Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 822
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39408689

RESUMO

γ-aminobutyric acid (GABA) and rare ginsenosides are good antioxidant and anti-fatigue active components that can be enriched via probiotic fermentation. In this study, ginseng and germinated brown rice were used as raw materials to produce six fermented purees using fermentation and non-fermentation technology. We tested the chemical composition of the purees and found that the content of GABA and rare ginsenoside (Rh4, Rg3, and CK) in the puree made of ginseng and germinated brown rice (FGB) increased significantly after fermentation. The antioxidant activity of the six purees was determined using cell-free experiments, and it was found that FGB had better ferric-ion-reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging rates, exhibiting better antioxidant effects. We then evaluated the antioxidant effect of FGB in HepG2 cells induced by H2O2 and found that FGB can reduce the generation of reactive oxygen species (ROS) in HepG2 cells and increase the membrane potential level, thereby improving oxidative damage in these cells. In vivo experiments also showed that FGB has good antioxidant and anti-fatigue activities, which can prolong the exhaustive swimming time of mice and reduce the accumulation of metabolites, and is accompanied by a corresponding increase in liver glycogen and muscle glycogen levels as well as superoxide dismutase and lactate dehydrogenase activities. Finally, we believe that the substances with good antioxidant and anti-fatigue activity found in FGB are derived from co-fermented enriched GABA and rare ginsenosides.


Assuntos
Antioxidantes , Fadiga , Fermentação , Ginsenosídeos , Oryza , Panax , Ácido gama-Aminobutírico , Ginsenosídeos/farmacologia , Panax/química , Ácido gama-Aminobutírico/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Oryza/química , Humanos , Camundongos , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Células Hep G2 , Masculino , Espécies Reativas de Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Estresse Oxidativo/efeitos dos fármacos
2.
J Gerontol A Biol Sci Med Sci ; 79(11)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208421

RESUMO

BACKGROUND: Fatigability in community-dwelling older adults is highly prevalent and disabling, but lacks a treatment. Greater nigrostriatal dopaminergic signaling can ameliorate performance fatigability in healthy young adults, but its role in community-dwelling older adults is not known. We hypothesized that higher nigrostriatal dopaminergic integrity would be associated with lower performance fatigability, independent of cardiopulmonary and musculoskeletal energetics and other health conditions. METHODS: In 125 older adults participating in the Study of Muscle, Mobility and Aging, performance fatigability was measured as performance deterioration during a fast 400 m walk (% slowing down from the 2nd to the 9th lap). Nigrostriatal DA integrity was measured using (+)-[11C] dihydrotetrabenazine (DTBZ) PET imaging. The binding signal was obtained separately for the subregions regulating sensorimotor (posterior putamen), reward (ventral striatum), and executive control processes (dorsal striatum). Multivariable linear regression models of performance fatigability (dependent variable) estimated the coefficients of dopamine integrity in striatal subregions, adjusted for demographics, comorbidities, and cognition. Models were further adjusted for skeletal muscle energetics (via biopsy) and cardiopulmonary fitness (via cardiopulmonary exercise testing). RESULTS: Higher [11C]-DTBZ binding in the posterior putamen was significantly associated with lower performance fatigability (demographic-adjusted standardized ß = -1.08, 95% CI: -1.96, -0.20); results remained independent of adjustment for other covariates, including cardiopulmonary and musculoskeletal energetics. Associations with other striatal subregions were not significant. DISCUSSION: Dopaminergic integrity in the sensorimotor striatum may influence performance fatigability in older adults without clinically overt diseases, independent of other aging systems.


Assuntos
Dopamina , Fadiga , Vida Independente , Tomografia por Emissão de Pósitrons , Humanos , Masculino , Idoso , Feminino , Dopamina/metabolismo , Fadiga/fisiopatologia , Fadiga/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/diagnóstico por imagem , Desempenho Físico Funcional , Tetrabenazina/análogos & derivados , Idoso de 80 Anos ou mais
3.
J Med Food ; 27(9): 887-894, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39052664

RESUMO

Moringa oleifera Lam. leaves contain various nutrients and bioactive compounds. The present study aimed to assess the anti-fatigue capacity of a flavonoids concentrate purified from M. oleifera Lam. leaves. The total flavonoids in the purified extract were analyzed by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS/MS). The mice were supplemented with purified M. oleifera Lam. leaf flavonoid-rich extract (MLFE) for 14 days. The weight-loaded forced swimming test was used for evaluating exercise endurance. The 90-min non-weight-bearing swimming test was carried out to assess biochemical biomarkers correlated to fatigue and energy metabolism. UPLC-MS/MS analysis identified 83 flavonoids from MLFE. MLFE significantly increased the swimming time by 60%. Serum lactate (9.9 ± 0.9 vs. 8.9 ± 0.7), blood urea nitrogen (BUN) (8.8 ± 0.8 vs. 7.2 ± 0.5), and nonesterified fatty acid (NEFA) (2.4 ± 0.2 vs. 1.7 ± 0.3) were significantly elevated; phosphoenolpyruvate carboxykinase (PEPCK), glucokinase (GCK), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression were significantly downregulated; and heme oxygenase 1 mRNA expression was significantly upregulated in muscle after swimming. MLFE supplement significantly decreased serum lactate (8.0 ± 1.0 vs. 9.9 ± 0.9), BUN (8.6 ± 0.4 vs. 8.9 ± 0.8), and NEFA (2.3 ± 0.4 vs. 2.4 ± 0.2) and increased the protein and mRNA expression of GCK, PEPCK, and Nrf2. The enhancement of glucose metabolism and antioxidant function by MLFE contributes partly to its anti-fatigue action.


Assuntos
Antioxidantes , Metabolismo Energético , Flavonoides , Moringa oleifera , Extratos Vegetais , Folhas de Planta , Natação , Animais , Moringa oleifera/química , Folhas de Planta/química , Camundongos , Metabolismo Energético/efeitos dos fármacos , Masculino , Antioxidantes/farmacologia , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ácido Láctico/metabolismo , Ácido Láctico/sangue , Humanos , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Nitrogênio da Ureia Sanguínea , Músculo Esquelético/metabolismo , Condicionamento Físico Animal
4.
Psychoneuroendocrinology ; 167: 107091, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964018

RESUMO

Exhaustion disorder (ED) is a stress-related disorder characterized by physical and mental symptoms of exhaustion. Recent data suggest that pathophysiological processes in the central nervous system are involved in the biological mechanisms underlying ED. The aims of this study were to investigate if plasma levels of neuro-related proteins differ between patients with ED and healthy controls, and, if so, to investigate if these differences persist over time. Using the Olink Neuro Exploratory panel, we quantified the plasma levels of 92 neuro-related proteins in 163 ED patients at the time of diagnosis (baseline), 149 patients at long-term follow-up (7-12 years later, median follow-up time 9 years and 5 months), and 100 healthy controls. We found that the plasma levels of 40 proteins were significantly higher in the ED group at baseline compared with the control group. Out of these, the plasma levels of 36 proteins were significantly lower in the ED group at follow-up compared with the same group at baseline and the plasma levels of four proteins did not significantly differ between the groups. At follow-up, the plasma levels of two proteins were significantly lower in the ED group compared with the control group. These data support the hypothesis that pathophysiological processes in the central nervous system are involved in the biological mechanisms underlying ED.


Assuntos
Estresse Psicológico , Humanos , Masculino , Feminino , Estudos Longitudinais , Adulto , Pessoa de Meia-Idade , Estresse Psicológico/sangue , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Fadiga/sangue , Fadiga/metabolismo , Biomarcadores/sangue
5.
Exp Brain Res ; 242(9): 2125-2136, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970653

RESUMO

This study compared brain glucose metabolism using FDG-PET in the caudate nucleus, putamen, globus pallidus, thalamus, and dorsolateral prefrontal cortex (DLPFC) among patients with Long COVID, patients with fatigue, people with multiple sclerosis (PwMS) patients with fatigue, and COVID recovered controls. PwMS exhibited greater hypometabolism compared to long COVID patients with fatigue and the COVID recovered control group in all studied brain areas except the globus pallidus (effect size range 0.7-1.5). The results showed no significant differences in glucose metabolism between patients with Long COVID and the COVID recovered control group in these regions. These findings suggest that long COVID fatigue may involve non-CNS systems, neurotransmitter imbalances, or psychological factors not captured by FDG-PET, while MS-related fatigue is associated with more severe frontal-striatal circuit dysfunction due to demyelination and neurodegeneration. Symmetrical standardized uptake values (SUVs) between hemispheres in all groups imply that fatigue in these conditions may be related to global or network-level alterations rather than hemisphere-specific changes. Future studies should employ fine-grained analysis methods, explore other brain regions, and control for confounding factors to better understand the pathophysiology of fatigue in MS and long COVID. Longitudinal studies tracking brain glucose metabolism in patients with Long COVID could provide insights into the evolution of metabolic patterns as the condition progresses.


Assuntos
COVID-19 , Corpo Estriado , Fadiga , Glucose , Esclerose Múltipla , Tomografia por Emissão de Pósitrons , Humanos , COVID-19/complicações , COVID-19/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Fadiga/metabolismo , Fadiga/fisiopatologia , Fadiga/diagnóstico por imagem , Fadiga/etiologia , Adulto , Glucose/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/diagnóstico por imagem , Fluordesoxiglucose F18 , Lobo Frontal/metabolismo , Lobo Frontal/diagnóstico por imagem , Síndrome de COVID-19 Pós-Aguda , Idoso
6.
Psychoneuroendocrinology ; 168: 107117, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38986244

RESUMO

BACKGROUND: In patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), momentary cortisol concentrations in blood, urine, and saliva are lower compared to healthy controls. Long-term cortisol concentration can be assessed through hair, but it is unclear whether these concentrations are also lower. Additionally, it is unknown if lower cortisol extends to other patients suffering from persistent fatigue and how hair cortisol concentration (HCC) relates to fatigue levels. Therefore, this study examines HCC in fatigued patients with ME/CFS, Q fever Fatigue Syndrome (QFS), Post-COVID-19 condition (PCC), and Juvenile Idiopathic Arthritis (JIA). METHODS: Adolescent and young adult patients with ME/CFS (n=12), QFS (n=20), PCC (n=8), JIA (n=19), and controls (n=57) were included. Patients participated in a randomized cross-over trial (RCT) targeting fatigue through lifestyle and dietary self-management strategies. HCC was measured pre-post RCT in patients and once in controls, quantified using a LC-MS/MS-based method. Fatigue severity was measured with the Checklist Individual Strength-8. HCC was compared between groups with ANOVAs. Relations between HCC, fatigue severity, and other variables were investigated using linear regression analyses. RESULTS: The ME/CFS (p=.009) and QFS (p=.047) groups had lower HCC compared to controls. Overall, HCC was negatively associated with the presence of symptoms related to chronic fatigue syndromes (e.g., sleeping issues, often feeling tired, trouble thinking clearly; ß=-0.018, p=.035), except in the QFS group (ß=.063, p<.001). Baseline HCC did not predict fatigue improvement during the RCT (p=.449), and HCC increased during the trial (Mdif=.076, p=.021) regardless of clinically relevant fatigue improvement (p=.658). CONCLUSION: Lower cortisol concentration can also be observed in the long-term. Lower HCC is not limited to ME/CFS, as it was also observed in QFS. The role of cortisol may differ between these diagnoses and appears to be unrelated to fatigue levels.


Assuntos
Síndrome de Fadiga Crônica , Cabelo , Hidrocortisona , Humanos , Síndrome de Fadiga Crônica/metabolismo , Hidrocortisona/metabolismo , Hidrocortisona/análise , Masculino , Feminino , Adolescente , Adulto Jovem , Cabelo/química , Cabelo/metabolismo , Adulto , COVID-19/metabolismo , COVID-19/complicações , Fadiga/metabolismo , Estudos Cross-Over , Artrite Juvenil/metabolismo , Artrite Juvenil/complicações , SARS-CoV-2
7.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891799

RESUMO

Emerging research links the endocannabinoid system to gut microbiota, influencing nociception, mood, and immunity, yet the molecular interactions remain unclear. This study focused on the effects of probiotics on ECS markers-cannabinoid receptor type 2 (CB2) and fatty acid amide hydrolase (FAAH)-in dancers, a group selected due to their high exposure to physical and psychological stress. In a double-blind, placebo-controlled trial (ClinicalTrials.gov NCT05567653), 15 dancers were assigned to receive either a 12-week regimen of Lactobacillus helveticus Rosell-52 and Bifidobacterium longum Rosell-17 or a placebo (PLA: n = 10, PRO: n = 5). There were no significant changes in CB2 (probiotic: 0.55 to 0.29 ng/mL; placebo: 0.86 to 0.72 ng/mL) or FAAH levels (probiotic: 5.93 to 6.02 ng/mL; placebo: 6.46 to 6.94 ng/mL; p > 0.05). A trend toward improved sleep quality was observed in the probiotic group, while the placebo group showed a decline (PRO: from 1.4 to 1.0; PLA: from 0.8 to 1.2; p = 0.07841). No other differences were noted in assessed outcomes (pain and fatigue). Probiotic supplementation showed no significant impact on CB2 or FAAH levels, pain, or fatigue but suggested potential benefits for sleep quality, suggesting an area for further research.


Assuntos
Amidoidrolases , Endocanabinoides , Fadiga , Dor , Probióticos , Sono , Humanos , Probióticos/uso terapêutico , Endocanabinoides/metabolismo , Feminino , Método Duplo-Cego , Fadiga/metabolismo , Adulto , Masculino , Dor/tratamento farmacológico , Sono/efeitos dos fármacos , Sono/fisiologia , Amidoidrolases/metabolismo , Adulto Jovem , Receptor CB2 de Canabinoide/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Adolescente
8.
Behav Brain Res ; 471: 115076, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-38825021

RESUMO

OBJECTIVE: It is to investigate the effects of ß-asarone on learning and memory, hippocampal morphology, synaptophysin (SYP) and postsynaptic density 95(PSD95) protein expression, N-methyl-D-aspartic acid receptor 2B (NR2B)- Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) - Extracellular signal-regulated kinase (ERK) / Cyclic-AMP response element binding protein (CREB) signal in hippocampus of rats with exhaustive exercise-induced fatigue. METHODS: Fifty Sprague-Dawley male rats were randomly divided into five groups: normal group, exercise group, exercise and ß-asarone (2.5, 10, 40 mg/kg)-treated groups. The learning and memory in rats were tested by Morris water maze experiment. We measured the hippocampal morphology by Nissl staining. The levels of SYP, PSD95, NR2B, CaMKII, ERK1/2, CREB, p-NR2B, p-CaMKII, p-ERK1/2 and p-CREB expression were measured by western blot analysis. RESULTS: The results demonstrated that ß-asarone (10, 40 mg/kg) treatment significantly decreased the latency to find the platform, increased the time spent in the target quadrant and the number of crossing the platform of rats with exhaustive exercise-induced fatigue. ß-asarone (10, 40 mg/kg) treatment increased the cell density in the hippocampus CA1 region, significantly up-regulated NR2B-CaMKII-ERK/CREB signal and improved the protein expression levels of SYP and PSD95 in hippocampus of rats with exhaustive exercise-induced fatigue. CONCLUSIONS: It suggests that ß-asarone could improve learning and memory of rats with exhaustive exercise-induced fatigue. The mechanism might be related to ß-asarone protecting the morphology of hippocampus, increasing the protein expression levels of SYP and PSD95 and up-regulating NR2B-CaMKII-ERK/CREB signal in hippocampus of rats with exhaustive exercise-induced fatigue.


Assuntos
Derivados de Alilbenzenos , Anisóis , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fadiga , Hipocampo , Transtornos da Memória , Condicionamento Físico Animal , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Animais , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ratos , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Derivados de Alilbenzenos/farmacologia , Condicionamento Físico Animal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Anisóis/farmacologia , Transtornos da Memória/tratamento farmacológico , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia
9.
J Cell Mol Med ; 28(12): e18455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898772

RESUMO

Cancer-related fatigue (CRF) significantly impacts the quality of life of cancer patients. This study investigates the therapeutic potential of Shenqi Fuzheng injection (SFI) in managing CRF, focusing on its mechanistic action in skeletal muscle. We utilized a CRF mouse model to examine the effects of SFI on physical endurance, monitoring activity levels, swimming times and rest periods. Proteomic analysis of the gastrocnemius muscle was performed using isobaric tags and liquid chromatography-tandem mass spectrometry to map the muscle proteome changes post-SFI treatment. Mitochondrial function in skeletal muscle was assessed via ATP bioluminescence assay. Furthermore, the regulatory role of the hypoxia inducible factor 1 subunit alpha (HIF-1α) signalling pathway in mediating SFI's effects was explored through western blotting. In CRF-induced C2C12 myoblasts, we evaluated cell viability (CCK-8 assay), apoptosis (flow cytometry) and mitophagy (electron microscopy). The study also employed pulldown, luciferase and chromatin immunoprecipitation assays to elucidate the molecular mechanisms underlying SFI's action, particularly focusing on the transcriptional regulation of PINK1 through HIF-1α binding at the PINK1 promoter region. Our findings reveal that SFI enhances physical mobility, reduces fatigue symptoms and exerts protective effects on skeletal muscles by mitigating mitochondrial damage and augmenting antioxidative responses. SFI promotes cell viability and induces mitophagy while decreasing apoptosis, primarily through the modulation of HIF-1α, PINK1 and p62 proteins. These results underscore SFI's efficacy in enhancing mitochondrial autophagy, thereby offering a promising approach for ameliorating CRF. The study not only provides insight into SFI's potential therapeutic mechanisms but also establishes a foundation for further exploration of SFI interventions in CRF management.


Assuntos
Medicamentos de Ervas Chinesas , Fadiga , Subunidade alfa do Fator 1 Induzível por Hipóxia , Mitofagia , Músculo Esquelético , Neoplasias , Ubiquitinação , Animais , Mitofagia/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Ubiquitinação/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Fadiga/etiologia , Masculino , Apoptose/efeitos dos fármacos , Humanos , Proteômica/métodos , Modelos Animais de Doenças , Linhagem Celular
10.
Psychoneuroendocrinology ; 167: 107107, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38935980

RESUMO

BACKGROUND: Constant availability, overtime and feeling overwhelmed by work can impact employees' wellbeing and their biological stress responses. Especially working parents often struggle to balance the demands of their work and family life and were found to be distracted from their work due to family responsibilities. The Family-to-Work Conflict (FWC) indicates the extent to which participating in work is made difficult by family demands. Recent studies have found associations between FWC and biological outcomes such as the Cortisol Awakening Response (CAR), a measure of an individual's Hypothalamic-Pituitary-Adrenal (HPA)-axis activity. This diary study investigates the effect of parental work demands on next day's cortisol response as well as the moderating role of FWC and the mediating role of fatigue. METHODS: Over the course of five consecutive days (from Monday to Friday), 168 observations were made on a total of 42 parents. Participants had at least one child and worked a minimum of 20 hours per week. Salivary cortisol samples were obtained immediately, 15 and 30 minutes after awakening each day. Work demands, FWC and fatigue were assessed using standardized questionnaires. Within-person effects were examined using multilevel modeling and mediation analyses. RESULTS: Our results indicate that there are no main effects of work demands on next day's cortisol response. The multilevel analysis revealed that FWC predicts lower wakening cortisol levels and confirmed FWC as an increasing moderator between work demands and next day's HPA-axis activity. Further, work overload was found to increase fatigue, which in turn leads to higher CAR on the following day. This indicates that fatigue mediates the relationship between work demands and CAR. Our findings add to a growing body of research demonstrating further predictors for HPA-axis activity and emphasise the importance of considering family related demands when investigating biological outcomes for working parents.


Assuntos
Fadiga , Hidrocortisona , Sistema Hipotálamo-Hipofisário , Pais , Sistema Hipófise-Suprarrenal , Saliva , Estresse Psicológico , Humanos , Hidrocortisona/metabolismo , Hidrocortisona/análise , Feminino , Masculino , Saliva/química , Saliva/metabolismo , Adulto , Pais/psicologia , Sistema Hipotálamo-Hipofisário/metabolismo , Pessoa de Meia-Idade , Fadiga/metabolismo , Fadiga/psicologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/fisiologia , Estresse Psicológico/metabolismo , Vigília/fisiologia , Família/psicologia , Inquéritos e Questionários , Trabalho/fisiologia , Trabalho/psicologia , Carga de Trabalho/psicologia
11.
Ann Clin Transl Neurol ; 11(8): 2016-2029, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874398

RESUMO

OBJECTIVE: Persisting neurological symptoms after COVID-19 affect up to 10% of patients and can manifest in fatigue and cognitive complaints. Based on recent evidence, we evaluated whether cerebral hemodynamic changes contribute to post-COVID syndrome (PCS). METHODS: Using resting-state functional magnetic resonance imaging, we investigated brain perfusion and oxygen level estimates in 47 patients (44.4 ± 11.6 years; F:M = 38:9) and 47 individually matched healthy control participants. Group differences were calculated using two-sample t-tests. Multivariable linear regression was used for associations of each regional perfusion and oxygen level measure with cognition and sleepiness measures. Exploratory hazard ratios were calculated for each brain metric with clinical measures. RESULTS: Patients presented with high levels of fatigue (79%) and daytime sleepiness (45%). We found widespread decreased brain oxygen levels, most evident in the white matter (false discovery rate adjusted-p-value (p-FDR) = 0.038) and cortical grey matter (p-FDR = 0.015). Brain perfusion did not differ between patients and healthy participants. However, delayed patient caudate nucleus perfusion was associated with better executive function (p-FDR = 0.008). Delayed perfusion in the cortical grey matter and hippocampus were associated with a reduced risk of daytime sleepiness (hazard ratio (HR) = 0.07, p = 0.037 and HR = 0.06, p = 0.034). Decreased putamen oxygen levels were associated with a reduced risk of poor cognitive outcome (HR = 0.22, p = 0.019). Meanwhile, lower thalamic oxygen levels were associated with a higher risk of cognitive fatigue (HR = 6.29, p = 0.017). INTERPRETATION: Our findings of lower regional brain blood oxygen levels suggest increased cerebral metabolism in PCS, which potentially holds a compensatory function. These hemodynamic changes were related to symptom severity, possibly representing metabolic adaptations.


Assuntos
Encéfalo , COVID-19 , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Oxigênio , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , COVID-19/complicações , Adulto , Circulação Cerebrovascular/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Oxigênio/sangue , Oxigênio/metabolismo , Atenção/fisiologia , Síndrome de COVID-19 Pós-Aguda , Fadiga/etiologia , Fadiga/fisiopatologia , Fadiga/metabolismo , Sonolência
12.
Biogerontology ; 25(5): 809-817, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38710961

RESUMO

With the declining birth rates and aging societies in developed countries, the average age of the working population is increasing. Older people tend to get tired more easily, so prevention of fatigue is important to improve the quality of life for older workers. This study aimed to assess the mechanism of fatigue in older people, especially focused on relation between dysfunction of erythrocyte and fatigue. Total power (TP), which is the value of autonomic nerve activity, was measured as a value of fatigue and significantly decreased in workers with aging. As properties of senescent erythrocytes, the erythrocyte sedimentation rate and damaged erythrocytes population increased with aging and correlated with TP. These results suggested that the accumulation of damaged erythrocytes contributes to fatigue. Recent studies revealed that senescence-associated secretory phenotype (SASP), a phenomenon in which senescent cells secrete a variety of cytokines, affected hematopoiesis in bone marrow. We analyzed the effects of SASP factors on erythropoiesis and found that Interleukin -1α (IL-1α) suppressed erythrocyte differentiation of hematopoietic stem cells in vitro. We also showed that IL-1α levels in human blood and saliva increase with aging, suggesting the possibility that IL-1α level in saliva can be used to predict the decline in hematopoietic function.


Assuntos
Envelhecimento , Eritrócitos , Fadiga , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Eritrócitos/metabolismo , Eritropoese/fisiologia , Fadiga/fisiopatologia , Fadiga/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1alfa/sangue , Saliva/metabolismo
13.
Pak J Pharm Sci ; 37(2): 321-326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38767099

RESUMO

Fatigue is a serious disturbance to human health, especially in people who have a severe disease such as cancer, or have been infected with COVID-19. Our research objective is to evaluate the anti-fatigue effect and mechanism of icariin through a mouse experimental model. Mice were treated with icariin for 30 days and anti-fatigue effects were evaluated by the weight-bearing swimming test, serum urea nitrogen test, lactic acid accumulation and clearance test in blood and the amount of liver glycogen. The protein expression levels of adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-α) in the skeletal muscle of mice in each group were measured by western blotting. Results showed that icariin prolonged the weight-bearing swimming time of animals, reduced the serum urea nitrogen level after exercise, decreased the blood lactic acid concentration after exercise and increased the liver glycogen content observably. Compared to that in the control group, icariin upregulated AMPK and PGC1-α expression in skeletal muscle. Icariin can improve fatigue resistance in mice and its mechanism may be through improving the AMPK/PGC-1α pathway in skeletal muscle to enhance energy synthesis, decreasing the accumulation of metabolites and slowing glycogen consumption and decomposition.


Assuntos
Nitrogênio da Ureia Sanguínea , Fadiga , Flavonoides , Ácido Láctico , Músculo Esquelético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Flavonoides/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Camundongos , Masculino , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Natação , Proteínas Quinases Ativadas por AMP/metabolismo , Glicogênio/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Glicogênio Hepático/metabolismo
14.
Sci Rep ; 14(1): 10650, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724532

RESUMO

Avoiding fatigue is a long-standing challenge in both healthy and diseased individuals. Establishing objective standard markers of fatigue is essential to evaluate conditions in spatiotemporally different locations and individuals and identify agents to fight against fatigue. Herein, we introduced a novel method for evaluating fatigue using nervous system markers (including dopamine, adrenaline, and noradrenaline), various cytokine levels (such as interleukin [IL]-1ß, tumor necrosis factor [TNF]-α, IL-10, IL-2, IL-5 and IL-17A), and oxidative stress markers (such as diacron-reactive oxygen metabolites [d-ROMs] and biological antioxidant potential [BAP]) in a rat fatigue model. Using this method, the anti-fatigue effects of methyl dihydrojasmonate (MDJ) and linalool, the fragrance/flavor compounds used in various products, were assessed. Our method evaluated the anti-fatigue effects of the aforementioned compounds based on the changes in levels of the nerves system markers, cytokines, and oxidative stress markers. MDJ exerted more potent anti-fatigue effects than linalool. In conclusion, the reported method could serve as a useful tool for fatigue studies and these compounds may act as effective therapeutic agents for abrogating fatigue symptoms.


Assuntos
Monoterpenos Acíclicos , Citocinas , Modelos Animais de Doenças , Fadiga , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Monoterpenos Acíclicos/farmacologia , Ratos , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Citocinas/metabolismo , Masculino , Ciclopentanos/farmacologia , Antioxidantes/farmacologia , Biomarcadores , Monoterpenos/farmacologia , Oxilipinas/farmacologia , Ratos Sprague-Dawley
15.
Mol Psychiatry ; 29(9): 2647-2656, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38528072

RESUMO

Dysregulation of monoaminergic networks might have a role in the pathogenesis of fatigue in multiple sclerosis (MS). We investigated longitudinal changes of resting state (RS) functional connectivity (FC) in monoaminergic networks and their association with the development of fatigue in MS. Eighty-nine MS patients and 49 age- and sex-matched healthy controls (HC) underwent neurological, fatigue, and RS functional MRI assessment at baseline and after a median follow-up of 1.3 years (interquartile range = 1.01-2.01 years). Monoaminergic-related RS FC was estimated with an independent component analysis constrained to PET atlases for dopamine (DA), noradrenaline (NA), and serotonin (5-HT) transporters. At baseline, 24 (27%) MS patients were fatigued (F) and 65 were not fatigued (NF). Of these, 22 (34%) developed fatigue (DEV-FAT) at follow-up and 43 remained not fatigued (NO-FAT). At baseline, F-MS patients showed increased monoaminergic-related RS FC in the caudate nucleus vs NF-MS and in the hippocampal, postcentral, temporal, and occipital cortices vs NF-MS and HC. Moreover, F-MS patients exhibited decreased RS FC in the frontal cortex vs NF-MS and HC, and in the thalamus vs NF-MS. During the follow-up, no RS FC changes were observed in HC. NO-FAT patients showed limited DA-related RS FC modifications, whereas DEV-FAT MS patients showed increased DA-related RS FC in the left hippocampus, significant at time-by-group interaction analysis. In the NA-related network, NO-FAT patients showed decreased RS FC over time in the left superior frontal gyrus. This region showed increased RS FC in both DEV-FAT and F-MS patients; this divergent behavior was significant at time-by-group interaction analysis. Finally, DEV-FAT MS patients presented increased 5-HT-related RS FC in the angular and middle occipital gyri, while this latter region showed decreased 5-HT-related RS FC during the follow-up in F-MS patients. In MS patients, distinct patterns of alterations were observed in monoaminergic networks based on their fatigue status. Fatigue was closely linked to specific changes in the basal ganglia and hippocampal, superior frontal, and middle occipital cortices.


Assuntos
Encéfalo , Fadiga , Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Feminino , Masculino , Adulto , Fadiga/fisiopatologia , Fadiga/metabolismo , Fadiga/etiologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/complicações , Esclerose Múltipla/metabolismo , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Vias Neurais/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Rede Nervosa/fisiopatologia , Rede Nervosa/metabolismo , Rede Nervosa/diagnóstico por imagem , Descanso/fisiologia , Monoaminas Biogênicas/metabolismo , Mapeamento Encefálico/métodos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Estudos Longitudinais
16.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542293

RESUMO

Lactobacillus curvatus HY7602 fermented antler (FA) ameliorates sarcopenia and improves exercise performance by increasing muscle mass, muscle fiber regeneration, and mitochondrial biogenesis; however, its anti-fatigue and antioxidant effects have not been studied. Therefore, this study aimed to investigate the anti-fatigue and antioxidant effects and mechanisms of FA. C2C12 and HepG2 cells were stimulated with 1 mM of hydrogen peroxide (H2O2) to induce oxidative stress, followed by treatment with FA. Additionally, 44-week-old C57BL/6J mice were orally administered FA for 4 weeks. FA treatment (5-100 µg/mL) significantly attenuated H2O2-induced cytotoxicity and reactive oxygen species (ROS) production in both cell lines in a dose-dependent manner. In vivo experiments showed that FA treatment significantly increased the mobility time of mice in the forced swimming test and significantly downregulated the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine kinase (CK), and lactate. Notably, FA treatment significantly upregulated the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione ratio (GSH/GSSG) and increased the mRNA expression of antioxidant genes (SOD1, SOD2, CAT, GPx1, GPx2, and GSR) in the liver. Conclusively, FA is a potentially useful functional food ingredient for improving fatigue through its antioxidant effects.


Assuntos
Chifres de Veado , Cervos , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Chifres de Veado/metabolismo , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Fadiga/tratamento farmacológico , Fadiga/metabolismo
17.
Front Immunol ; 15: 1332776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304427

RESUMO

Importance: While the understanding of inflammation in the pathogenesis of many neurological diseases is now accepted, this special commentary addresses the need to study chronic inflammation in the propagation of cognitive Fog, Asthenia, and Depression Related to Inflammation which we name Brain FADE syndrome. Patients with Brain FADE syndrome fall in the void between neurology and psychiatry because the depression, fatigue, and fog seen in these patients are not idiopathic, but instead due to organic, inflammation involved in neurological disease initiation. Observations: A review of randomized clinical trials in stroke, multiple sclerosis, Parkinson's disease, COVID, traumatic brain injury, and Alzheimer's disease reveal a paucity of studies with any component of Brain FADE syndrome as a primary endpoint. Furthermore, despite the relatively well-accepted notion that inflammation is a critical driving factor in these disease pathologies, none have connected chronic inflammation to depression, fatigue, or fog despite over half of the patients suffering from them. Conclusions and relevance: Brain FADE Syndrome is important and prevalent in the neurological diseases we examined. Classical "psychiatric medications" are insufficient to address Brain FADE Syndrome and a novel approach that utilizes sequential targeting of innate and adaptive immune responses should be studied.


Assuntos
Doenças do Sistema Nervoso , Doenças Neuromusculares , Humanos , Doenças do Sistema Nervoso/metabolismo , Inflamação/metabolismo , Encéfalo/metabolismo , Fadiga/metabolismo
18.
Scand J Med Sci Sports ; 34(2): e14571, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38389143

RESUMO

During submaximal exercise, there is a heterogeneous recruitment of skeletal muscle fibers, with an ensuing heterogeneous depletion of muscle glycogen both within and between fiber types. Here, we show that the mean (95% CI) mitochondrial volume as a percentage of fiber volume of non-glycogen-depleted fibers was 2 (-10:6), 5 (-21:11), and 12 (-21:-2)% lower than all the sampled fibers after continuing exercise for 1, 2 h, and until task failure, respectively. Therefore, a glycogen-dependent fatigue of individual fibers during submaximal exercise may reduce the muscular oxidative power. These findings suggest a relationship between glycogen and mitochondrial content in individual muscle fibers, which is important for understanding fatigue during prolonged exercise.


Assuntos
Glicogênio , Fibras Musculares Esqueléticas , Humanos , Glicogênio/metabolismo , Tamanho Mitocondrial , Fibras Musculares Esqueléticas/metabolismo , Fadiga/metabolismo , Estresse Oxidativo , Músculo Esquelético/fisiologia
19.
J Food Sci ; 89(4): 2465-2481, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380680

RESUMO

Camellia seed oil (CO) has high nutritional value and multiple bioactivities. However, the specific anti-fatigue characteristics and the implied mechanism of CO have not yet been fully elucidated. Throughout this investigation, male C57BL/6J mice, aged 8 weeks, underwent exhaustive exercise with or without CO pretreatment (2, 4, and 6 mL/kg BW) for 28 days. CO could extend the rota-rod and running time, reduce blood urea nitrogen levels and serum lactic acid, and increase muscle and hepatic glycogen, adenosine triphosphate, and anti-oxidative indicators. Additionally, CO could upregulate the mRNA and Nrf2 protein expression levels, as well as enhance the levels of its downstream antioxidant enzymes and induce the myofiber-type transformation from fast to slow and attenuate the gut mechanical barrier. Moreover, CO could ameliorate gut dysbiosis by reducing Firmicutes to Bacteroidetes ratio at the phylum level, increasing the percentage of Alistipes, Alloprevotella, Lactobacillus, and Muribaculaceae, and decreasing the proportion of Dubosiella at the genus level. In addition, specific bacterial taxa, which were altered by CO, showed a significant correlation with partial fatigue-related parameters. These findings suggest that CO may alleviate fatigue by regulating antioxidant capacity, muscle fiber transformation, gut mechanical barrier, and gut microbial composition in mice. PRACTICAL APPLICATION: Our study revealed that camellia seed oil (CO) could ameliorate exercise-induced fatigue in mice by modulating antioxidant capacity, muscle fiber, and gut microbial composition in mice. Our results promote the application of CO as an anti-fatigue functional food that targets oxidative stress, myofiber-type transformation, and microbial community.


Assuntos
Camellia , Microbioma Gastrointestinal , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Microbioma Gastrointestinal/genética , Camundongos Endogâmicos C57BL , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Óleos de Plantas/farmacologia , Bacteroidetes , Firmicutes , Fibras Musculares Esqueléticas
20.
Eur J Appl Physiol ; 124(6): 1845-1859, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38242972

RESUMO

PURPOSE: Previous studies investigating sinusoidal exercise were not devoted to an analysis of its energetics and of the effects of fatigue. We aimed to determine the contribution of aerobic and anaerobic lactic metabolism to the energy balance and investigate the fatigue effects on the cardiorespiratory and metabolic responses to sinusoidal protocols, across and below critical power (CP). METHODS: Eight males (26.6 ± 6.2 years; 75.6 ± 8.7 kg; maximum oxygen uptake 52.8 ± 7.9 ml·min-1·kg-1; CP 218 ± 13 W) underwent exhausting sinusoidal cycloergometric exercises, with sinusoid midpoint (MP) at CP (CPex) and 50 W below CP (CP-50ex). Sinusoid amplitude (AMP) and period were 50 W and 4 min, respectively. MP, AMP, and time-delay (tD) between mechanical and metabolic signals of expiratory ventilation ( V ˙ E ), oxygen uptake ( V ˙ O 2 ), and heart rate ( f H ) were assessed sinusoid-by-sinusoid. Blood lactate ([La-]) and rate of perceived exertion (RPE) were determined at each sinusoid. RESULTS: V ˙ O 2 AMP was 304 ± 11 and 488 ± 36 ml·min-1 in CPex and CP-50ex, respectively. Asymmetries between rising and declining sinusoid phases occurred in CPex (36.1 ± 7.7 vs. 41.4 ± 9.7 s for V ˙ O 2 tD up and tD down, respectively; P < 0.01), with unchanged tDs. V ˙ O 2 MP and RPE increased progressively during CPex. [La-] increased by 2.1 mM in CPex but remained stable during CP-50ex. Anaerobic contribution was larger in CPex than CP-50ex. CONCLUSION: The lower aerobic component during CPex than CP-50ex associated with lactate accumulation explained lower V ˙ O 2 AMP in CPex. The asymmetries in CPex suggest progressive decline of muscle phosphocreatine concentration, leading to fatigue, as witnessed by RPE.


Assuntos
Metabolismo Energético , Exercício Físico , Ácido Láctico , Consumo de Oxigênio , Humanos , Masculino , Adulto , Consumo de Oxigênio/fisiologia , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Fadiga Muscular/fisiologia , Frequência Cardíaca/fisiologia , Esforço Físico/fisiologia , Fadiga/fisiopatologia , Fadiga/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...