, mung beans, chickpeas, white lentils, and yellow peas. The findings indicated that pulse flours and pastes were low GL food (estimated GL < 10) and had a low degree of protein hydrolysis during simulated gastrointestinal digestion. During in vitro fermentation, pulses flours and pastes decreased the fermentation pH, increased the level of short-chain fatty acids (mainly consisting of valeric acid, followed by acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid), and positively modulated the microbiota composition over time, specifically reducing the ratio of Firmicutes to Bacteroidetes. In addition, we found that boiling could affect the in vitro digestion and fermentation characteristics of pulses, possibly depending on their intrinsic nutrient characteristics. This research could provide a comprehensive summary of the nutrient content, digestibility, and fermentation of eight pulses and their pastes. Guided by factor analysis, for different individuals' consumption, pulses, cowpeas, broad beans, white lentils, and white kidney beans were preferred for diabetic individuals, yellow peas and white lentils were preferred for intestinal homeostasis disorders, and white lentils, broad beans, white kidney beans, and cowpeas were suitable for obese individuals, in which white lentils were considered healthier and suggested for healthy adults.


Assuntos
Digestão , Fermentação , Humanos , Microbioma Gastrointestinal , Fabaceae/metabolismo , Adulto , Masculino , Ácidos Graxos Voláteis/metabolismo , Feminino , Amido/metabolismo , Farinha/análise
4.
Sci Total Environ ; 945: 173923, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880144

RESUMO

Rhizobium inoculation has been widely applied to alleviate heavy metal (HM) stress in legumes grown in contaminated soils, but it has generated inconsistent results with regard to HM accumulation in plant tissues. Here, we conducted a meta-analysis to assess the performance of Rhizobium inoculation for regulating HM in legumes and reveal the general influencing factors and processes. The meta-analysis showed that Rhizobium inoculation in legumes primarily increased the total HM uptake by stimulating plant biomass growth rather than HM phytoavailability. Inoculation had no significant effect on the average shoot HM concentration (p > 0.05); however, it significantly increased root HM uptake by 61 % and root HM concentration by 7 % (p < 0.05), indicating safe agricultural production while facilitating HM phytostabilisation. Inoculation decreased shoot HM concentrations and increased root HM uptake in Vicia, Medicago and Glycine, whereas it increased shoot HM concentrations in Sulla, Cicer and Vigna. The effects of inoculation on shoot biomass were suppressed by nitrogen fertiliser and native microorganisms, and the effect on shoot HM concentration was enhanced by high soil pH, organic matter content, and phosphorous content. Inoculation-boosted shoot nutrient concentration was positively correlated with increased shoot biomass, whereas the changes in pH and organic matter content were insufficient to significantly affect accumulation outcomes. Nitrogen content changes in the soil were positively correlated with changes in root HM concentration and uptake, whereas nitrogen translocation changes in the tissues were positively correlated with changes in HM translocation. Phosphorus solubilisation could improve HM phytoavailability at the expense of slight biomass promotion. These results suggest that the diverse growth-promoting characteristics of Rhizobia influence the trade-off between biomass-HM phytoavailability and HM translocation, impacting HM accumulation outcomes. Our findings can assist in optimising the utilisation of legume-Rhizobium systems in HM-contaminated soils.


Assuntos
Fabaceae , Metais Pesados , Rhizobium , Poluentes do Solo , Fabaceae/metabolismo , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Rhizobium/fisiologia , Biodegradação Ambiental , Solo/química , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
5.
Plant Physiol Biochem ; 212: 108725, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772164

RESUMO

Elevated CO2 concentrations may inhibit photosynthesis due to nitrogen deficiency, but legumes may be able to overcome this limitation and continue to grow. Our study confirms this conjecture well. First, we placed the two-year-old potted saplings of Ormosia hosiei (O. hosiei) (a leguminous tree species) in the open-top chamber (OTC) with three CO2 concentrations of 400 (CK), 600 (E1), and 800 µmol·mol-1 (E2) to simulate the elevated CO2 concentration environment. After 146 days, the light saturation point (LSP), light compensation point (LCP), apparent quantum efficiency (AQE), and dark respiration rate (Rd) of O. hosiei were increased under increasing CO2 concentration and obtain the maximum ribulose diphosphate (RuBP) carboxylation rate (Vc max) and RuBP regenerated photosynthetic electron transfer rate (Jmax) were also significantly increased under E2 treatment (P < 0.05). This results in a significant increase of the maximum assimilation rate (Amax) under elevated CO2 concentrations. Sucrose phosphate synthase (SPS) activity in sucrose metabolism increased in the leaves, more soluble sugars, starches, and sucrose was produced, but sucrose content only in leaves increased at E2, and more carbon flows to the roots. The activity of the NH4+ assimilating enzymes glutamine synthetase (GS), glutamate synthetase (GOGAT), and glutamate dehydrogenase (GDH) in the leaves of O. hosiei increases under elevated CO2 concentrations to promote nitrogen synthesis that reduces the content of ammonium nitrogen and increases the content of nitrate nitrogen. In addition, under E1 conditions, sucrose synthase (SS), direction of synthesis activity was highest and sucrose invertase (INV) activity was lowest, this means that the balance of C and N metabolism is maintained. While under E2 conditions SS activity decreased and INV activity increased, this increased C/N and nitrogen use efficiency. So, the elevated CO2 concentration promotes the accumulation of O. hosiei biomass, especially in the aboveground part, but did not have a significant effect on the accumulation of root biomass. This means that O. hosiei is able to cope under the elevated CO2 concentration without showing photosynthetic adaptation during the experimental period.


Assuntos
Biomassa , Dióxido de Carbono , Carbono , Nitrogênio , Fotossíntese , Nitrogênio/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Glucosiltransferases/metabolismo , Fabaceae/metabolismo , Fabaceae/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
6.
Biochem Soc Trans ; 52(3): 1419-1430, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38779952

RESUMO

Legumes house nitrogen-fixing endosymbiotic rhizobia in specialised polyploid cells within root nodules. This results in a mutualistic relationship whereby the plant host receives fixed nitrogen from the bacteria in exchange for dicarboxylic acids. This plant-microbe interaction requires the regulation of multiple metabolic and physiological processes in both the host and symbiont in order to achieve highly efficient symbiosis. Recent studies have showed that the success of symbiosis is influenced by the circadian clock of the plant host. Medicago and soybean plants with altered clock mechanisms showed compromised nodulation and reduced plant growth. Furthermore, transcriptomic analyses revealed that multiple genes with key roles in recruitment of rhizobia to plant roots, infection and nodule development were under circadian control, suggesting that appropriate timing of expression of these genes may be important for nodulation. There is also evidence for rhythmic gene expression of key nitrogen fixation genes in the rhizobium symbiont, and temporal coordination between nitrogen fixation in the bacterial symbiont and nitrogen assimilation in the plant host may be important for successful symbiosis. Understanding of how circadian regulation impacts on nodule establishment and function will identify key plant-rhizobial connections and regulators that could be targeted to increase the efficiency of this relationship.


Assuntos
Fabaceae , Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio , Rhizobium , Simbiose , Rhizobium/fisiologia , Rhizobium/metabolismo , Fabaceae/microbiologia , Fabaceae/metabolismo , Ritmo Circadiano/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Relógios Circadianos/fisiologia , Relógios Circadianos/genética
7.
Plant Signal Behav ; 19(1): 2349868, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38743594

RESUMO

The purpose of this study was to analyze the role of transcription factor in Desmodium styracifolium, proving that the DsWRKY6 transcription factor was related to the plant phenotypes of Desmodium styracifolium - cv. 'GuangYaoDa1' and it could be used in molecular-assisted breeding. 'GuangYaoDa1' was used as the material and its DNA was the template to clone DsWRKY6, the transgenic Arabidopsis thaliana line was constructed by agrobacterium tumefaciens­mediated transformation. Transgenic Arabidopsis thaliana was cultivated to study phenotype and physiological and biochemical indexes. Phenotypic observation showed that DsWRKY6 transgenic Arabidopsis thaliana had a faster growth rate while compared with the control group, they had longer lengths of main stem, lateral branches of cauline leaves, and root, but a lower number of cauline leaves and lateral branches of cauline leaves. And it also showed that their flowering and fruiting periods were advanced. The results of physiological and biochemical indexes showed that the relative expressions of DsWRKY6 increased and the abscisic acid content significantly increased in DsWRKY6 transgenic Arabidopsis thaliana compared with the control group. According to the above results, DsWRKY6 could regulate the advancing of flowering and fruiting periods caused by the improvement of abscisic acid content, and expression of the DsWRKY6 transcription factor might be the cause of the upright growth of 'GuangYaoDa1'.


Assuntos
Clonagem Molecular , Genes de Plantas , Fatores de Transcrição , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Tree Physiol ; 44(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691446

RESUMO

Legumes account for a significant proportion of plants in the terrestrial ecosystems. Nitrogen (N)-fixing capability of certain legumes is a pivotal trait that contributes to their ecological dominance. Yet, the functional traits and trait relationships between N-fixer and non-N-fixer legumes are poorly understood. Here, we investigated 27 functional traits associated with morphology, nutrients, hydraulic conductance and photosynthesis in 42 woody legumes (19 N-fixers and 23 non-N-fixers) in a common garden. Our results showed that N-fixers had higher specific leaf area, photosynthetic phosphorus (P)-use efficiency, leaf N, and iron concentrations on both area and mass basis, N/P ratio, and carbon (C) to P ratio, but lower wood density, area-based maximum photosynthetic rate (Aa), photosynthetic N-use efficiency, leaf mass- and area-based P and molybdenum and area-based boron concentrations, and C/N ratio, compared with non-N-fixers. The mass-based maximum photosynthetic rate (Am), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), mass- and area-based leaf potassium and mass-based boron concentrations, leaf hydraulic conductance (Kleaf), and whole-shoot hydraulic conductance (Kshoot) showed no difference between N-fixers and non-N-fixers. Significant positive associations between all hydraulic and photosynthetic trait pairs were found in N-fixers, but only one pair (Kshoot-Aa) in non-N-fixers, suggesting that hydraulic conductance plays a more important role in mediating photosynthetic capacity in N-fixers compared with non-N-fixers. Higher mass-based leaf N was linked to lower time-integrated gs and higher WUEi among non-N-fixer legumes or all legumes pooled after phylogeny was considered. Moreover, mass-based P concentration was positively related to Am and gs in N-fixers, but not in non-N-fixers, indicating that the photosynthetic capacity and stomatal conductance in N-fixers were more dependent on leaf P status than in non-N-fixers. These findings expand our understanding of the trait-based ecology within and across N-fixer and non-N-fixer legumes in tropics.


Assuntos
Fabaceae , Nitrogênio , Fotossíntese , Folhas de Planta , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Fabaceae/fisiologia , Fabaceae/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Fósforo/metabolismo , Água/metabolismo , Carbono/metabolismo
9.
Sci Rep ; 14(1): 11139, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750151

RESUMO

Fertilizers application are widely used to get a higher yield in agricultural fields. Nutrient management can be improved by cultivating leguminous species in order to obtain a better understanding of the mechanisms that increase the amount of available phosphorus (P) and potassium (K) through fertilizer treatments. A pot experiment was conducted to identify the leguminous species (i.e., chickpea and pea) under various fertilizer treatments. Experimental design is as follows: T0 (control: no fertilizer was applied), T1: P applied at the level of (90 kg ha-1), T2: (K applied at the level of 90 kg ha-1), and T3: (PK applied both at 90 kg ha-1). All fertilizer treatments significantly (p < 0.05) improved the nutrient accumulation abilities and enzymes activities. The T3 treatment showed highest N uptake in chickpea was 37.0%, compared to T0. While T3 developed greater N uptake in pea by 151.4% than the control. However, T3 treatment also increased microbial biomass phosphorus in both species i.e., 95.7% and 81.5% in chickpeas and peas, respectively, compared to T0 treatment. In chickpeas, T1 treatment stimulated NAGase activities by 52.4%, and T2 developed URase activities by 50.1% higher than control. In contrast, T3 treatment enhanced both BGase and Phase enzyme activities, i.e., 55.8% and 33.9%, respectively, compared to the T0 treatment. Only the T3 treatment improved the activities of enzymes in the pea species (i.e., BGase was 149.7%, URase was 111.9%, Phase was 81.1%, and NAGase was 70.0%) compared to the control. Therefore, adding combined P and K fertilizer applications to the soil can increase the activity of enzymes in both legume species, and changes in microbial biomass P and soil nutrient availability make it easier for plants to uptake the nutrients.


Assuntos
Biomassa , Cicer , Fertilizantes , Fósforo , Microbiologia do Solo , Solo , Fósforo/metabolismo , Solo/química , Cicer/metabolismo , Cicer/crescimento & desenvolvimento , Fabaceae/metabolismo , Fabaceae/crescimento & desenvolvimento , Potássio/metabolismo , Pisum sativum/metabolismo , Pisum sativum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Nutrientes/metabolismo
10.
Colloids Surf B Biointerfaces ; 238: 113929, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677155

RESUMO

In recent years, with increasing emphasis on healthy, green, and sustainable consumption concepts, plant-based foods have gained popularity among consumers. As widely sourced plant-based raw materials, legume proteins are considered sustainable and renewable alternatives to animal proteins. However, legume proteins have limited functional properties, which hinder their application in food products. LAB fermentation is a relatively natural processing method that is safer than chemical/physical modification methods and can enrich the functional properties of legume proteins through biodegradation and modification. Therefore, changes in legume protein composition, structure, and functional properties and their related mechanisms during LAB fermentation are described. In addition, the specific enzymatic hydrolysis mechanisms of different LAB proteolytic systems on legume proteins are also focused in this review. The unique proteolytic systems of different LAB induce specific enzymatic hydrolysis of legume proteins, resulting in the production of hydrolysates with diverse functional properties, including solubility, emulsibility, gelability, and foamability, which are determined by the composition (peptide/amino acid) and structure (secondary/tertiary) of legume proteins after LAB fermentation. The correlation between LAB-specific enzymatic hydrolysis, protein composition and structure, and protein functional properties will assist in selecting legume protein raw materials and LAB strains for legume plant-based food products and expand the application of legume proteins in the food industry.


Assuntos
Fabaceae , Fermentação , Proteínas de Plantas , Hidrólise , Fabaceae/química , Fabaceae/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Lactobacillales/metabolismo
11.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569319

RESUMO

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Assuntos
Fabaceae , Gases de Efeito Estufa , Verduras/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitratos , Carbono , Solo , Metano/análise , Nitrogênio/metabolismo , Dióxido de Carbono/análise , Agricultura
12.
New Phytol ; 242(5): 1944-1956, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575849

RESUMO

The oxygen isotope composition of cellulose (δ18O values) has been suggested to contain information on stomatal conductance (gs) responses to rising pCO2. The extent by which pCO2 affects leaf water and cellulose δ18O values (δ18OLW and δ18OC) and the isotope processes that determine pCO2 effects on δ18OLW and δ18OC are, however, unknown. We tested the effects of pCO2 on gs, δ18OLW and δ18OC in a glasshouse experiment, where six plant species were grown under pCO2 ranging from 200 to 500 ppm. Increasing pCO2 caused a decline in gs and an increase in δ18OLW, as expected. Importantly, the effects of pCO2 on gs and δ18OLW were small and pCO2 effects on δ18OLW were not directly transferred to δ18OC but were attenuated in grasses and amplified in dicotyledonous herbs and legumes. This is likely because of functional group-specific pCO2 effects on the model parameter pxpex. Our study highlights important uncertainties when using δ18OC as a proxy for gs. Specifically, pCO2-triggered gs effects on δ18OLW and δ18OC are possibly too small to be detected in natural settings and a pCO2 effect on pxpex may render the commonly assumed negative linkage between δ18OC and gs to be incorrect, potentially confounding δ18OC based gs reconstructions.


Assuntos
Atmosfera , Dióxido de Carbono , Celulose , Fabaceae , Isótopos de Oxigênio , Folhas de Planta , Poaceae , Água , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Celulose/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Fabaceae/efeitos dos fármacos , Fabaceae/fisiologia , Fabaceae/metabolismo , Atmosfera/química , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia
13.
Phytochem Anal ; 35(5): 1174-1185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38553821

RESUMO

INTRODUCTION: Sainfoin (Onobrychis viciaefolia) is a vital legume forage, and drought is the primary element impeding sainfoin growth. OBJECTIVE: The anatomical structure, physiological indexes, and metabolites of the leaves of sainfoin seedlings with a drought-resistant line of P1 (DRL) and a drought-sensitive material of 2049 (DSM) were analyzed under drought (-1.0 MPa) with polyethylene glycol-6000 (PEG-6000). METHODS: The leaf anatomy was studied by the paraffin section method. The related physiological indexes were measured by the hydroxylamine oxidation method, titanium sulfate colorimetric method, thiobarbituric acid method, acidic ninhydrin colorimetric method, and Coomassie brilliant blue method. The metabolomics analysis was composed of liquid chromatography tandem high-resolution mass spectrometry (LC-MS/MS). RESULTS: The results revealed that the thickness of the epidermis, palisade tissue, and sponge tissue of DRL were significantly greater than those of DSM. The leaves of DRL exhibited lower levels of superoxide anion (O2 •-) production rate, hydrogen peroxide (H2O2) content, and malondialdehyde (MDA) content compared with DSM, while proline (Pro) content and soluble protein (SP) content were significantly higher than those of DSM. A total of 391 differential metabolites were identified in two samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that the primary differential metabolites were concentrated into the tyrosine metabolism; isoquinoline alkaloid biosynthesis; ubiquinone and other terpenoid quinone biosynthesis; neomycin, kanamycin, and gentamicin biosynthesis; and anthocyanin biosynthesis metabolic pathways. CONCLUSION: Compared with DSM, DRL had more complete anatomical structure, lower active oxygen content, and higher antioxidant level. The results improved our insights into the drought-resistant mechanisms in sainfoin.


Assuntos
Secas , Metaboloma , Folhas de Planta , Plântula , Folhas de Planta/metabolismo , Folhas de Planta/anatomia & histologia , Plântula/metabolismo , Fabaceae/fisiologia , Fabaceae/anatomia & histologia , Fabaceae/metabolismo , Estresse Fisiológico , Metabolômica
14.
J Sci Food Agric ; 104(10): 6100-6107, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445779

RESUMO

BACKGROUND: Dietary selenium (Se) deficiency, stemming from low Se concentrations in agricultural products, threatens human health. While Se-containing fertilizers can enhance the Se content in crops, the key factors governing Se biofortification with Se fertilization remain unclear. RESULTS: This study constructed a global meta-analysis dataset based on field experiments comprising 364 entries on Se content in agricultural products and 271 entries on their yield. Random forest models and mixed effects meta-analyses revealed that plant types (i.e., cereals, vegetables, legumes, and forages) primarily influenced Se biofortification, with Se fertilization rates being the next significant factor. The random forest model, which included variables like plant types, Se fertilization rates, methods and types of Se application, initial soil conditions (including Se content, organic carbon content, and pH), soil types, mean annual precipitation, and temperature, explained 82.14% of the variation in Se content and 48.42% of the yield variation in agricultural products. For the same agricultural products, the increase in Se content decreased with higher rates of Se fertilization. The increase in Se content in their edible parts will be negligible for cereals, forages, legumes, and vegetable crops, when Se fertilization rates were 164, 103, 144, and 147 g Se ha-1, respectively. Conversely, while low Se fertilization rates enhanced yields, high rates led to a yield reduction, particularly in cereals. CONCLUSION: Our findings highlight the need for balanced and precise Se fertilization strategies to optimize Se biofortification benefits and minimize the risk of yield reduction. © 2024 Society of Chemical Industry.


Assuntos
Biofortificação , Produtos Agrícolas , Fertilizantes , Selênio , Solo , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Grão Comestível/química , Grão Comestível/metabolismo , Fabaceae/química , Fabaceae/metabolismo , Fabaceae/crescimento & desenvolvimento , Fertilizantes/análise , Selênio/análise , Selênio/metabolismo , Solo/química , Verduras/química , Verduras/metabolismo , Verduras/crescimento & desenvolvimento
15.
Plant Physiol Biochem ; 208: 108535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38503187

RESUMO

Aluminum (Al) toxicity is the major constraint on plant growth and productivity in acidic soils. An adaptive mechanism to enhance Al tolerance in plants is mediated malate exudation from roots through the involvement of ALMT (Al-activated malate transporter) channels. The underlying Al tolerance mechanisms of stylo (Stylosanthes guianensis), an important tropical legume that exhibits superior Al tolerance, remain largely unknown, and knowledge of the potential contribution of ALMT genes to Al detoxification in stylo is limited. In this study, stylo root growth was inhibited by Al toxicity, accompanied by increases in malate and citrate exudation from roots. A total of 11 ALMT genes were subsequently identified in the stylo genome and named SgALMT1 to SgALMT11. Diverse responses to metal stresses were observed for these SgALMT genes in stylo roots. Among them, the expressions of 6 out of the 11 SgALMTs were upregulated by Al toxicity. SgALMT2, a root-specific and Al-activated gene, was selected for functional characterization. Subcellular localization analysis revealed that the SgALMT2 protein is localized to the plasma membrane. The function of SgALMT2 in mediating malate release was confirmed by analysis of the malate exudation rate from transgenic composite stylo plants overexpressing SgALMT2. Furthermore, overexpression of SgALMT2 led to increased root growth in transgenic stylo plants treated with Al through decreased Al accumulation in roots. Taken together, the results of this study suggest that malate secretion mediated by SgALMT2 contributes to the ability of stylo to cope with Al toxicity.


Assuntos
Alumínio , Fabaceae , Alumínio/toxicidade , Alumínio/metabolismo , Malatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fabaceae/metabolismo
16.
J Plant Physiol ; 295: 154206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452650

RESUMO

Seed development, dormancy, and germination are connected with changes in metabolite levels. Not surprisingly, a complex regulatory network modulates biosynthesis and accumulation of storage products. Seed development has been studied profusely in Arabidopsis thaliana and has provided valuable insights into the genetic control of embryo development. However, not every inference applies to crop legumes, as these have been domesticated and selected for high seed yield and specific metabolic profiles and fluxes. Given its enormous economic relevance, considerable work has contributed to shed light on the mechanisms that control legume seed growth and germination. Here, we summarize recent progress in the understanding of regulatory networks that coordinate seed metabolism and development in legumes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fabaceae , Germinação/genética , Fabaceae/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Verduras/metabolismo , Dormência de Plantas , Regulação da Expressão Gênica de Plantas
17.
Physiol Plant ; 176(2): e14235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38472162

RESUMO

N2 -fixing legumes can strongly affect ecosystem functions by supplying nitrogen (N) and improving the carbon-fixing capacity of vegetation. Still, the question of how their leaf-level N status and carbon metabolism are coordinated along leaf ageing remains unexplored. Leaf tissue carbon isotopic composition (δ13 C) provides a useful indicator of time-integrated intrinsic water use efficiency (WUEi). Here, we quantified the seasonal changes of leaf δ13 C, N content on a mass and area basis (Nmass , Narea , respectively), Δ18 O (leaf 18 O enrichment above source water, a proxy of time-integrated stomatal conductance) and morphological traits in an emblematic N2 -fixing legume tree, the black locust (Robinia pseudoacacia L.), at a subtropical site in Southwest China. We also measured xylem, soil and rainwater isotopes (δ18 O, δ2 H) to characterize tree water uptake patterns. Xylem water isotopic data reveal that black locust primarily used shallow soil water in this humid habitat. Black locust exhibited a decreasing δ13 C along leaf ageing, which was largely driven by decreasing leaf Nmass , despite roughly constant Narea . In contrast, the decreasing δ13 C along leaf ageing was largely uncoupled from parallel increases in Δ18 O and leaf thickness. Leaf N content is used as a proxy of leaf photosynthetic capacity; thus, it plays a key role in determining the seasonality in δ13 C, whereas the roles of stomatal conductance and leaf morphology are minor. Black locust leaves can effectively adjust to changing environmental conditions along leaf ageing through LMA increases and moderate stomatal conductance reduction while maintaining constant Narea to optimize photosynthesis and carbon assimilation, despite declining leaf Nmass and δ13 C.


Assuntos
Fabaceae , Robinia , Árvores/metabolismo , Ecossistema , Fabaceae/metabolismo , Folhas de Planta/metabolismo , Carbono/metabolismo , Solo , Água/metabolismo , Nitrogênio/metabolismo
18.
Food Funct ; 15(7): 3680-3691, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488045

RESUMO

The effect of two processing methods of Jack beans (i.e. cooked bean (CB) and cooked tempeh (CT)) on the in vitro digestibility of protein and starch, as well as the production of short chain fatty acids (SCFAs), γ-aminobutyric acid (GABA), and tryptophan (Trp) metabolites after in vitro colonic fermentation, was investigated. CT was obtained by fungal fermentation after cooking under acidic conditions. CT had significantly higher protein, lower digestible starch, lower total fiber, higher free phenolic compounds, and higher ash content compared to CB. CT exhibited better in vitro protein digestibility than CB and less glucose release during in vitro digestion than CB. A comparable concentration of total SCFAs and GABA was produced after in vitro fermentation of CB and CT, but CB produced more indole than CT, resulting in higher amounts of total Trp metabolites. In summary, our findings show that tempeh fermentation improves the nutritional quality of Jack beans and describe the impact of fermentation on the digestibility of nutrients and the formation of metabolites during colonic fermentation.


Assuntos
Fabaceae , Alimentos de Soja , Canavalia/metabolismo , Fermentação , Fabaceae/metabolismo , Amido/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácido gama-Aminobutírico/metabolismo , Digestão
19.
Chemosphere ; 356: 141767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537715

RESUMO

The current review highlights the complex behavior of thallium (Tl) in soil and plant systems, offering insight into its hazardous characteristics and far-reaching implications. The research investigates the many sources of Tl, from its natural existence in the earth crust to its increased release through anthropogenic activities such as industrial operations and mining. Soil emerges as a significant reservoir of Tl, with diverse physicochemical variables influencing bioavailability and entrance into the food chain, notably in Brassicaceae family members. Additionally, the study highlights a critical knowledge gap concerning Tl influence on legumes (e.g., soybean), underlining the pressing demand for additional studies in this crucial sector. Despite the importance of leguminous crops in the world food supply and soil fertility, the possible impacts of Tl on these crops have received little attention. As we traverse the ecological complexity of Tl, this review advocates the collaborative research efforts to eliminate crucial gaps and provide solutions for reducing Tl detrimental impacts on soil and plant systems. This effort intends to pave the path for sustainable agricultural practices by emphasizing the creation of Tl-tolerant legume varieties and revealing the complicated dynamics of Tl-plant interactions, assuring the long-term durability of our food systems against the danger of Tl toxicity.


Assuntos
Poluentes do Solo , Solo , Tálio , Tálio/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Produtos Agrícolas/metabolismo , Agricultura , Plantas/metabolismo , Monitoramento Ambiental , Fabaceae/metabolismo , Fabaceae/crescimento & desenvolvimento
20.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542415

RESUMO

The type III secretion system (T3SS) is a key factor for the symbiosis between rhizobia and legumes. In this study, we investigated the effect of calcium on the expression and secretion of T3SS effectors (T3Es) in Sinorhizobium fredii NGR234, a broad host range rhizobial strain. We performed RNA-Seq analysis of NGR234 grown in the presence of apigenin, calcium, and apigenin plus calcium and compared it with NGR234 grown in the absence of calcium and apigenin. Calcium treatment resulted in a differential expression of 65 genes, most of which are involved in the transport or metabolism of amino acids and carbohydrates. Calcium had a pronounced effect on the transcription of a gene (NGR_b22780) that encodes a putative transmembrane protein, exhibiting a 17-fold change when compared to NGR234 cells grown in the absence of calcium. Calcium upregulated the expression of several sugar transporters, permeases, aminotransferases, and oxidoreductases. Interestingly, calcium downregulated the expression of nodABC, genes that are required for the synthesis of nod factors. A gene encoding a putative outer membrane protein (OmpW) implicated in antibiotic resistance and membrane integrity was also repressed by calcium. We also observed that calcium reduced the production of nodulation outer proteins (T3Es), especially NopA, the main subunit of the T3SS pilus. Additionally, calcium mediated the cleavage of NopA into two smaller isoforms, which might affect the secretion of other T3Es and the symbiotic establishment. Our findings suggest that calcium regulates the T3SS at a post-transcriptional level and provides new insights into the role of calcium in rhizobia-legume interactions.


Assuntos
Fabaceae , Sinorhizobium fredii , Sinorhizobium fredii/metabolismo , Cálcio/metabolismo , Apigenina/metabolismo , Fabaceae/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Cálcio da Dieta/metabolismo , Simbiose/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...