Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.278
Filtrar
1.
J Neural Eng ; 21(5)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39231475

RESUMO

Objective.Cryogel microcarriers made of poly(ethylene glycol) diacrylate and 3-sulfopropyl acrylate have the potential to act as delivery vehicles for long-term retention of neurotrophic factors (NTFs) in the brain. In addition, they can potentially enhance stem cell-derived dopaminergic (DAergic) cell replacement strategies for Parkinson's disease (PD), by addressing the limitations of variable survival and poor differentiation of the transplanted precursors due to neurotrophic deprivation post-transplantation in the brain. In this context, to develop a proof-of-concept, the aim of this study was to determine the efficacy of glial cell line-derived NTF (GDNF)-loaded cryogel microcarriers by assessing their impact on the survival of, and reinnervation by, primary DAergic grafts after intra-striatal delivery in Parkinsonian rat brains.Approach.Rat embryonic day 14 ventral midbrain cells were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, or with GDNF, or with unloaded cryogel microcarriers, or with GDNF-loaded cryogel microcarriers.Post-mortem, GDNF and tyrosine hydroxylase immunostaining were used to identify retention of the delivered GDNF within the implanted cryogel microcarriers, and to identify the transplanted DAergic neuronal cell bodies and fibres in the brains, respectively.Main results.We found an intact presence of GDNF-stained cryogel microcarriers in graft sites, indicating their ability for long-term retention of the delivered GDNF up to 4 weeks in the brain. This resulted in an enhanced survival (1.9-fold) of, and striatal reinnervation (density & volume) by, the grafted DAergic neurons, in addition to an enhanced sprouting of fibres within graft sites.Significance.This data provides an important proof-of-principle for the beneficial effects of neurotrophin-loaded cryogel microcarriers on engraftment of cells in the context of cell replacement therapy in PD. For clinical translation, further studies will be needed to assess the impact of cryogel microcarriers on the survival and differentiation of stem cell-derived DAergic precursors in Parkinsonian rat brains.


Assuntos
Criogéis , Neurônios Dopaminérgicos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Ratos , Criogéis/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/transplante , Doença de Parkinson/terapia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Células Cultivadas , Masculino
2.
Neurosci Lett ; 841: 137934, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39142556

RESUMO

OBJECTIVE: To study the effects of resveratrol on heroin addiction-related behaviors and to preliminarily explore the possible intervention mechanism of resveratrol in heroin dependence. METHODS: The effects of resveratrol on heroin withdrawal symptoms were observed by naloxone; The effect of resveratrol on heroin reward memory acquisition was detected by CPP paradigm; The effect of resveratrol on the mental excitability of heroin was tested by open field experiment; The effect of resveratrol on heroin spatial learning and memory was tested by water maze test. Western blot was used to detect Sirtuin 1 (SIRT1) Expression of brain-derived neurotrophic factor (BDNF), glial cell derived neurotrophic factor (GDNF), and postsynaptic density protein (PSD95). RESULTS: The behavioral results showed that the withdrawal behavior of the resveratrol intervention group was reduced compared with the heroin chronic dependence group (P<0.05), and the shift score of the conditioned place preference test of the resveratrol intervention group was reduced compared with the heroin chronic dependence group (P<0.05) The spatial learning and memory ability of the water maze in the resveratrol intervention group was improved compared with the heroin chronic dependence group (P<0.05), and the mental excitability of the resveratrol intervention group was lower than that of the heroin chronic dependence group (P<0.05), but higher than that of the saline group (P<0.05); SIRT1 The expression levels of BDNF, GDNF and PSD95 protein were significantly increased (P<0.05). CONCLUSION: The behavioral results of this study suggest that resveratrol can be used as a potential drug to treat heroin dependence. At the same time, SIRT1 The expression of BDNF, GDNF, and PSD95 increased; SIRT1, BDNF, GDNF, and PSD95 play an essential role in heroin addiction.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteína 4 Homóloga a Disks-Large , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Dependência de Heroína , Resveratrol , Sirtuína 1 , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Sirtuína 1/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Animais , Dependência de Heroína/tratamento farmacológico , Dependência de Heroína/metabolismo , Dependência de Heroína/psicologia , Masculino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Resveratrol/farmacologia , Resveratrol/administração & dosagem , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/psicologia , Aprendizagem em Labirinto/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos
3.
Sci Rep ; 14(1): 17845, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090173

RESUMO

The core of clinic treatment of Parkinson's disease (PD) is to enhance dopamine (DA) signaling within the brain. The regulation of dopamine transporter (DAT) is integral to this process. This study aims to explore the regulatory mechanism of glial cell line-derived neurotrophic factor (GDNF) on DAT, thereby gaining a profound understanding its potential value in treating PD. In this study, we investigated the effects of GDNF on both cellular and mouse models of PD, including the glycosylation and membrane transport of DAT detected by immunofluorescence and immunoblotting, DA signal measured by neurotransmitter fiber imaging technology, Golgi morphology observed by electron microscopic, as well as cognitive ability assessed by behavior tests. This study revealed that in animal trials, MPTP-induced Parkinson's Disease (PD) mice exhibited a marked decline in cognitive function. Utilizing ELISA and neurotransmitter fiber imaging techniques, we observed a decrease in dopamine levels and a significant reduction in the intensity of dopamine signal release in the Prefrontal Cortex (PFC) of PD mice induced by MPTP. Intriguingly, these alterations were reversed by Glial Cell Line-Derived Neurotrophic Factor (GDNF). In cellular experiments, following MPP + intervention, there was a decrease in Gly-DAT modification in both the cell membrane and cytoplasm, coupled with an increase in Nongly-DAT expression and aggregation of DAT within the cytoplasm. Conversely, GDNF augmented DAT glycosylation and facilitated its membrane transport in damaged dopaminergic neurons, concurrently reversing the effects of GRASP65 depletion and Golgi fragmentation, thereby reducing the accumulation of DAT in the Golgi apparatus. Furthermore, overexpression of GRASP65 enhanced DAT transport in PD cells and mice, while suppression of GRASP65 attenuated the efficacy of GDNF on DAT. Additionally, GDNF potentiated the reutilization of neurotransmitters by the PFC presynaptic membrane, boosting the effective release of dopamine following a single electrical stimulation, ultimately ameliorating the cognitive impairments in PD mice.Therefore, we propose that GDNF enhances the glycosylation and membrane trafficking of DAT by facilitating the re-aggregation of the Golgi apparatus, thereby amplifying the utilization of DA signals. This ultimately leads to the improvement of cognitive abilities in PD mouse models. Our study illuminates, from a novel angle, the beneficial role of GDNF in augmenting DA utilization and cognitive function in PD, providing fresh insights into its therapeutic potential.


Assuntos
Cognição , Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glicosilação , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Camundongos , Cognição/efeitos dos fármacos , Dopamina/metabolismo , Masculino , Doença de Parkinson/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Membrana Celular/metabolismo , Córtex Pré-Frontal/metabolismo
4.
Mol Med ; 30(1): 113, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095693

RESUMO

BACKGROUND: To explore whether nobiletin has a protective effect on high-fat diet (HFD)-induced enteric nerve injury and its underlying mechanism. METHODS: An obesity model was induced by a HFD. Nobiletin (100 mg/kg and 200 mg/kg) and vehicle were administered by gastric gavage for 4 weeks. Lee's index, body weight, OGTT and intestinal propulsion assays were performed before sacrifice. After sampling, lipids were detected using Bodipy 493/503; lipid peroxidation was detected using MDA and SOD kits and the expression of PGP 9.5, Trem2, GFAP, ß-tubulin 3, Bax, Bcl2, Nestin, P75 NTR, SOX10 and EDU was detected using immunofluorescence. The GDNF, p-AKT, AKT, p-FOXO3a, FOXO3a and P21 proteins were detected using western blotting. The relative mRNA expression levels of NOS2 were detected via qPCR. Primary enteric neural stem cells (ENSCs) were cultured. After ENSCs were treated with palmitic acid (PA) and nobiletin, CCK-8 and caspase-3/7 activity assays were performed to evaluate proliferation and apoptosis. RESULTS: HFD consumption caused colon lipid accumulation and peroxidation, induced enteric nerve damage and caused intestinal motor dysfunction. However, nobiletin reduced lipid accumulation and peroxidation in the colon; promoted Trem2, ß-tubulin 3, Nestin, P75NTR, SOX10 and Bcl2 expression; inhibited Bax and GFAP expression; reduced NOS2 mRNA transcription; and regulated the GDNF/AKT/FOXO3a/P21 pathway. Nobiletin also promoted PA-induced impairment of ENSCs. CONCLUSIONS: Nobiletin restored HFD-induced enteric nerve injury, which may be associated with inhibiting enteric nerve apoptosis, promoting enteric nerve survival and regulating the GDNF/AKT/FOXO3a/P21 pathway.


Assuntos
Dieta Hiperlipídica , Sistema Nervoso Entérico , Flavonas , Proteína Forkhead Box O3 , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Proteína Forkhead Box O3/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Masculino , Flavonas/farmacologia , Flavonas/uso terapêutico , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/efeitos dos fármacos , Camundongos , Modelos Animais de Doenças , Ratos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Apoptose/efeitos dos fármacos
5.
J Mol Neurosci ; 74(3): 78, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158627

RESUMO

Constipation is a common symptom in patients with Parkinson's disease (PD) and is often associated with depression. Enteric glial cells (EGCs) are crucial for regulating intestinal inflammation and colon motility, and their activation can lead to the death of intestinal neurons. Glial cell line-derived neurotrophic factor (GDNF) has been recognized for its neuroprotective properties in various neurological disorders, including PD. This study explores the potential of GDNF in alleviating intestinal reactive gliosis and inflammation, thereby improving constipation and depressive behavior in a rat model of PD. A PD model was established via unilateral stereotaxic injection of 6-hydroxydopamine (6-OHDA). Five weeks post-injury, AAV5-GDNF (2 ~ 5 × 10^11) was intraperitoneally injected into experimental and control rats. Fecal moisture percentage (FMP) and colonic propulsion rate (CPPR) were used to evaluate colon motility. Colon-related inflammation and colonic epithelial morphology were assessed, and depressive behavior was analyzed one week before sampling. PD rats exhibited reduced colonic motility and GDNF expression, along with increased EGC reactivity and elevated levels of pro-inflammatory cytokines IL-1, IL-6, and TNF-α. Additionally, there was an up-regulation of CX43 and a decrease in PGP 9.5 expression. The intraperitoneal injection of AAV-GDNF significantly protected colonic neurons by inhibiting EGC activation and down-regulating CX43. This treatment also led to a notable reduction in depressive-like symptoms in PD rats with constipation. GDNF effectively reduces markers of reactive gliosis and inflammation, and promotes the survival of colonic neurons, and improves colonic motility in PD rats by regulating CX43 activity. Furthermore, GDNF treatment alleviates depressive behavior, suggesting that GDNF or its agonists could be promising therapeutic agents for managing gastrointestinal and neuropsychiatric symptoms associated with PD.


Assuntos
Constipação Intestinal , Depressão , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Gliose , Animais , Masculino , Ratos , Colo/metabolismo , Colo/patologia , Constipação Intestinal/etiologia , Constipação Intestinal/tratamento farmacológico , Citocinas/metabolismo , Depressão/etiologia , Depressão/tratamento farmacológico , Motilidade Gastrointestinal/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Gliose/metabolismo , Inflamação/metabolismo , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Ratos Sprague-Dawley
6.
Ren Fail ; 46(2): 2394637, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39189638

RESUMO

BACKGROUND: Recent studies have reported that helix B surface polypeptide (HBSP), an erythropoietin derivative, exhibits strong tissue protective effects, independent of erythropoietic effects, in a renal ischemia-reperfusion (IR) injury model. Meanwhile, the transforming growth factor-ß (TGF-ß) superfamily member glial cell line-derived neurotrophic factor (GDNF) demonstrated protective effect on podocytes in vitro. Using a rat puromycin aminonucleoside nephropathy (PAN) model, this study observed the renal protective effect of HBSP and investigated its renal protective effect on podocytes and mechanism related to GDNF. METHODS: Rats nephropathy model was induced by injection of 60 mg/kg of PAN via the tail vein. Rats in the PAN + HBSP group were injected intraperitoneally with HBSP (8 nmol/kg) 4 h before the model was induced, followed by intraperitoneal injections of HBSP once every 24 h for 7 consecutive days. The 24-hour urinary protein level was measured once every other day, and blood and renal tissue samples were collected on the 7th day for the examination of renal function, complete blood count, renal pathological changes and the expression levels of GDNF. RESULTS: Compared with the control group, the PAN nephropathy rat model showed a large amount of urinary protein. The pathological manifestations were mainly extensive fusion and disappearance of foot processes, along with vacuolar degeneration of podocytes and their separation from the glomerular basement membrane. GDNF expression was upregulated. Compared with the PAN + vehicle group, the PAN + HBSP group showed decreased urinary protein (p < 0.05). Pathological examination revealed ameliorated glomerular injury and vacuolar degeneration of podocytes. The expression of GDNF in the PAN nephropathy group was increased, when compared with the control group. The greatest expression of GDNF observed in the PAN + HBSP group (p < 0.05). CONCLUSIONS: The expression of GDNF in the kidney of PAN rat model was increased. HBSP reduced urinary protein, ameliorated pathological changes in renal podocytes, increased the expression of GDNF in the PAN rat model. HBSP is likely to exert its protective effects on podocytes through upregulation of GDNF expression.


Assuntos
Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Nefropatias , Podócitos , Puromicina Aminonucleosídeo , Ratos Sprague-Dawley , Animais , Ratos , Podócitos/efeitos dos fármacos , Podócitos/patologia , Podócitos/metabolismo , Masculino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Nefropatias/patologia , Rim/patologia , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Eritropoetina , Fragmentos de Peptídeos
7.
Sci Rep ; 14(1): 17639, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085346

RESUMO

Glioblastoma is the most common primary brain tumor in adults, characterized by an inherent aggressivity and resistance to treatment leading to poor prognoses. While some resistance mechanisms have been elucidated, a deeper understanding of these mechanisms is needed to increase therapeutic efficacy. In this study we first discovered glial-cell derived neurotrophic factor (GDNF) to be upregulated in patient-derived glioblastoma spheroid cultures after chemotherapeutic temozolomide treatment, through RNA-Seq experiments. Therefore, we investigated the role of the GDNF/GDNF receptor alpha 1 (GFRA1) signaling pathway as a resistance mechanism to chemotherapy with temozolomide and lomustine, as well as irradiation using patient-derived glioblastoma spheroid cultures. With qPCR experiments we showed a consistent upregulation of GDNF and its primary receptor GFRA1 following all three lines of treatment. Moreover, CRISPR/Cas9 knock-outs of GDNF in two patient-derived models sensitized these cells to chemotherapy treatment, but not radiotherapy. The increased sensitivity was completely reversed by the addition of exogeneous GDNF, confirming the key role of this factor in chemoresistance. Finally, a CRISPR KO of GFRA1 demonstrated a similar increased sensitivity to temozolomide and lomustine treatment, as well as radiotherapy. Together, our findings support the role of the GDNF/GFRA1 signaling pathway in glioblastoma chemo and radioresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Glioblastoma , Tolerância a Radiação , Transdução de Sinais , Temozolomida , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Resistencia a Medicamentos Antineoplásicos/genética , Temozolomida/farmacologia , Tolerância a Radiação/genética , Tolerância a Radiação/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lomustina/farmacologia , Esferoides Celulares/metabolismo , Esferoides Celulares/efeitos dos fármacos
8.
Oncogene ; 43(34): 2564-2577, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020072

RESUMO

Perineural invasion (PNI) is an adverse prognostic feature of pancreatic ductal adenocarcinoma (PDAC). However, the understanding of the interactions between tumors and neural signaling within the tumor microenvironment is limited. In the present study, we found that MUC21 servers as an independent risk factor for poor prognosis in PDAC. Furthermore, we demonstrated that MUC21 promoted the metastasis and PNI of PDAC cells by activating JNK and inducing epithelial-mesenchymal transition (EMT). Mechanistically, glial cell-derived neurotrophic factor, secreted by Schwann cells, phosphorylates the intracellular domain S543 of MUC21 via CDK1 in PDAC cells, facilitating the interaction between MUC21 and RAC2. This interaction leads to membrane anchoring and activation of RAC2, which in turn activates the JNK/ZEB1/EMT axis, ultimately enhancing the metastasis and PNI of PDAC cells. Our results present a novel mechanism of PNI, suggesting that MUC21 is a potential prognostic marker and therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Transição Epitelial-Mesenquimal , Invasividade Neoplásica , Neoplasias Pancreáticas , Proteína RAC2 de Ligação ao GTP , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Fosforilação , Animais , Linhagem Celular Tumoral , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/genética , Prognóstico , Metástase Neoplásica , Masculino , Feminino , Camundongos Nus
9.
Glia ; 72(10): 1840-1861, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38961612

RESUMO

The peripheral nervous system is a key regulator of cancer progression. In pancreatic ductal adenocarcinoma (PDAC), the sympathetic branch of the autonomic nervous system inhibits cancer development. This inhibition is associated with extensive sympathetic nerve sprouting in early pancreatic cancer precursor lesions. However, the underlying mechanisms behind this process remain unclear. This study aimed to investigate the roles of pancreatic Schwann cells in the structural plasticity of sympathetic neurons. We examined the changes in the number and distribution of Schwann cells in a transgenic mouse model of PDAC and in a model of metaplastic pancreatic lesions induced by chronic inflammation. Schwann cells proliferated and expanded simultaneously with new sympathetic nerve sprouts in metaplastic/neoplastic pancreatic lesions. Sparse genetic labeling showed that individual Schwann cells in these lesions had a more elongated and branched structure than those under physiological conditions. Schwann cells overexpressed neurotrophic factors, including glial cell-derived neurotrophic factor (GDNF). Sympathetic neurons upregulated the GDNF receptors and exhibited enhanced neurite growth in response to GDNF in vitro. Selective genetic deletion of Gdnf in Schwann cells completely blocked sympathetic nerve sprouting in metaplastic pancreatic lesions in vivo. This study demonstrated that pancreatic Schwann cells underwent adaptive reprogramming during early cancer development, supporting a protective antitumor neuronal response. These finding could help to develop new strategies to modulate cancer associated neural plasticity.


Assuntos
Camundongos Transgênicos , Neoplasias Pancreáticas , Células de Schwann , Animais , Células de Schwann/metabolismo , Células de Schwann/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Camundongos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Reprogramação Celular/fisiologia , Pâncreas/patologia , Pâncreas/inervação , Pâncreas/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Camundongos Endogâmicos C57BL
10.
Cell Biol Int ; 48(9): 1364-1377, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39007507

RESUMO

We evaluated the influence of different media plus various concentrations of Glial cell line-derived neurotrophic factor (GDNF) during the in vitro culture (IVC) of testicular tissues from prepubertal collared peccary. Testes from 5 individuals were collected, fragmented and cultured for 28 days (34°C and 5% CO2). Culture media were Dulbecco's modified essential medium (DMEM) or stem cell serum free media (StemPro-34™ SFM), both supplemented with various concentrations of GDNF (0, 10, or 20 ng/mL). Fragments were cultured on the flat surface of 0.75% agarose gel and were evaluated every 7 days for fragment area, histomorphology, cellular viability, and proliferative activity. Data were expressed as mean ± standard error and analyzed by Kruskal-Wallis's and Tukey test. Fragments area decreased over the 28 days-culture, regardless of the treatment. For morphology, the StemPro-37 SFM medium plus 10 ng/mL GDNF provided higher scores at all time points in comparison to DMEM using any GDNF concentration (p < .05). After 28 days, similar cellular viability (~70%) was observed in all treatments (p > .05). For proliferating cell nuclear antigen assay, only DMEM plus 10 ng/mL GDNF improved (p < .05) cellular proliferation on Days 14 and 28. Looking at argyrophilic nucleolar organizing regions, after 28 days, there were no differences among treatments regarding cell proliferative capacity for both spermatogonia and Sertoli cells (p > .05). In summary, the DMEM and StemPro-34 SFM are adequate medium for IVC of prepubertal peccary testicular tissue. Supplementation with GDNF, especially at a 10 ng/mL concentration, appears to be essential for the maintenance of cell survival and proliferation.


Assuntos
Sobrevivência Celular , Meios de Cultura , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Testículo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Testículo/citologia , Testículo/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Meios de Cultura/química , Proliferação de Células/efeitos dos fármacos , Carica , Técnicas de Cultura de Tecidos/métodos
11.
Exp Gerontol ; 194: 112517, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986856

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 µl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Hipocampo , Imipramina , Neurogênese , Biogênese de Organelas , Ratos Wistar , Estreptozocina , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Masculino , Neurogênese/efeitos dos fármacos , Imipramina/farmacologia , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Proteína Duplacortina , Doenças Neuroinflamatórias/tratamento farmacológico , Memória/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Antidepressivos Tricíclicos/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Citocinas/metabolismo
12.
Cells ; 13(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38995011

RESUMO

Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury. The results indicated that GDNF significantly improved graft-host interface by promoting integration between SCs and astrocytes, especially the migration of reactive astrocyte into SCs-GDNF territory. The glial response in the caudal graft area has been significantly attenuated. The astrocytes inside the grafted area were morphologically characterized by elongated and slim process and bipolar orientation accompanied by dramatically reduced expression of glial fibrillary acidic protein. Tremendous dPST axons have been found to regenerate across the lesion and back to the caudal spinal cord which were otherwise difficult to see in control groups. The caudal synaptic connections were formed, and regenerated axons were remyelinated. The hindlimb locomotor function has been improved.


Assuntos
Axônios , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Regeneração Nervosa , Células de Schwann , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Células de Schwann/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Axônios/metabolismo , Ratos , Ratos Sprague-Dawley , Feminino , Astrócitos/metabolismo
13.
Biomed Pharmacother ; 177: 116968, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901199

RESUMO

OBJECTIVE: To delve into the underlying mechanism of Salidroside (Sal) on the improvement of cognitive function in Parkinson's Disease (PD). METHODS: The experimental mice were divided into Control group, Model group [injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)], and Model+Sal (low concentration, high concentration) group. Mouse hippocampal tissues were extracted for RNA sequencing to obtain the core pathway and core gene. Mouse plasma was prepared and analyzed by LC-MS to obtain differential metabolites. In vitro experiments were verified by immunofluorescence and lentiviral transduction. RESULTS: ELISA signaled that Sal facilitated the reduction of neuronal damage and inflammatory reaction in mice. MPTP_Sal_Low and MPTP_Sal_High groups had high levels of glial cell derived neurotrophie factor (GDNF) expression. Differentially expressed genes (DEGs) in control group, MPTP group and MPTP_Sal_High group were identified by transcriptomic, which were classified to the mitogen-activated protein kinase (MAPK) signaling pathway, and the core gene Braf was obtained. Metabolomics manifested that the differential metabolites involved DL-tyrosine, adenosine, phosphoenolpyruvate, and L-tryptophan. In vitro experiments verified that Sal treatment inhibited the up-regulation of p-p38, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal-regulated kinase (ERK) expression, and growth of neuronal protrusions. The OE-Braf group showed a significant up-regulation of the GDNF expression, a decrease in the expression of p-p38, p-JNK, and p-ERK, and a significant growth of neuronal protrusions. CONCLUSION: Sal may exert its effects in PD through the Braf-mediated MAPK signaling pathway, which can increase GDNF expression and promote neuronal protrusion growth for the protection of neurological function and the improvement of cognitive function.


Assuntos
Cognição , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Glucosídeos , Sistema de Sinalização das MAP Quinases , Fenóis , Proteínas Proto-Oncogênicas B-raf , Animais , Masculino , Camundongos , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glucosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fenóis/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Agric Food Chem ; 72(26): 14653-14662, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38860840

RESUMO

The damage to the mechanical barrier of the intestinal mucosa is the initiating factor and the core link of the progression of ulcerative colitis (UC). Protecting the mechanical barrier of the intestinal mucosa is of great significance for improving the health status of UC patients. ZO-1 is a key scaffold protein of the mechanical barrier of the intestinal mucosa, and its fusion with the membrane of the intestinal epithelium is a necessary condition to maintain the integrity of the mechanical barrier of the intestinal mucosa. Enteric glial cells (EGCs) play an important role in the maintenance of intestinal homeostasis and have become a new target for regulating intestinal health in recent years. In this study, we found that glycyrol (GC), a representative coumarin compound isolated from Licorice (Glycyrrhiza uralensis Fisch, used for medicine and food), can alleviate UC by promoting the production of neurotrophic factor GDNF in mice EGCs. Specifically, we demonstrated that GC promotes the production of GDNF, then activates its receptor RET, promotes ZO-1 fusion with cell membranes, and protects the intestinal mucosal mechanical barrier. The results of this study can provide new ideas for the prevention and treatment of UC.


Assuntos
Colite Ulcerativa , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Mucosa Intestinal , Neuroglia , Proteína da Zônula de Oclusão-1 , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Camundongos , Humanos , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Camundongos Endogâmicos C57BL , Cumarínicos/farmacologia , Cumarínicos/química , Transdução de Sinais/efeitos dos fármacos , Glycyrrhiza/química
15.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920687

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is among the strongest dopamine neuron function- and survival-promoting factors known. Due to this reason, it has clinical relevance in dopamine disorders such as Parkinson's disease and schizophrenia. In the striatum, GDNF is exclusively expressed in interneurons, which make up only about 0.6% of striatal cells. Despite clinical significance, histological analysis of striatal GDNF system arborization and relevance to incoming dopamine axons, which bear its receptor RET, has remained enigmatic. This is mainly due to the lack of antibodies able to visualize GDNF- and RET-positive cellular processes; here, we overcome this problem by using knock-in marker alleles. We find that GDNF neurons chemoattract RET+ axons at least seven times farther in distance than medium spiny neurons (MSNs), which make up 95% of striatal neurons. Furthermore, we provide evidence that tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, is enriched towards GDNF neurons in the dopamine axons. Finally, we find that GDNF neuron arborizations occupy approximately only twelve times less striatal volume than 135 times more abundant MSNs. Collectively, our results improve our understanding of how endogenous GDNF affects striatal dopamine system function.


Assuntos
Axônios , Corpo Estriado , Neurônios Dopaminérgicos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteínas Proto-Oncogênicas c-ret , Animais , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Axônios/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/citologia , Camundongos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios Espinhosos Médios
16.
Science ; 384(6702): eadh5548, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900896

RESUMO

The molecular mechanisms that regulate breast cancer cell (BCC) metastasis and proliferation within the leptomeninges (LM) are poorly understood, which limits the development of effective therapies. In this work, we show that BCCs in mice can invade the LM by abluminal migration along blood vessels that connect vertebral or calvarial bone marrow and meninges, bypassing the blood-brain barrier. This process is dependent on BCC engagement with vascular basement membrane laminin through expression of the neuronal pathfinding molecule integrin α6. Once in the LM, BCCs colocalize with perivascular meningeal macrophages and induce their expression of the prosurvival neurotrophin glial-derived neurotrophic factor (GDNF). Intrathecal GDNF blockade, macrophage-specific GDNF ablation, or deletion of the GDNF receptor neural cell adhesion molecule (NCAM) from BCCs inhibits breast cancer growth within the LM. These data suggest integrin α6 and the GDNF signaling axis as new therapeutic targets against breast cancer LM metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Integrina alfa6 , Neoplasias Meníngeas , Meninges , Vias Neurais , Animais , Feminino , Humanos , Camundongos , Membrana Basal/metabolismo , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Integrina alfa6/metabolismo , Laminina/metabolismo , Macrófagos/metabolismo , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/secundário , Meninges/patologia , Invasividade Neoplásica , Moléculas de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Transdução de Sinais , Vias Neurais/metabolismo , Camundongos SCID , Camundongos Knockout
17.
Mov Disord ; 39(8): 1412-1417, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38718138

RESUMO

OBJECTIVE: Gene therapy by convection-enhanced delivery of type 2 adeno-associated virus-glial cell derived neurotrophic factor (AAV2-GDNF) to the bilateral putamina seeks to increase GDNF gene expression and treat Parkinson's disease (PD). METHODS: A 63-year-old man with advanced PD received AAV2-GDNF in a clinical trial. He died from pneumonia after anterior cervical discectomy and fusion 45 months later. An autopsy included brain examination for GDNF transgene expression. Putaminal catecholamine concentrations were compared to in vivo 18F-Fluorodopa (18F-FDOPA) positron emission tomography (PET) scanning results before and 18 months after AAV2-GDNF infusion. RESULTS: Parkinsonian progression stabilized clinically. Postmortem neuropathology confirmed PD. Bilateral putaminal regions previously infused with AAV2-GDNF expressed the GDNF gene. Total putaminal dopamine was 1% of control, confirming the striatal dopaminergic deficiency suggested by baseline 18F-DOPA-PET scanning. Putaminal regions responded as expected to AAV2-GDNF. CONCLUSION: After AAV2-GDNF infusion, infused putaminal regions showed increased GDNF gene expression, tyrosine hydroxylase immunoreactive sprouting, catechol levels, and 18F-FDOPA-PET signal, suggesting the regenerative potential of AAV2-GDNF in PD.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Doença de Parkinson , Tomografia por Emissão de Pósitrons , Putamen , Humanos , Masculino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Putamen/metabolismo , Dependovirus/genética , Terapia Genética/métodos
18.
Arch Dermatol Res ; 316(6): 235, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795154

RESUMO

The aim of this study is to delineate the expression patterns of prolyl cis-trans isomerase NIMA-interacting protein 1 (Pin1), Glial cell-derived neurotrophic factor (GDNF), and Angiotensin II (ANG II) during the process of wound repair, and to ascertain the effects of Pin1, GDNF, and ANG II on the healing of wounds in a rat model. A total of 18 rats were allocated into three groups-sham (control), DMSO (vehicle control), and Pin1 inhibitor (treatment with juglone)-with six animals in each group. An animal model of wound healing was established, followed by the intraperitoneal administration of juglone. Tissue samples from the wounds were subsequently collected for histopathological evaluation. Expression levels of Pin1, GDNF, and Ang II were quantified. In addition, an in vitro model of wound healing was created using human umbilical vein endothelial cells (HUVEC), to assess cell proliferation, migration, and tube formation under conditions of juglone pre-treatment. The expression levels of Pin1, GDNF, and ANG II were notably elevated on 7-, and 10- days post-wound compared to those measured on 3-day. Contrastingly, pre-treatment with juglone significantly inhibited the expression of these molecules. Histological analyses, including HE (Hematoxylin and Eosin), Masson's trichrome, and EVG (Elastic van Gieson) staining, demonstrated that vascular angiogenesis, as well as collagen and elastin deposition, were substantially reduced in the juglone pre-treated group when compared to the normal group. Further, immunohistochemical analysis revealed a considerable decrease in CD31 expression in the juglone pre-treatment group relative to the normal control group. Pin1 serves as a pivotal facilitator of wound repair. The findings indicate that the modulation of Pin1, GDNF, and ANG II expression impacts the wound healing process in rats, suggesting potential targets for therapeutic intervention in human wound repair.


Assuntos
Angiotensina II , Proliferação de Células , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Células Endoteliais da Veia Umbilical Humana , Peptidilprolil Isomerase de Interação com NIMA , Naftoquinonas , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Humanos , Ratos , Naftoquinonas/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Masculino , Proliferação de Células/efeitos dos fármacos , Angiotensina II/metabolismo , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ratos Sprague-Dawley , Pele/patologia , Pele/metabolismo , Pele/lesões , Pele/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal
19.
Sci Rep ; 14(1): 12274, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806540

RESUMO

Cranial irradiation used to control brain malignancies invariably leads to progressive and debilitating declines in cognition. Clinical efforts implementing hippocampal avoidance and NMDAR antagonism, have sought to minimize dose to radiosensitive neurogenic regions while normalizing excitatory/inhibitory (E/I) tone. Results of these trials have yielded only marginal benefits to cognition, prompting current studies to evaluate the potential of systemic extracellular vesicle (EV) therapy to restore neurocognitive functionality in the irradiated brain. Here we tested the hypothesis that EVs derived from inhibitory but not excitatory neuronal cultures would prove beneficial to cognition and associated pathology. Rats subjected to a clinically relevant, fractionated cranial irradiation paradigm were given multiple injections of either GABAergic- or glutamatergic-derived EV and subjected to behavioral testing. Rats treated with GABAergic but not glutamatergic EVs showed significant improvements on hippocampal- and cortical-dependent behavioral tasks. While each treatment enhanced levels of the neurotrophic factors BDNF and GDNF, only GABAergic EVs preserved granule cell neuron dendritic spine density. Additional studies conducted with GABAergic EVs, confirmed significant benefits on amygdala-dependent behavior and modest changes in synaptic plasticity as measured by long-term potentiation. These data point to a potentially more efficacious approach for resolving radiation-induced neurological deficits, possibly through a mechanism able to restore homeostatic E/I balance.


Assuntos
Irradiação Craniana , Vesículas Extracelulares , Neurônios GABAérgicos , Animais , Vesículas Extracelulares/metabolismo , Ratos , Irradiação Craniana/efeitos adversos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos da radiação , Masculino , Hipocampo/efeitos da radiação , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios/efeitos da radiação , Neurônios/metabolismo , Ácido Glutâmico/metabolismo , Plasticidade Neuronal/efeitos da radiação , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Comportamento Animal/efeitos da radiação
20.
Theriogenology ; 224: 1-8, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714023

RESUMO

In mammals, glial cell derived neurotrophic factor (GDNF) plays a critical role in the self-renewal and maintenance of spermatogonial stem cells (SSCs) in testis and oogenesis in ovary, whilst retinoic acid (RA), the key factor of meiosis initiation, can downregulate its expression. Unlike mammals, two Gdnf replication genes are widely present in teleost fishes, however, our understanding of them is still poor. In the present study, two paralogous gdnf from Nile tilapia (Oreochromis niloticus), namely as Ongdnfa and Ongdnfb, were characterized, and then their cellular expression profiles in testis and ovary and responsiveness to RA treatment at the tissue and cellular levels were investigated. In phylogenetic tree, the Gdnfa and Gdnfb from teleost fishes were clustered into two different subclasses, respectively, and then clustered with the homologs from cartilaginous fish and tetrapods, suggesting that OnGdnfa and OnGdnfb are orthologous to GDNF and paralogous to each other. Ongdnfa is expressed in Sertoli cells and Leydig cells in testis and oocytes in ovary. The expression pattern of Ongdnfb is similar to Ongdnfa. In the ex vivo testicular organ culture, RA down-regulated the expression of Ongdnfa, whereas up-regulated the expression of Ongdnfb (P < 0.05), suggesting that they have differential responsiveness to RA signaling. RA treatment of the cultured cells derived from adult Nile tilapia testis which have the expression of RA receptors (RAR), Ongdnfa and Ongdnfb further confirmed the above result. Collectively, our study suggests that Ongdnfa and Ongdnfb have non-germline expression patterns in testis and germline expression patterns in ovary; furthermore, they have differential responsiveness to RA signaling, implying that they might have differential biological functions. This study broadens and enriches our understanding of fish GDNF homologs and lays foundation for the study of their biological functions in the future.


Assuntos
Ciclídeos , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ovário , Testículo , Tretinoína , Animais , Tretinoína/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Feminino , Ciclídeos/genética , Ciclídeos/metabolismo , Testículo/metabolismo , Testículo/efeitos dos fármacos , Ovário/metabolismo , Ovário/efeitos dos fármacos , Filogenia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...