Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.708
Filtrar
1.
Cell Mol Life Sci ; 81(1): 397, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261351

RESUMO

Inflammatory bowel diseases (IBDs) are immune chronic diseases characterized by recurrent episodes, resulting in continuous intestinal barrier damage and intestinal microbiota dysbiosis. Safe strategies aimed at stabilizing and reducing IBDs recurrence have been vigorously pursued. Here, we constructed a recurrent intestinal injury Drosophila model and found that vitamin B12 (VB12), an essential co-factor for organism physiological functions, could effectively protect the intestine and reduce dextran sulfate sodium-induced intestinal barrier disruption. VB12 also alleviated microbial dysbiosis in the Drosophila model and inhibited the growth of gram-negative bacteria. We demonstrated that VB12 could mitigate intestinal damage by activating the hypoxia-inducible factor-1 signaling pathway in injured conditions, which was achieved by regulating the intestinal oxidation. In addition, we also validated the protective effect of VB12 in a murine acute colitis model. In summary, we offer new insights and implications for the potential supportive role of VB12 in the management of recurrent IBDs flare-ups.


Assuntos
Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Fator 1 Induzível por Hipóxia , Mucosa Intestinal , Transdução de Sinais , Vitamina B 12 , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Vitamina B 12/farmacologia , Vitamina B 12/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Transdução de Sinais/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Fator 1 Induzível por Hipóxia/metabolismo , Colite/metabolismo , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Colite/tratamento farmacológico , Disbiose/microbiologia , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Drosophila/metabolismo
2.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39337623

RESUMO

Hypoxia-inducible factors (HIFs) are transcriptional factors that function as strong regulators of oxygen homeostasis and cellular metabolisms. The maintenance of cellular oxygen levels is critical as either insufficient or excessive oxygen affects development and physiologic and pathologic conditions. In the eye, retinas have a high metabolic demand for oxygen. Retinal ischemia can cause visual impairment in various sight-threating disorders including age-related macular degeneration, diabetic retinopathy, and some types of glaucoma. Therefore, understanding the potential roles of HIFs in the retina is highly important for managing disease development and progression. This review focuses on the physiologic and pathologic roles of HIFs as regulators of oxygen homeostasis and cellular metabolism in the retina, drawing on recent evidence. Our summary will promote comprehensive approaches to targeting HIFs for therapeutic purposes in retinal diseases.


Assuntos
Doenças Retinianas , Humanos , Doenças Retinianas/metabolismo , Animais , Retina/metabolismo , Retina/patologia , Oxigênio/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Retinopatia Diabética/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia/metabolismo
3.
Medicine (Baltimore) ; 103(22): e38349, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-39259057

RESUMO

The underlying mechanism of postoperative delirium (POD) in elderly people remains unclear. Perioperative hyperglycemia (POHG) is an independent risk indicator for POD, particularly in the elderly. Under cerebral desaturation (hypoxia) during general anesthesia, hypoxia-inducible factor (HIF) is neuroprotective during cerebral hypoxia via diverse pathways, like glucose metabolism and angiogenesis. Hyperglycemia can repress HIF expression and activity. On the other hand, POHG occurred among patients undergoing surgery. For surgical stress, hypothalamic-pituitary-adrenal activation and sympathoadrenal activation may increase endogenous glucose production via gluconeogenesis and glycogenolysis. Thus, under the setting of cerebral hypoxia during general anesthesia, we speculate that POHG prevents HIF-1α levels and function in the brain of aged patients, thus exacerbating the hypoxic response of HIF-1 and potentially contributing to POD. This paper sketches the underlying mechanisms of HIF in POD in elderly patients and offers novel insights into targets for preventing or treating POD in the same way as POHG.


Assuntos
Hiperglicemia , Complicações Pós-Operatórias , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/etiologia , Idoso , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/prevenção & controle , Delírio/etiologia , Delírio/metabolismo , Delírio/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Anestesia Geral/efeitos adversos
4.
Trends Pharmacol Sci ; 45(9): 798-810, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39127527

RESUMO

Type 1 diabetes (T1D) is a common autoimmune disease in which dysregulated glucose metabolism is a key feature. T1D is both poorly understood and in need of improved therapeutics. Hypoxia is frequently encountered in multiple tissues in T1D patients including the pancreas and sites of diabetic complications. Hypoxia-inducible factor (HIF)-1, a ubiquitous master regulator of the adaptive response to hypoxia, promotes glucose metabolism through transcriptional and non-transcriptional mechanisms and alters disease progression in multiple preclinical T1D models. However, how HIF-1 activation in ß-cells of the pancreas and immune cells (two key cell types in T1D) ultimately affects disease progression remains controversial. We discuss recent advances in our understanding of the role of hypoxia/HIF-1-induced glycolysis in T1D and explore the possible use of drugs targeting this pathway as potential new therapeutics.


Assuntos
Diabetes Mellitus Tipo 1 , Fator 1 Induzível por Hipóxia , Animais , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glicólise , Fator 1 Induzível por Hipóxia/metabolismo , Células Secretoras de Insulina/metabolismo
5.
Redox Biol ; 76: 103326, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180984

RESUMO

Regions of hypoxia occur in most solid tumours and are known to significantly impact therapy response and patient prognosis. Ag5 is a recently reported silver molecular cluster which inhibits both glutathione and thioredoxin signalling therefore limiting cellular antioxidant capacity. Ag5 treatment significantly reduces cell viability in a range of cancer cell lines with little to no impact on non-transformed cells. Characterisation of redox homeostasis in hypoxia demonstrated an increase in reactive oxygen species and glutathione albeit with different kinetics. Significant Ag5-mediated loss of viability was observed in a range of hypoxic conditions which mimic the tumour microenvironment however, this effect was reduced compared to normoxic conditions. Reduced sensitivity to Ag5 in hypoxia was attributed to HIF-1 mediated signalling to reduce PDH via PDK1/3 activity and changes in mitochondrial oxygen availability. Importantly, the addition of Ag5 significantly increased radiation-induced cell death in hypoxic conditions associated with radioresistance. Together, these data demonstrate Ag5 is a potent and cancer specific agent which could be used effectively in combination with radiotherapy.


Assuntos
Sobrevivência Celular , Oxigênio , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Transdução de Sinais/efeitos dos fármacos , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glutationa/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Hipóxia Celular , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução , Fator 1 Induzível por Hipóxia/metabolismo , Prata/química , Antineoplásicos/farmacologia
6.
Front Cell Infect Microbiol ; 14: 1403915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119289

RESUMO

The recent birth of the immunometabolism field has comprehensively demonstrated how the rewiring of intracellular metabolism is critical for supporting the effector functions of many immune cell types, such as myeloid cells. Among all, the transcriptional regulation mediated by Hypoxia-Inducible Factors (HIFs) and Nuclear factor erythroid 2-related factor 2 (NRF2) have been consistently shown to play critical roles in regulating the glycolytic metabolism, redox homeostasis and inflammatory responses of macrophages (Mφs). Although both of these transcription factors were first discovered back in the 1990s, new advances in understanding their function and regulations have been continuously made in the context of immunometabolism. Therefore, this review attempts to summarize the traditionally and newly identified functions of these transcription factors, including their roles in orchestrating the key events that take place during glycolytic reprogramming in activated myeloid cells, as well as their roles in mediating Mφ inflammatory responses in various bacterial infection models.


Assuntos
Glicólise , Inflamação , Macrófagos , Fator 2 Relacionado a NF-E2 , Macrófagos/metabolismo , Macrófagos/imunologia , Humanos , Inflamação/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Fator 1 Induzível por Hipóxia/metabolismo , Regulação da Expressão Gênica
7.
J Biochem Mol Toxicol ; 38(9): e23829, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39215765

RESUMO

KIAA1429 is an important 'writer' of the N6-methyladenine (m6A) modification, which is involved in tumour progression. This study was conducted to explore the mechanism of action of KIAA1429 in colon adenocarcinoma (COAD). KIAA1429-silenced COAD cell and xenograft tumour models were constructed, and the function of KIAA1429 was explored through a series of in vivo and in vitro assays. The downstream mechanisms of KIAA1429 were explored using transcriptome sequencing. Dimethyloxalylglycine (DMOG), an activator of HIF-1α, was used for feedback verification. The expression of KIAA1429 in COAD tumour tissues and cells was elevated, and KIAA1429 exhibited differential expression at different stages of the tumour. Silencing of KIAA1429 inhibited the proliferation, migration, and invasion of HT29 and HCT116 cells. The expression levels of NLRP3, GSDMD and Caspase-1 were decreased in KIAA1429-silenced HT29 cells, indicating the pyroptotic activity was inhibited. Additionally, KIAA1429 silencing inhibited the growth of tumour xenograft. Transcriptome sequencing and reverse transcription quantitative polymerase chain reaction revealed that after KIAA1429 silencing, the expression of AKR1C1, AKR1C2, AKR1C3 and RDH8 was elevated, and the expression of VIRMA, GINS1, VBP1 and ARF3 was decreased. In HT29 cells, KIAA1429 silencing blocked the HIF-1 signalling pathway, accompanied by the decrease in AKT1 and HIF-1α protein levels. The activation of HIF-1 signalling pathway, mediated by DMOG, reversed the antitumour role of KIAA1429 silencing. KIAA1429 silencing inhibits COAD development by blocking the HIF-1 signalling pathway.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Metiltransferases , Transdução de Sinais , Humanos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Animais , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Metiltransferases/metabolismo , Metiltransferases/genética , Células HT29 , Camundongos Nus , Inativação Gênica , Masculino , Células HCT116 , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos Endogâmicos BALB C , Feminino , Progressão da Doença , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Hialuronoglucosaminidase
8.
ACS Appl Mater Interfaces ; 16(35): 45989-46004, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39165237

RESUMO

The healing of severe chronic skin wounds in chronic diabetic patients is still a huge clinical challenge due to complex regeneration processes and control signals. Therefore, a single approach is difficult in obtaining satisfactory therapeutic efficacy for severe diabetic skin wounds. In this study, we adopted a composite strategy for diabetic skin wound healing. First, we fabricated a collagen-based biomimetic skin scaffold. The human basic fibroblast growth factor (bFGF) gene was electrically transduced into human umbilical cord mesenchymal stromal cells (UC-MSCs), and the stable bFGF-overexpressing UC-MSCs (bFGF-MSCs) clones were screened out. Then, an inspired collagen scaffold loaded with bFGF-MSCs was applied to treat full-thickness skin incision wounds in a streptozotocin-induced diabetic rat model. The mechanism of skin damage repair in diabetes mellitus was investigated using RNA-Seq and Western blot assays. The bioinspired collagen scaffold demonstrated good biocompatibility for skin-regeneration-associated cells such as human fibroblast (HFs) and endothelial cells (ECs). The bioinspired collagen scaffold loaded with bFGF-MSCs accelerated the diabetic full-thickness incision wound healing including cell proliferation enhancement, collagen deposition, and re-epithelialization, compared with other treatments. We also showed that the inspired skin scaffold could enhance the in vitro tube formation of ECs and the early angiogenesis process of the wound tissue in vivo. Further findings revealed enhanced angiogenic potential in ECs stimulated by bFGF-MSCs, evidenced by increased AKT phosphorylation and elevated HIF-1α and HIF-1ß levels, indicating the activation of HIF-1 pathways in diabetic wound healing. Based on the superior biocompatibility and bioactivity, the novel bioinspired skin healing materials composed of the collagen scaffold and bFGF-MSCs will be promising for healing diabetic skin wounds and even other refractory tissue regenerations. The bioinspired collagen scaffold loaded with bFGF-MSCs could accelerate diabetic wound healing via neovascularization by activating HIF-1 pathways.


Assuntos
Colágeno , Diabetes Mellitus Experimental , Fator 2 de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Transdução de Sinais , Pele , Alicerces Teciduais , Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Animais , Células-Tronco Mesenquimais/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Colágeno/química , Ratos , Alicerces Teciduais/química , Pele/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo
9.
Biochem Biophys Res Commun ; 733: 150604, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39197198

RESUMO

Hypoxia-inducible factor 1 (HIF-1), recognized as a master transcription factor for adaptation to hypoxia, is associated with malignant characteristics and therapy resistance in cancers. It has become clear that cofactors such as ZBTB2 are critical for the full activation of HIF-1; however, the mechanisms downregulating the ZBTB2-HIF-1 axis remain poorly understood. In this study, we identified ZBTB7A as a negative regulator of ZBTB2 by analyzing protein sequences and structures. We found that ZBTB7A forms a heterodimer with ZBTB2, inhibits ZBTB2 homodimerization necessary for the full expression of ZBTB2-HIF-1 downstream genes, and ultimately delays the proliferation of cancer cells under hypoxic conditions. The Cancer Genome Atlas (TCGA) analyses revealed that overall survival is better in patients with high ZBTB7A expression in their tumor tissues. These findings highlight the potential of targeting the ZBTB7A-ZBTB2 interaction as a novel therapeutic strategy to inhibit HIF-1 activity and improve treatment outcomes in hypoxia-related cancers.


Assuntos
Proteínas de Ligação a DNA , Multimerização Proteica , Fatores de Transcrição , Humanos , Hipóxia Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Life Sci ; 352: 122890, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38971364

RESUMO

Cancer cells undergo metabolic reprogramming to survive in hypoxic conditions and meet the elevated energy demands of the cancer microenvironment. This metabolic alteration is orchestrated by hypoxia-inducible factor 1 (HIF-1), regulating various processes within cancer cells. The intricate metabolic modifications induced by hypoxia underscore the significance of HIF-1-induced metabolic reprogramming in promoting each aspect of cancer progression. The complex interactions between HIF-1 signalling and cellular metabolic processes in response to hypoxia are examined in this study, focusing on the metabolism of carbohydrates, nucleotides, lipids, and amino acids. Comprehending the various regulatory mechanisms controlled by HIF-1 in cellular metabolism sheds light on the intricate biology of cancer growth and offers useful insights for developing targeted treatments.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Animais , Fator 1 Induzível por Hipóxia/metabolismo , Microambiente Tumoral , Transdução de Sinais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Reprogramação Celular , Reprogramação Metabólica
11.
Nutrients ; 16(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39064700

RESUMO

Velvet antler, a traditional tonic widely used in East Asia for its health benefits, is explored in this study for its protective effects against hypoxia-induced damage using Caenorhabditis elegans (C. elegans) as a model. Hypoxia, characterized by low oxygen availability, induces significant physiological stress and potential tissue damage. Our research demonstrates that methanol extracts from velvet antler (MEs) enhance the survival of C. elegans under hypoxic conditions. This enhancement is achieved through the stabilization of hypoxia-inducible factor-1 (HIF-1) and the promotion of lipid accumulation, both of which are crucial for mitigating cellular damage. Specifically, MEs improve mitochondrial function, increase ATP production, and aid in the recovery of physical activity in C. elegans post-hypoxia or following hypoxia-reoxygenation (HR). The pivotal role of HIF-1 is underscored by the loss of these protective effects when HIF-1 function is inhibited. Additionally, our findings reveal that the gene related to lipid metabolism, ech-8, significantly contributes to the lipid accumulation that enhances resilience to hypoxia in C. elegans treated with MEs. These results not only highlight the therapeutic potential of velvet antler in modern medical applications, particularly for conditions involving hypoxic stress, but also provide insights into the molecular mechanisms by which MEs confer protection against hypoxic damage.


Assuntos
Chifres de Veado , Caenorhabditis elegans , Hipóxia , Metabolismo dos Lipídeos , Metanol , Animais , Caenorhabditis elegans/efeitos dos fármacos , Chifres de Veado/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Hipóxia/metabolismo , Metanol/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Substâncias Protetoras/farmacologia
12.
Biomed Pharmacother ; 178: 117113, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067164

RESUMO

The rhizome of Corydalis decumbens is a traditional Chinese medicine commonly utilized in the clinical treatment of acute ischemic stroke. Numerous phytochemical and biological investigations have demonstrated that protoberberine alkaloids from C. decumbens exhibit diverse pharmaceutical activities against various diseases. Sinometumine E (SE), a protoberberine alkaloid isolated from C. decumbens for the first time, is characterized by a complex 6/6/6/6/6/6 hexacyclic skeleton. In the current study, we investigated the protective effects of SE on endothelial cell injury and its angiogenesis effects in zebrafish. The results suggested that SE showed significant anti-ischemic effects on OGD/R-induced HBEC-5i and HUVECs cell ischemia/reperfusion injury model. Furthermore, it promoted angiogenesis in PTK787-induced, MPTP-induced, and atorvastatin-induced vessel injury models of zebrafish, while also suppressing hypoxia-induced locomotor impairment in zebrafish. Transcriptome sequencing analysis provided a sign that SE likely to promotes angiogenesis through the HIF-1/VEGF signaling pathway to exert anti-ischemic effects. Consistently, SE modulated several genes related to HIF-1/VEGF signal pathway, such as hif-1, vegf, vegfr-2, pi3k, erk, akt and plcγ. Molecular docking analysis revealed that VEGFR-2 exhibited high binding affinity with SE, and western blot analysis confirmed that SE treatment enhanced the expression of VEGFR-2. In conclusion, our study profiled the angiogenic activities of SE in vitro and in vivo. The key targets and related pathways involved in anti-ischemic effects of SE, shedding light on the pharmacodynamic components and mechanisms of Corydalis decumbens, and provides valuable insights for identifying effective substances for the treatment of ischemic stroke.


Assuntos
Corydalis , Simulação de Acoplamento Molecular , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Peixe-Zebra , Animais , Corydalis/química , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Indutores da Angiogênese/farmacologia , Fator 1 Induzível por Hipóxia/metabolismo , Angiogênese
13.
Placenta ; 154: 162-167, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39018608

RESUMO

INTRODUCTION: Poor placental angiogenesis is associated with several pregnancy complications including fetal growth restriction (FGR), which causes low birth weight (LBW) babies to have a high risk of growth disorders and metabolic disorders in adulthood. Recent research using syncytin knock-out mice showed significant disruption in the growth of placental vascularization. Syncytin-1 which encoded by ERVW-1 gene, is proposed to have a role in placental angiogenesis, but its relationship with other proangiogenic factors such as vascular endothelial growth factor (VEGF) in the placenta of LBW babies has not yet been determined. By knowing the mechanisms of FGR, more proactive preventive and therapeutic measures can be taken in the future. This study aimed to determine the expression of ERVW-1, proangiogenic gene VEGF and its receptor (FLT-1), and hypoxia inducible factor-1 (HIF-1) in LBW placentas, and investigate the relationship between these genes' expression in the placenta of LBW babies. METHODS: Total RNA was extracted from placental tissue. Total RNA is used as a cDNA synthesis template, followed by qRT-PCR. Correlations of ERVW-1, VEGF, FLT-1 and HIF-1 genes' expression were analyzed by linear regression. RESULTS: The age and body mass index of mothers with LBW and normal birth weight (NBW) babies were not significantly different. ERVW-1 expression in LBW placentas was lower than in NBW placentas, but VEGF, FLT-1 and HIF-1 expressions were higher. ERVW-1 was negatively correlated with HIF-1 and VEGF. DISCUSSION: Low expression of ERVW-1 in the placenta of LBW babies may result in impaired placental angiogenesis and possibly lead to hypoxia.


Assuntos
Recém-Nascido de Baixo Peso , Placenta , Proteínas da Gravidez , Fator A de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Gravidez , Feminino , Placenta/metabolismo , Humanos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Recém-Nascido , Adulto , Indonésia , Proteínas da Gravidez/metabolismo , Proteínas da Gravidez/genética , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Adulto Jovem , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/genética
14.
Semin Cancer Biol ; 102-103: 17-24, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38969311

RESUMO

Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also "pre-adapt" them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells-the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.


Assuntos
Carcinogênese , Metástase Neoplásica , Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Transição Epitelial-Mesenquimal/genética , Microambiente Tumoral/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica
15.
Adv Exp Med Biol ; 1459: 115-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017842

RESUMO

Molecular oxygen doubles as a biomolecular building block and an element required for energy generation and metabolism in aerobic organisms. A variety of systems in mammalian cells sense the concentration of oxygen to which they are exposed and are tuned to the range present in our blood and tissues. The ability to respond to insufficient O2 in tissues is central to regulation of erythroid lineage cells, but challenges also are posed for immune cells by a need to adjust to very different oxygen concentrations. Hypoxia-inducible factors (HIFs) provide a major means of making such adjustments. For adaptive immunity, lymphoid lineages are initially defined in bone marrow niches; T lineage cells arise in the thymus, and B cells complete maturation in the spleen. Lymphocytes move from these first stops into microenvironments (bloodstream, lymphatics, and tissues) with distinct oxygenation in each. Herein, evidence pertaining to functions of the HIF transcription factors (TFs) in lymphocyte differentiation and function is reviewed. For the CD4+ and CD8+ subsets of T cells, the case is very strong that hypoxia and HIFs regulate important differentiation events and functions after the naïve lymphocytes emerge from the thymus. In the B lineage, the data indicate that HIF1 contributes to a balanced regulation of B-cell fates after antigen (Ag) activation during immunity. A model synthesized from the aggregate literature is that HIF in lymphocytes generally serves to modulate function in a manner dependent on the molecular context framed by other TFs and signals.


Assuntos
Diferenciação Celular , Humanos , Animais , Hipóxia Celular , Fator 1 Induzível por Hipóxia/metabolismo , Linfócitos/metabolismo , Linfócitos/imunologia , Hipóxia/imunologia , Hipóxia/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
16.
Genes (Basel) ; 15(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38927679

RESUMO

Hypoxia is a globally pressing environmental problem in aquatic ecosystems. In the present study, a comprehensive analysis was performed to evaluate the effects of hypoxia on physiological responses (hematology, cortisol, biochemistry, hif gene expression and the HIF pathway) of hybrid sturgeons (Acipenser schrenckii ♂ × Acipenser baerii ♀). A total of 180 hybrid sturgeon adults were exposed to dissolved oxygen (DO) levels of 7.00 ± 0.2 mg/L (control, N), 3.5 ± 0.2 mg/L (moderate hypoxia, MH) or 1.00 ± 0.1 mg/L (severe hypoxia, SH) and were sampled at 1 h, 6 h and 24 h after hypoxia. The results showed that the red blood cell (RBC) counts and the hemoglobin (HGB) concentration were significantly increased 6 h and 24 h after hypoxia in the SH group. The serum cortisol concentrations gradually increased with the decrease in the DO levels. Moreover, several serum biochemical parameters (AST, AKP, HBDB, LDH, GLU, TP and T-Bil) were significantly altered at 24 h in the SH group. The HIFs are transcription activators that function as master regulators in hypoxia. In this study, a complete set of six hif genes were identified and characterized in hybrid sturgeon for the first time. After hypoxia, five out of six sturgeon hif genes were significantly differentially expressed in gills, especially hif-1α and hif-3α, with more than 20-fold changes, suggesting their important roles in adaptation to hypoxia in hybrid sturgeon. A meta-analysis indicated that the HIF pathway, a major pathway for adaptation to hypoxic environments, was activated in the liver of the hybrid sturgeon 24 h after the hypoxia challenge. Our study demonstrated that hypoxia, particularly severe hypoxia (1.00 ± 0.1 mg/L), could cause considerable stress for the hybrid sturgeon. These results shed light on their adaptive mechanisms and potential biomarkers for hypoxia tolerance, aiding in aquaculture and conservation efforts.


Assuntos
Peixes , Animais , Peixes/genética , Peixes/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Hidrocortisona/sangue , Oxigênio/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Hemoglobinas/metabolismo , Hemoglobinas/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética
18.
J Mol Med (Berl) ; 102(8): 973-985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850298

RESUMO

The tRNA-derived small RNAs (tsRNAs) can be categorized into two main groups: tRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs). Each group possesses specific molecular sizes, nucleotide compositions, and distinct physiological functions. Notably, hypoxia-inducible factor-1 (HIF-1), a transcriptional activator dependent on oxygen, comprises one HIF-1ß subunit and one HIF-α subunit (HIF-1α/HIF-2α/HIF-3α). The activation of HIF-1 plays a crucial role in gene transcription, influencing key aspects of cancer biology such as angiogenesis, cell survival, glucose metabolism, and invasion. The involvement of HIF-1α activation has been demonstrated in numerous human diseases, particularly cancer, making HIF-1 an attractive target for potential disease treatments. Through a series of experiments, researchers have identified two tiRNAs that interact with the HIF-1 pathway, impacting disease development: 5'tiRNA-His-GTG in colorectal cancer (CRC) and tiRNA-Val in diabetic retinopathy (DR). Specifically, 5'tiRNA-His-GTG promotes CRC development by targeting LATS2, while tiRNA-Val inhibits Sirt1, leading to HIF-1α accumulation and promoting DR development. Clinical data have further indicated that certain tsRNAs' expression levels are associated with the prognosis and pathological features of CRC patients. In CRC tumor tissues, the expression level of 5'tiRNA-His-GTG is significantly higher compared to normal tissues, and it shows a positive correlation with tumor size. Additionally, KEGG analysis has revealed multiple tRFs involved in regulating the HIF-1 pathway, including tRF-Val-AAC-016 in diabetic foot ulcers (DFU) and tRF-1001 in pathological ocular angiogenesis. This comprehensive article reviews the biological functions and mechanisms of tsRNAs related to the HIF-1 pathway in diseases, providing a promising direction for subsequent translational medicine research.


Assuntos
Pequeno RNA não Traduzido , RNA de Transferência , Transdução de Sinais , Humanos , RNA de Transferência/genética , RNA de Transferência/metabolismo , Animais , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia
19.
Mol Med ; 30(1): 90, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886644

RESUMO

BACKGROUND: Aortic dissection (AD) is a macrovascular disease which is pathologically characterized by aortic media degeneration.This experiment aims to explore how iron deficiency (ID) affects the function of vascular smooth muscle cell (VSMC) and participates in the occurrence and development of AD by regulating gene expression. METHODS: The relationship between iron and AD was proved by Western-blot (WB) and immunostaining experiments in human and animals. Transcriptomic sequencing explored the transcription factors that were altered downstream. WB, flow cytometry and immunofluorescence were used to demonstrate whether ID affected HIF1 expression through oxygen transport. HIF1 signaling pathway and phenotypic transformation indexes were detected in cell experiments. The use of the specific HIF1 inhibitor PX478 further demonstrated that ID worked by regulating HIF1. RESULTS: The survival period of ID mice was significantly shortened and the pathological staining results were the worst. Transcriptomic sequencing indicated that HIF1 was closely related to ID and the experimental results indicated that ID might regulate HIF1 expression by affecting oxygen balance. HIF1 activation regulates the phenotypic transformation of VSMC and participates in the occurrence and development of AD in vivo and in vitro.PX478, the inhibition of HIF1, can improve ID-induced AD exacerbation.


Assuntos
Dissecção Aórtica , Músculo Liso Vascular , Miócitos de Músculo Liso , Oxigênio , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Dissecção Aórtica/metabolismo , Dissecção Aórtica/etiologia , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Deficiências de Ferro , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Oxigênio/metabolismo , Fenótipo
20.
Curr Pharm Des ; 30(24): 1927-1938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835124

RESUMO

BACKGROUND: Psoriasis is a common chronic inflammatory skin disorder. Qingxiong ointment (QX) is a natural medicinal combination frequently employed in clinical treatment of psoriasis. However, the active ingredients of QX and its precise mechanisms of improving psoriasis remain unclear. This study elucidated the effects of QX on an Imiquimod (IMQ)-induced mouse model of psoriasis while also exploring the regulation of the active ingredient of QX, shikonin, on the HIF-1 signaling pathway in HaCaT cells. METHODS: A mouse model of psoriasis was established through topical application of IMQ, and the local therapeutic effect of QX was evaluated using dorsal skin tissue with mouse psoriatic lesion and Psoriasis Area Severity Index (PASI) scores, hematoxylin-eosin (HE) staining, and immunohistochemical staining. Elisa and qPCR were employed to identify changes in the expression of inflammation-related factors in the mouse dorsal skin. Immunofluorescence was used to assess changes in the expression of T cell subsets before and after treatment with various doses of QX. HPLC was used to analyze the content of shikonin, and network pharmacology was employed to analyze the main targets of shikonin. Immunofluorescence was used to identify the effects of shikonin on the HIF-1 signaling pathway in IL6-induced psoriasis HaCaT cells. Finally, qPCR was used to identify the differential expression of the HIF-1 signaling pathway in skin tissues. RESULTS: QX significantly reduces PASI scores on the backs of IMQ-induced psoriasis mice. HE staining reveals alleviated epidermal thickness in the QX group. Immunohistochemical analysis shows a significant reduction in ICAM, KI67, and IL17 expression levels in the QX group. Immunofluorescence results indicate that QX can notably decrease the proportions of CD4+ T cells, γδ T cells, and CD8+ T cells while increasing the proportion of Treg cells. Network pharmacology analysis demonstrates that the main targets of shikonin are concentrated in the HIF-1 signaling pathway. Molecular docking results show favorable binding affinity between shikonin and key genes of the HIF-1 signaling pathway. Immunofluorescence results reveal that shikonin significantly reduces p-STAT3, SLC2A1, HIF1α, and NOS2 expression levels. qPCR results show significant downregulation of the HIF-1 signaling pathway at cellular and tissue levels. CONCLUSION: Our study revealed that QX can significantly reduce the dorsal inflammatory response in the IMQ-induced psoriasis mouse model. Furthermore, we discovered that its main component, shikonin, exerts its therapeutic effect by diminishing the HIF-1 signaling pathway in HaCaT cells.


Assuntos
Medicamentos de Ervas Chinesas , Imiquimode , Naftoquinonas , Pomadas , Psoríase , Transdução de Sinais , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Psoríase/patologia , Psoríase/metabolismo , Animais , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Masculino , Células HaCaT
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...