Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.074
Filtrar
1.
Allergol Immunopathol (Madr) ; 52(5): 21-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39278847

RESUMO

Sepsis is generally triggered by a dysfunctional host response to infection, and it can result in life-threatening organ dysfunction. Alpinia officinarum Hance (AO) exhibits regulatory functions in some diseases. However, whether AO extract (AOE) plays a promoting role in sepsis--triggered myocardial injury is unclear. This study was aimed at investigating the regulatory effects of AOE on myocardial ferroptosis and inflammation in sepsis, and the regulation effects on the lncRNA MIAT/TRAF6/NF-κB axis. Lipopolysaccharide (LPS) was used to treat mice for establishing an in vivo sepsis model. The pathological changes in heart tissues were observed through hematoxylin-eosin (HE) staining. The levels of CK-MB, cTnl, MDA, SOD, IL-1ß, IL-18, IL-6, and TNF-α in serum were detected through enzyme-linked immunosorbent assay (ELISA). The level of Fe2+ was assessed, and the protein expressions (ACSL4, GPX4, TRAF6, p-P65, and P65) were examined through western blot. The expressions of lncRNA MIAT and TRAF6 were measured through real-time quantitative polymerase chain reaction (RT-qPCR). Our results demonstrated that AOE treatment ameliorated sepsis-triggered myocardial damage by reducing the disordered cardiomyocytes, the destroyed sarcolemma, and the CK-MB and cTnl levels. In addition, AOE treatment inhibited sepsis-induced myocardial ferroptosis and inflammation by regulating Fe2+, ACSL4, GPX4, IL-1ß, IL-18, IL-6, and TNF-α levels. Moreover, the improvement effect of AOE was strengthened with the increase in the dose of AOE (25, 50, 100 mg/kg). It was also revealed that AOE treatment retarded the lncRNA MIAT/TRAF6/NF-κB axis. Rescue assays manifested that overexpression of MIAT reduced the cardioprotective effect of AOE. In conclusion, AOE relieved sepsis-induced myocardial ferroptosis and inflammation by inhibiting lncRNA MIAT/TRAF6/NF-κB axis. These findings may provide a potential therapeutic drug for the treatment of sepsis.


Assuntos
Alpinia , Ferroptose , NF-kappa B , Extratos Vegetais , RNA Longo não Codificante , Sepse , Fator 6 Associado a Receptor de TNF , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/imunologia , Camundongos , NF-kappa B/metabolismo , Ferroptose/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo , Extratos Vegetais/farmacologia , Masculino , Inflamação/tratamento farmacológico , Inflamação/imunologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/imunologia , Humanos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL
2.
BMC Pharmacol Toxicol ; 25(1): 63, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243105

RESUMO

The impact of Sodium Houttuyniae (SH) on lipopolysaccharide (LPS)-induced ALI has been investigated extensively. However, it remains ambiguous whether ferroptosis participates in this process. This study aimed to find out the impacts and probable mechanisms of SH on LPS-induced ferroptosis. A rat ALI model and type II alveolar epithelial (ATII) cell injury model were treated with LPS. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, and Giemsa staining were executed to ascertain the effects of SH on LPS-induced ALI. Moreover, Transmission electron microscopy, Cell Counting Kit-8 (CCK8), ferrous iron colorimetric assay kit, Immunohistochemistry, Immunofluorescence, Reactive oxygen species assay kit, western blotting (Wb), and qRT-PCR examined the impacts of SH on LPS-induced ferroptosis and ferroptosis-related pathways. Theresults found that by using SH treatment, there was a remarkable attenuation of ALI by suppressing LPS-induced ferroptosis. Ferroptosis was demonstrated by a decline in the levels of glutathione peroxidase 4 (GPX4), FTH1, and glutathione (GSH) and a surge in the accumulation of malondialdehyde (MDA), reactive oxygen species (ROS), NOX1, NCOA4, and Fe2+, and disruption of mitochondrial structure, which were reversed by SH treatment. SH suppressed ferroptosis by regulating TRAF6-c-Myc in ALI rats and rat ATII cells. The results suggested that SH treatment attenuated LPS-induced ALI by repressing ferroptosis, and the mode of action can be linked to regulating the TRAF6-c-Myc signaling pathway in vivo and in vitro.


Assuntos
Lesão Pulmonar Aguda , Medicamentos de Ervas Chinesas , Ferroptose , Lipopolissacarídeos , Proteínas Proto-Oncogênicas c-myc , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Masculino , Ratos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Ferroptose/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética
3.
Mol Med ; 30(1): 125, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152382

RESUMO

BACKGROUND: Epimedin A (EA) has been shown to suppress extensive osteoclastogenesis and bone resorption, but the effects of EA remain incompletely understood. The aim of our study was to investigate the effects of EA on osteoclastogenesis and bone resorption to explore the corresponding signalling pathways. METHODS: Rats were randomly assigned to the sham operation or ovariectomy group, and alendronate was used for the positive control group. The therapeutic effect of EA on osteoporosis was systematically analysed by measuring bone mineral density and bone biomechanical properties. In vitro, RAW264.7 cells were treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) to induce osteoclast differentiation. Cell viability assays, tartrate-resistant acid phosphatase (TRAP) staining, and immunofluorescence were used to elucidate the effects of EA on osteoclastogenesis. In addition, the expression of bone differentiation-related proteins or genes was evaluated using Western blot analysis or quantitative polymerase chain reaction (PCR), respectively. RESULTS: After 3 months of oral EA intervention, ovariectomized rats exhibited increased bone density, relative bone volume, trabecular thickness, and trabecular number, as well as reduced trabecular separation. EA dose-dependently normalized bone density and trabecular microarchitecture in the ovariectomized rats. Additionally, EA inhibited the expression of TRAP and NFATc1 in the ovariectomized rats. Moreover, the in vitro results indicated that EA inhibits osteoclast differentiation by suppressing the TRAF6/PI3K/AKT/NF-κB pathway. Further studies revealed that the effect on osteoclast differentiation, which was originally inhibited by EA, was reversed when the TRAF6 gene was overexpressed. CONCLUSIONS: The findings indicated that EA can negatively regulate osteoclastogenesis by inhibiting the TRAF6/PI3K/AKT/NF-κB axis and that ameliorating ovariectomy-induced osteoporosis in rats with EA may be a promising potential therapeutic strategy for the treatment of osteoporosis.


Assuntos
Diferenciação Celular , NF-kappa B , Osteoclastos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Osteoclastos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Camundongos , Células RAW 264.7 , Flavonoides/farmacologia , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Osteoporose/metabolismo , Osteoporose/etiologia , Ovariectomia/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos
4.
Sheng Li Xue Bao ; 76(4): 653-662, 2024 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-39192797

RESUMO

Given the increasing trend of aging population in the world, neurodegenerative diseases (NDDs), a common type of diseases that mostly occur in the elderly, have attracted much more attention. It has been shown that tumor necrosis factor receptor-associated factor 6 (TRAF6) is involved in the regulation of neuroinflammation, an important pathological feature of NDDs, and affects the occurrence and development of NDDs. Most importantly, the regulatory effect of TRAF6 is related to its ubiquitination. Therefore, in the present paper, the molecular structure, biological function, and ubiquitination mechanism of TRAF6, and its relationship with some common NDDs, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis, were analyzed and summarized. The possible molecular mechanisms by which TRAF6 regulates the occurrence of NDDs were also elucidated, providing a theoretical basis for exploring the etiology and treatment of NDDs.


Assuntos
Doenças Neurodegenerativas , Fator 6 Associado a Receptor de TNF , Animais , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/etiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/fisiologia , Ubiquitinação
5.
Toxicol Appl Pharmacol ; 491: 117065, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127353

RESUMO

Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy that, if not promptly treated, culminates in right heart failure. Therefore, pre-clinical studies are needed to support and optimize therapeutic approaches of PAH. Here, we explore a prospective function of sevoflurane in experimental PAH through regulating TRAF6. Monocrotaline (MCT)-induced PAH rats were subjected to sevoflurane inhalation and intratracheal instillation of lentivirus overexpressing TRAF6. Platelet-derived growth factor (PDGF)-treated pulmonary artery smooth muscle cells (PASMCs) were exposed to sevoflurane and genetically manipulated for TRAF6 overexpression. It was found that MCT and PDGF challenge upregulated the levels of TRAF6 in rat lung tissues and PASMCs, but sevoflurane treatment led to reduced TRAF6 expression. Sevoflurane inhalation in MCT-induced rats resulted in alleviative pulmonary vascular remodeling, mitigated right ventricular dysfunction and hypertrophy, improved mitochondrial function and dynamics, and inactivation of NF-κB pathway. In vitro studies confirmed that exposure to sevoflurane repressed PDGF-induced proliferation, migration, and phenotype switching of PASMCs, and suppressed mitochondrial dysfunction and NF-κB activation in PDGF-stimulated PASMCs. The beneficial impact of sevoflurane on pathological changes of lung and cell phenotype of PASMCs were reversed by overexpression of TRAF6. In summary, our study suggested the protective properties of sevoflurane in targeting PAH by downregulating TRAF6 expression, providing a novel avenue for the management of PAH.


Assuntos
Regulação para Baixo , Miócitos de Músculo Liso , Hipertensão Arterial Pulmonar , Artéria Pulmonar , Ratos Sprague-Dawley , Sevoflurano , Fator 6 Associado a Receptor de TNF , Animais , Sevoflurano/farmacologia , Sevoflurano/toxicidade , Regulação para Baixo/efeitos dos fármacos , Ratos , Masculino , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Monocrotalina/toxicidade , NF-kappa B/metabolismo , Proliferação de Células/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Células Cultivadas
6.
Steroids ; 211: 109503, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39208922

RESUMO

Anabolic-androgenic steroids (AAS) abuse is linked to some abnormalities in several tissues including the kidney. However, the precise molecular mediators involved in AAS-induced kidney disorder remain elusive. The main objective of the present study was to investigate the effect of Nandrolone decanoate on kidney injury alone or in combination with moderate exercise and its related mechanisms. Thirty-two male Wistar rats were subdivided randomly into four groups. control (Con), Nandrolone (10 mg/kg)(N), Exercise (Exe), Nandrolone + Exercise (N+Exe). RESULTS: After 6 weeks, nandrolone treatment led to a significant increase in functional parameters such as serum cystatin c, urea, creatinine, albuminuria and Albumin/ creatinine ratio indicating kidney dysfunction. Moreover, nandrolone treatment increased vacuolization, focal inflammation, hemorragia, cast formation fibrosis in the renal tissue of rats. miRNA-146a increased in kidney tissue after nandrolone exposure by using RT-PCR which may be considered idealtheranomiRNAcandidates for diagnosis and treatment. Western blotting indicated that IRAK1, TRAF6, TNF-α, NF-κB, iNOS and TGF-ß protein expressions were considerably elevated in the kidneys of nandrolone treated rats. Moderate exercise could alleviate the renal dysfunction, histological abnormalities and aforementioned proteins. Our findings suggested that nandrolone consumption can cause damage to kidney tissue probably through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB and TGF-ß pathway. These results provide future lines of research in the identification of theranoMiRNAs related to nandrolone treatment, which can be ameliorated by moderate exercise.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , MicroRNAs , NF-kappa B , Decanoato de Nandrolona , Condicionamento Físico Animal , Ratos Wistar , Fator 6 Associado a Receptor de TNF , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Ratos , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Nandrolona/farmacologia , Nandrolona/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia
7.
Int Immunopharmacol ; 140: 112814, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39094364

RESUMO

The aim of this study was to investigated the effects of forsythiaside A (FA) on acute lung injury (ALI). The lung tissue pathological was detected by hematoxylin-eosin staining (HE) staining. Wet weight/dry weight (w/d) of the lung in mice was measured. Cytokine such as interleukin 1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) were also detected. Compared with the vector group, the protein expression levels of TRAF6 and TAK1 the RNF99 group were significantly reduced. Ubiquitinated TRAF6 protein was increased after knockdown of RNF99. Finally, it was found that FA significantly ameliorated ALI via regulation of RNF99/TRAF6/NF-κB signal pathway. In conclusion, RNF99 was an important biomarker in ALI and FA alleviated ALI via RNF99/ TRAF6/NF-κB signal pathway.


Assuntos
Lesão Pulmonar Aguda , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Glicosídeos/farmacologia , Glicosídeos/uso terapêutico , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
mBio ; 15(9): e0204324, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39162488

RESUMO

E3 ubiquitin ligase (E3) plays a vital role in regulating inflammatory responses by mediating ubiquitination. Previous studies have shown that ankyrin repeat and SOCS box-containing protein 3 (ASB3) is involved in immunomodulatory functions associated with cancer. However, the impact of ASB3 on the dynamic interplay of microbiota and inflammatory responses in inflammatory bowel disease (IBD) is unclear. Here, we systematically identify the E3 ligase ASB3 as a facilitative regulator in the development and progression of IBD. We observed that ASB3 exhibited significant upregulation in the lesions of patients with IBD. ASB3-/- mice are resistant to dextran sodium sulfate-induced colitis. IκBα phosphorylation levels and production of proinflammatory factors IL-1ß, IL-6, and TNF-α were reduced in the colonic tissues of ASB3-/- mice compared to WT mice. This colitis-resistant phenotype was suppressed after coprophagic microbial transfer and reversed after combined antibiotics removed the gut commensal microbiome. Mechanistically, ASB3 specifically catalyzes K48-linked polyubiquitination of TRAF6 in intestinal epithelial cells. In contrast, in ASB3-deficient organoids, the integrity of the TRAF6 protein is shielded, consequently decelerating the onset of intestinal inflammation. ASB3 is associated with dysregulation of the colitis microbiota and promotes proinflammatory factors' production by disrupting TRAF6 stability. Strategies to limit the protein level of ASB3 in intestinal epithelial cells may help in the treatment of colitis. IMPORTANCE: Ubiquitination is a key process that controls protein stability. We determined the ubiquitination of TRAF6 by ASB3 in intestinal epithelial cells during colonic inflammation. Inflammatory bowel disease patients exhibit upregulated ASB3 expression at focal sites, supporting the involvement of degradation of TRAF6, which promotes TLR-Myd88/TRIF-independent NF-κB aberrant activation and intestinal microbiota imbalance. Sustained inflammatory signaling in intestinal epithelial cells and dysregulated protective probiotic immune responses mediated by ASB3 collectively contribute to the exacerbation of inflammatory bowel disease. These findings provide insights into the pathogenesis of inflammatory bowel disease and suggest a novel mechanism by which ASB3 increases the risk of colitis. Our results suggest that future inhibition of ASB3 in intestinal epithelial cells may be a novel clinical strategy.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos Knockout , Fator 6 Associado a Receptor de TNF , Animais , Humanos , Camundongos , Colite/microbiologia , Colite/induzido quimicamente , Colite/genética , Colite/metabolismo , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Camundongos Endogâmicos C57BL , Estabilidade Proteica , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
9.
Fish Shellfish Immunol ; 153: 109842, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39153580

RESUMO

Molting is a crucial biological process of crustaceans. Crustaceans go through three separate stages throughout their molting process, including pre-molt, post-molt and inter-molt. However, the exact mechanism of immunological modulation during molting remains unclear. Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been extensively documented to participate in immune defense. In the present study, a TRAF6 gene with two TRAF-type zinc finger domains was identified from Eriocheir sinensis (designed as EsTRAF6), and its role in regulating immune response during molting process was explored. The mRNA expression level of EsTRAF6 at pre-molt stage was higher than that at post-molt stage and inter-molt stage. After Aeromonas hydrophila stimulation, the expression levels of EsTRAF6, EsRelish and anti-lipopolysaccharide factors (ALFs) genes exhibited a considerable increase at three molting stages. Subsequently, the expression patterns of EsTRAF6 and EsRelish in response to the treatment with 20-hydroxyecdysone (20E) were examined. The mRNA expression of EsTRAF6 and EsRelish were significantly increased at 12 h after 20E injection. Additionally, the protein expression level of TRAF6 was also up-regulated in 20E group compared to control group. Furthermore, the role of EsTRAF6 in regulating the anti- ALFs expression at pre-molt stage post A. hydrophila stimulation was investigated. Following the inhibition of the EsTRAF6 transcript using RNAi or the injection of inhibitor (TMBPS), there was a notable decrease of the EsALF1, EsALF2 and EsALF3 transcripts. Moreover, a significant reduction in the phosphorylation level of NF-κB at pre-molt stage was observed after A. hydrophila stimulation in TRAF6-inhibited crabs. Collectively, our results suggest that EsTRAF6 could be induced by 20E and promoted the EsALFs expression by activating NF-κB at pre-molt stage, which provides a novel insight into the research of immune regulatory mechanism during the process of molting of crustaceans.


Assuntos
Proteínas de Artrópodes , Decápodes , NF-kappa B , Fator 6 Associado a Receptor de TNF , Animais , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Muda/imunologia , Muda/genética , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Filogenia , Alinhamento de Sequência/veterinária , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologia
10.
Biochem J ; 481(18): 1143-1171, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39145956

RESUMO

Rare mutations in CARD14 promote psoriasis by inducing CARD14-BCL10-MALT1 complexes that activate NF-κB and MAP kinases. Here, the downstream signalling mechanism of the highly penetrant CARD14E138A alteration is described. In addition to BCL10 and MALT1, CARD14E138A associated with several proteins important in innate immune signalling. Interactions with M1-specific ubiquitin E3 ligase HOIP, and K63-specific ubiquitin E3 ligase TRAF6 promoted BCL10 ubiquitination and were essential for NF-κB and MAP kinase activation. In contrast, the ubiquitin binding proteins A20 and ABIN1, both genetically associated with psoriasis development, negatively regulated signalling by inducing CARD14E138A turnover. CARD14E138A localized to early endosomes and was associated with the AP2 adaptor complex. AP2 function was required for CARD14E138A activation of mTOR complex 1 (mTORC1), which stimulated keratinocyte metabolism, but not for NF-κB nor MAP kinase activation. Furthermore, rapamycin ameliorated CARD14E138A-induced keratinocyte proliferation and epidermal acanthosis in mice, suggesting that blocking mTORC1 may be therapeutically beneficial in CARD14-dependent psoriasis.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Proliferação de Células , Endossomos , Queratinócitos , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Humanos , Animais , Queratinócitos/metabolismo , Camundongos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Endossomos/metabolismo , Transdução de Sinais , Psoríase/metabolismo , Psoríase/patologia , Psoríase/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteína 10 de Linfoma CCL de Células B/genética , Ubiquitinação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Transporte Proteico , Guanilato Ciclase
11.
Ren Fail ; 46(2): 2371992, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39082739

RESUMO

The pathogenesis of membranous nephropathy (MN) involves podocyte injury that is attributed to inflammatory responses induced by local immune deposits. Astragaloside IV (AS-IV) is known for its robust anti-inflammatory properties. Here, we investigated the effects of AS-IV on passive Heymann nephritis (PHN) rats and TNF-α-induced podocytes to determine the underlying molecular mechanisms of MN. Serum biochemical parameters, 24-h urine protein excretion and renal histopathology were evaluated in PHN and control rats. The expression of tumor necrosis factor receptor associated factor 6 (TRAF6), the phosphorylation of nuclear factor kappa B (p-NF-κB), the expression of associated proinflammatory cytokines (TNF-α, IL-6 and IL-1ß) and the ubiquitination of TRAF6 were measured in PHN rats and TNF-α-induced podocytes. We detected a marked increase in mRNA expression of TNF-α, IL-6 and IL-1ß and in the protein abundance of p-NF-κB and TRAF6 within the renal tissues of PHN rats and TNF-α-induced podocytes. Conversely, there was a reduction in the K48-linked ubiquitination of TRAF6. Additionally, AS-IV was effective in ameliorating serum creatinine, proteinuria, and renal histopathology in PHN rats. This effect was concomitant with the suppression of NF-κB pathway activation and decreased expression of TNF-α, IL-6, IL-1ß and TRAF6. AS-IV decreased TRAF6 levels by promoting K48-linked ubiquitin conjugation to TRAF6, which triggered ubiquitin-mediated degradation. In summary, AS-IV averted renal impairment in PHN rats and TNF-α-induced podocytes, likely by modulating the inflammatory response through the TRAF6/NF-κB axis. Targeting TRAF6 holds therapeutic promise for managing MN.


Assuntos
Glomerulonefrite Membranosa , NF-kappa B , Podócitos , Saponinas , Fator 6 Associado a Receptor de TNF , Triterpenos , Animais , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/metabolismo , Ratos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Fator 6 Associado a Receptor de TNF/metabolismo , NF-kappa B/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Masculino , Glomerulonefrite Membranosa/tratamento farmacológico , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Modelos Animais de Doenças , Ubiquitinação/efeitos dos fármacos , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
12.
Cell Rep ; 43(8): 114565, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39083380

RESUMO

Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by fibrosis of the skin and multiple vital organs, but the immunological pathogenesis of SSc remains unclear. We show here that miR-19b promotes Th9 cells that exacerbate SSc. Specifically, miR-19b and interleukin (IL)-9 increase in CD4+ T cells in experimental SSc in mice induced with bleomycin. Inhibiting miR-19b reduces Th9 cells and ameliorates the disease. Mechanistically, transforming growth factor beta (TGF-ß) plus IL-4 activates pSmad3-Ser213 and TRAF6-K63 ubiquitination by suppressing NLRC3. Activated TRAF6 sequentially promotes TGF-ß-activated kinase 1 (TAK1) and nuclear factor κB (NF-κB) p65 phosphorylation, leading to the upregulation of miR-19b. Notably, miR-19b activated Il9 gene expression by directly suppressing atypical E2F family member E2f8. In patients with SSc, higher levels of IL9 and MIR-19B correlate with worse disease progression. Our findings reveal miR-19b as a key factor in Th9 cell-mediated SSc pathogenesis and should have clinical implications for patients with SSc.


Assuntos
Interleucina-9 , MicroRNAs , Escleroderma Sistêmico , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/imunologia , Humanos , Camundongos , Interleucina-9/metabolismo , Interleucina-9/genética , Camundongos Endogâmicos C57BL , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator de Crescimento Transformador beta/metabolismo , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Proteína Smad3/metabolismo , Feminino , Interleucina-4/metabolismo , Masculino , Bleomicina , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Transdução de Sinais
13.
Cell Death Dis ; 15(7): 524, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043634

RESUMO

Invasion and migration are the key hallmarks of cancer, and aggressive growth is a major factor contributing to treatment failure and poor prognosis in glioblastoma. Protein arginine methyltransferase 6 (PRMT6), as an epigenetic regulator, has been confirmed to promote the malignant proliferation of glioblastoma cells in previous studies. However, the effects of PRMT6 on glioblastoma cell invasion and migration and its underlying mechanisms remain elusive. Here, we report that PRMT6 functions as a driver element for tumor cell invasion and migration in glioblastoma. Bioinformatics analysis and glioma sample detection results demonstrated that PRMT6 is highly expressed in mesenchymal subtype or invasive gliomas, and is significantly negatively correlated with their prognosis. Inhibition of PRMT6 (using PRMT6 shRNA or inhibitor EPZ020411) reduces glioblastoma cell invasion and migration in vitro, whereas overexpression of PRMT6 produces opposite effects. Then, we identified that PRMT6 maintains the protein stability of EZH2 by inhibiting the degradation of EZH2 protein, thereby mediating the invasion and migration of glioblastoma cells. Further mechanistic investigations found that PRMT6 inhibits the transcription of TRAF6 by activating the histone methylation mark (H3R2me2a), and reducing the interaction between TRAF6 and EZH2 to enhance the protein stability of EZH2 in glioblastoma cells. Xenograft tumor assay and HE staining results showed that the expression of PRMT6 could promote the invasion of glioblastoma cells in vivo, the immunohistochemical staining results of mouse brain tissue tumor sections also confirmed the regulatory relationship between PRMT6, TRAF6, and EZH2. Our findings illustrate that PRMT6 suppresses TRAF6 transcription via H3R2me2a to enhance the protein stability of EZH2 to facilitate glioblastoma cell invasion and migration. Blocking the PRMT6-TRAF6-EZH2 axis is a promising strategy for inhibiting glioblastoma cell invasion and migration.


Assuntos
Movimento Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Glioblastoma , Invasividade Neoplásica , Estabilidade Proteica , Proteína-Arginina N-Metiltransferases , Ubiquitinação , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Nucleares , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteólise , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética
14.
Int Immunopharmacol ; 139: 112602, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39033660

RESUMO

Chronic pain has emerged as a significant public health issue, seriously affecting patients' quality of life and psychological well-being, with a lack of effective pharmacological treatments. Numerous studies have indicated that macrophages play a crucial role in inflammatory pain, and targeting neuro-immune interactions for drug development may represent a promising direction for pain management. Chilobrachys jingzhao (C. jingzhao) is used as a folk medicine of the Li nationality with the efficacy of eliminating swelling, detoxicating, and relieving pain, and the related products are widely used in the market. However, the chemical constituents of C. jingzhao have not been reported, and the pharmacodynamic substance and the precise functional mechanism are unrevealed. Here we isolated a cyclic dipeptide, cyclo(L-Pro-L-Trp) (CPT) from C. jingzhao for the first time. CPT remarkably alleviated formalin-induced inflammatory pain and significantly inhibited inflammatory responses. In vivo, CPT attenuated neutrophil infiltration and plantar tissue edema and suppressed the mRNA expression of pro-inflammatory molecules. In vitro, CPT suppressed inflammation triggered by lipopolysaccharide (LPS) in both RAW 264.7 and iBMDM cells, reducing expressions of inducible nitric oxide synthase (iNOS), superoxide, and pro-inflammatory molecules. A mechanistic study revealed that CPT exerted an anti-inflammatory activity by blocking the mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways, as well as alleviating the ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF6). Our results elucidated the pharmacodynamic material basis of C. jingzhao, and CPT can be a promising lead for alleviating inflammation and inflammatory pain.


Assuntos
Anti-Inflamatórios , Formaldeído , Inflamação , NF-kappa B , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , NF-kappa B/metabolismo , Camundongos , Fator 6 Associado a Receptor de TNF/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Células RAW 264.7 , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Dor/tratamento farmacológico , Dor/induzido quimicamente , Analgésicos/uso terapêutico , Analgésicos/farmacologia , Humanos , Edema/tratamento farmacológico , Edema/induzido quimicamente , Edema/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
15.
Biosci Rep ; 44(7)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38967046

RESUMO

INTRODUCTION: Systemic lupus erythematosus (SLE) is a diverse autoimmune disease that arises from a combination of complex genetic factors and environmental influences. While circRNAs and miRNAs have recently been identified as promising biomarkers for disease diagnosis, their specific expression patterns, and clinical implications in SLE are not yet fully understood. AIM OF THE WORK: The aim of the present study was to determine the role of a panel of noncoding-RNAs specifically circRNAs (circ-TubD1, circ-CDC27, and circ-Med14), along with miRNA (rno-miR-146a-5p) and mRNA (TRAF6), as novel minimally invasive diagnostic biomarkers for experimentally induced SLE. Additionally, the study involved an insilico bioinformatics analysis to explore potential pathways involved in the pathogenesis of SLE, aiming to enhance our understanding of the disease, enable early diagnosis, and facilitate improved treatment strategies. MATERIALS AND METHODS: SLE was induced in rats using single IP injection of incomplete Freund's adjuvant (IFA). The Induction was confirmed by assessing the ANA and anti-ds DNA levels using ELSA technique. qPCR analysis was conducted to assess the expression of selected RNAs in sera collected from a group of 10 rats with induced SLE and a control group of 10 rats. In addition, bioinformatics and functional analysis were used to construct a circRNA-miRNA-mRNA network and to determine the potential function of these differentially expressed circRNAs. RESULTS: SLE rats demonstrated significantly higher expression levels of circ-CDC27, circ-Med14, and rno-miR-146a-5p as well as TRAF6, with lower expression level of circ-TubD1 in sera of SLE rats relative to controls. ROC curve analysis indicated that all the selected non-coding RNAs could serve as potential early diagnostic markers for SLE. In addition, the expression level of circ-TubD1 was negatively correlated with rno-miR-146a-5p, however, rno-miR-146a-5p was positively correlated with TRAF6. Bioinformatic analysis revealed the incorporation of the circRNAs targeted genes in various immune system and neurodegeneration pathways. CONCLUSIONS: Therefore, circRNAs; circ-TubD1, circ-CDC27, and circ-Med14, in addition to the miRNA (rno-miR-146a-5p) and mRNA (TRAF6) may be involved in the development of SLE and may have promising roles for future diagnosis and targeted therapy.


Assuntos
Biomarcadores , Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico , MicroRNAs , RNA Circular , Animais , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , RNA Circular/genética , RNA Circular/sangue , Biomarcadores/sangue , Ratos , MicroRNAs/genética , MicroRNAs/sangue , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/sangue , Biologia Computacional , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/sangue , Masculino
16.
Phytomedicine ; 132: 155890, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033726

RESUMO

BACKGROUND: Reactive Oxygen Species (ROS) is a key factor in the pathogenesis of osteoporosis (OP) primarily characterized by excessive osteoclast activity. Active fraction of Polyrhachis vicina Rogers (AFPR) exerts antioxidant effects and possesses extensive promising therapeutic effects in various conditions, however, its function in osteoclastogenesis and OP is unknown. PURPOSE: The aim of this study is to elucidate the cellular and molecular mechanisms of AFPR in OP. STUDY DESIGN AND METHODS: CCK8 assay was used to evaluate the cell viability under AFPR treatment. TRAcP staining, podosome belts staining and bone resorption were used to test the effect of AFPR on osteoclastogenesis. Immunofluorescence staining was used to observe the effect of AFPR on ROS production. si-RNA transfection, coimmunoprecipitation and Western-blot were used to clarify the underlying mechanisms. Further, an ovariectomy (OVX) -induced OP mice model was used to identify the effect of AFPR on bone loss using Micro-CT scanning and histological examination. RESULTS: In the present study, AFPR inhibited osteoclast differentiation and bone resorption induced by nuclear factor-κB receptor activator (NF-κB) ligand (RANKL) in dose-/ time-dependent with no cytotoxicity. Meanwhile, AFPR decreased RANKL-mediated ROS levels and enhanced ROS scavenging enzymes. Mechanistically, AFPR promoted proteasomal degradation of TRAF6 by significantly upregulating its K48-linked ubiquitination, subsequently inhibiting NFATc1 activity. We further observed that tripartite motif protein 38 (TRIM38) could mediate the ubiquitination of TRAF6 in response to RANKL. Moreover, TRIM38 could negatively regulate the RANKL pathway by binding to TRAF6 and promoting K48-linked polyubiquitination. In addition, TRIM38 deficiency rescued the inhibition of AFPR on ROS and NFATc1 activity and osteoclastogenesis. In line with these results, AFPR reduced OP caused by OVX through ameliorating osteoclastogenesis. CONCLUSION: AFPR alleviates ovariectomized-induced bone loss via suppressing ROS and NFATc1 by targeting Trim38 mediated proteasomal degradation of TRAF6. The research offers innovative perspectives on AFPR's suppressive impact in vivo OVX mouse model and in vitro, and clarifies the fundamental mechanism.


Assuntos
Osteoclastos , Osteogênese , Osteoporose , Extratos Vegetais , Espécies Reativas de Oxigênio , Fator 6 Associado a Receptor de TNF , Animais , Fator 6 Associado a Receptor de TNF/metabolismo , Camundongos , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Feminino , Osteoporose/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas com Motivo Tripartido/metabolismo , Ligante RANK/metabolismo , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Ovariectomia , Reabsorção Óssea/tratamento farmacológico , Células RAW 264.7 , Diferenciação Celular/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Humanos
17.
SLAS Technol ; 29(4): 100172, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39067816

RESUMO

Bone Marrow mesenchymal Stem Cells (BMSCs) are considered as an important source of cells for regenerative medicine, In particular, Bone Marrow mesenchymal Stem Cells Exosomes (BMSCs-EXO) have the most significant effect in the treatment of Spinal Cord Injury (SCI), but the mechanism of action is still unknown. This study found that compared with other SCI groups, BMSCs-EXO loaded with miR-146a could significantly improve the functional recovery of the hind limbs of SCI rats. Hematoxylin and eosin (H&E) indicated that the lesion area of spinal cord injury was less, nissl staining indicated that the number of nissl bodies remained more; the mechanism may be through inhibiting the expression of IRAK1 and TRAF6, blocking the activation of NF-κB p65, reducing the expression of TNF-α, IL-1ß and IL-6 inflammatory factors and oxidative stress, improving the SCI microenvironment, and promoting the repair of neural function. In general, we found that BMSCs-EXO loaded with miR-146a could reduce the inflammatory response and oxidative stress in SCI by inhibiting the activation of IRAK1/TRAF6/NF-κB p65 signaling pathway, and promote the recovery of neurological function in SCI rats.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Células-Tronco Mesenquimais , MicroRNAs , Traumatismos da Medula Espinal , Fator 6 Associado a Receptor de TNF , Animais , Traumatismos da Medula Espinal/terapia , MicroRNAs/metabolismo , MicroRNAs/genética , Células-Tronco Mesenquimais/metabolismo , Ratos , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Vesículas Extracelulares/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Modelos Animais de Doenças , Células da Medula Óssea
18.
Cell Biol Toxicol ; 40(1): 54, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995476

RESUMO

BACKGROUND: The neuropathic pain with complex networks of neuroinflammatory activation severely limits clinical therapeutic research. TNF receptor-associated factor 6 (TRAF6) is associated with multiple inflammatory diseases. However, there remains confusion about the effects and mechanisms of TRAF6 in neuropathic pain. METHODS: A chronic constriction injury (CCI) model was developed to simulate neuralgia in vivo. We overexpressed or knocked down TRAF6 in CCI mice, respectively. Activation of microglia by TRAF6, the inflammatory response, and disease progression were inspected using WB, qRT-PCR, immunofluorescence, flow cytometry, and ELISA assays. Moreover, the mechanism of M1/M2 polarization activation of microglia by TRAF6 was elaborated in BV-2 cells. RESULTS: TRAF6 was enhanced in the spinal neurons and microglia of the CCI mice model compared with the sham operation group.. Down-regulation of TRAF6 rescued the expression of Iba-1. In response to mechanical and thermal stimulation, PWT and PWL were improved after the knockdown of TRAF6. Decreased levels of pro-inflammatory factors were observed in TRAF6 knockdown groups. Meanwhile, increased microglial M1 markers induced by CCI were limited in mice with TRAF6 knockdown. In addition, TRAF6 overexpression has the precise opposite effect on CCI mice or microglia polarization. We also identifed that TRAF6 activated the c-JUN/NF-kB pathway signaling; the inhibitor of c-JUN/NF-kB could effectively alleviate the neuropathic pain induced by upregulated TRAF6 in the CCI mice model. CONCLUSION: In summary, this study indicated that TRAF6 was concerned with neuropathic pain, and targeting the TRAF6/c-JUN/NF-kB pathway may be a prospective target for treating neuropathic pain.


Assuntos
Microglia , NF-kappa B , Neuralgia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Animais , Masculino , Camundongos , Linhagem Celular , Polaridade Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Fator 6 Associado a Receptor de TNF/metabolismo
19.
Genetics ; 228(1)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38985651

RESUMO

Numerous factors have been implicated in the cell-cell interactions that lead to elimination of cells via cell competition, a context-dependent process of cell selection in somatic tissues that is based on comparisons of cellular fitness. Here, we use a series of genetic tests in Drosophila to explore the relative contribution of the pleiotropic cytokine tumor necrosis factor α (TNFα) in Myc-mediated cell competition (also known as Myc supercompetition or Myc cell competition). We find that the sole Drosophila TNF, Eiger (Egr), its receptor Grindelwald (Grnd/TNF receptor), and the adaptor proteins Traf4 and Traf6 are required to eliminate wild-type "loser" cells during Myc cell competition. Although typically the interaction between Egr and Grnd leads to cell death by activating the intracellular Jun N-terminal kinase (JNK) stress signaling pathway, our experiments reveal that many components of canonical JNK signaling are dispensable for cell death in Myc cell competition, including the JNKKK Tak1, the JNKK Hemipterous and the JNK Basket. Our results suggest that Egr/Grnd signaling participates in Myc cell competition but functions in a role that is largely independent of the JNK signaling pathway.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Competição entre as Células/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Transdução de Sinais , Receptores do Fator de Necrose Tumoral/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Proteínas de Ligação a DNA , Proteínas de Membrana , Fatores de Transcrição
20.
J Immunol ; 213(3): 362-372, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38847613

RESUMO

IL-1R-associated kinases (IRAKs) are signal transducers of the TLR/IL-1R-MyD88-TRAF6 pathways. Vertebrates possess two IRAK lineages, IRAK1/2/3 and IRAK4. In mammals, IRAK4/IRAK1 and IRAK4/IRAK2 are pathway enhancers, whereas IRAK3 is a repressor. However, in bony fish, IRAK2 is absent, and it remains elusive how fish IRAK1/3/4 functionally differ from their mammalian counterparts. In this study, we explored this using the zebrafish model. First, we showed that in human 293T cells, zebrafish IRAK1 and IRAK4 were components of the Myddosome (MyD88-IRAK4-IRAK1) complex, with IRAK1 serving as a potent pathway enhancer. Then, we discovered two zebrafish IRAK3 variants: one (IRAK3a) contains an N-terminal Death domain, a middle pseudokinase domain, and a C-terminal TRAF6-binding domain, whereas the other (IRAK3b) lost both the kinase and TRAF6-binding domains. This truncation of IRAK3 variants could be a conserved phenomenon in fish, because it is also observed in trout and grass carp. We proceeded to show that zebrafish IRAK3a acts as a pathway enhancer by binding with MyD88 and TRAF6, but its activity is milder than IRAK1, possibly because it has no kinase activity. Zebrafish IRAK3b, however, plays a sheer negative role, apparently because of its lack of kinase and TRAF6-binding domains. Moreover, zebrafish IRAK3a/3b inhibit the activity of IRAK1/4, not by interacting with IRAK1/4 but possibly by competing for MyD88 and TRAF6. Finally, we have verified the essential activities of zebrafish IRAK1/3a/3b/4 in zebrafish cells and embryos. In summary, to our knowledge, our findings provide new insights into the molecular functions of fish IRAKs and the evolution of the IRAK functional modes in vertebrates.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Fator 88 de Diferenciação Mieloide , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Humanos , Transdução de Sinais/imunologia , Células HEK293 , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...