Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Fish Shellfish Immunol ; 153: 109805, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102972

RESUMO

The production of type I interferon is tightly regulated to prevent excessive immune activation. However, the role of selective autophagy receptor SQSTM1 in this regulation in teleost remains unknown. In this study, we cloned the triploid fish SQSTM1 (3nSQSTM1), which comprises 1371 nucleotides, encoding 457 amino acids. qRT-PCR data revealed that the transcript levels of SQSTM1 in triploid fish were increased both in vivo and in vitro following spring viraemia of carp virus (SVCV) infection. Immunofluorescence analysis confirmed that 3nSQSTM1 was mainly distributed in the cytoplasm. Luciferase reporter assay results showed that 3nSQSTM1 significantly blocked the activation of interferon promoters induced by 3nMDA5, 3nMAVS, 3nTBK1, and 3nIRF7. Co-immunoprecipitation assays further confirmed that 3nSQSTM1 could interact with both 3nTBK1 and 3nIRF7. Moreover, upon co-transfection, 3nSQSTM1 significantly inhibited the antiviral activity mediated by TBK1 and IRF7. Mechanistically, 3nSQSTM1 decreased the TBK1 phosphorylation and its interaction with 3nIRF7, thereby suppressing the subsequent antiviral response. Notably, we discovered that 3nSQSTM1 also interacted with SVCV N and P proteins, and these viral proteins may exploit 3nSQSTM1 to further limit the host's antiviral innate immune responses. In conclusion, our study demonstrates that 3nSQSTM1 plays a pivotal role in negatively regulating the interferon signaling pathway by targeting 3nTBK1 and 3nIRF7.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Fator Regulador 7 de Interferon , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Imunidade Inata/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Carpas/imunologia , Carpas/genética , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Regulação da Expressão Gênica/imunologia , Transdução de Sinais/imunologia , Triploidia , Filogenia , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária
2.
J Immunol ; 213(5): 577-587, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38995177

RESUMO

TLRs are the most thoroughly studied group of pattern-recognition receptors that play a central role in innate immunity. Among them, TLR10 (CD290) remains the only TLR family member without a known ligand and clearly defined functions. One major impediment to studying TLR10 is its absence in mice. A recent study on TLR10 knock-in mice demonstrated its intrinsic inhibitory role in B cells, indicating that TLR10 is a potential drug target in autoimmune diseases. In this study, we interrogated the expression and function of TLR10 in human plasmacytoid dendritic cells (pDCs). We have seen that primary human pDCs, B cells, and monocytes constitutively express TLR10. Upon preincubation with an anti-TLR10 Ab, production of cytokines in pDCs was downregulated in response to stimulation with DNA and RNA viruses. Upon further investigation into the possible mechanism, we documented phosphorylation of STAT3 upon Ab-mediated engagement of TLR10. This leads to the induction of inhibitory molecule suppressor of cytokine signaling 3 (SOCS3) expression. We have also documented the inhibition of nuclear translocation of transcription factor IFN regulatory factor 7 (IRF7) in pDCs following TLR10 engagement. Our data provide the (to our knowledge) first evidence that TLR10 is constitutively expressed on the surface of human pDCs and works as a regulator of their innate response. Our findings indicate the potential of harnessing the function of pDCs by Ab-mediated targeting of TLR10 that may open a new therapeutic avenue for autoimmune disorders.


Assuntos
Células Dendríticas , Fator Regulador 7 de Interferon , Fator de Transcrição STAT3 , Proteína 3 Supressora da Sinalização de Citocinas , Receptor 10 Toll-Like , Humanos , Células Dendríticas/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/imunologia , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/imunologia , Receptor 10 Toll-Like/imunologia , Receptor 10 Toll-Like/genética , Imunidade Inata/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Células Cultivadas , Fosforilação , Animais , Linfócitos B/imunologia , Transdução de Sinais/imunologia , Camundongos , Monócitos/imunologia
3.
Fish Shellfish Immunol ; 150: 109611, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734119

RESUMO

During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.


Assuntos
Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Ranavirus , Proteínas Virais , Animais , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Ranavirus/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Imunidade Inata/genética , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Evasão da Resposta Imune , Bass/imunologia , Bass/genética , Replicação Viral , Proteínas de Peixe-Zebra , Fatores Reguladores de Interferon
4.
J Immunol ; 212(12): 1932-1944, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709167

RESUMO

IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.


Assuntos
Autofagia , Candida albicans , Candidíase , Fator Regulador 7 de Interferon , Lectinas Tipo C , Macrófagos , Camundongos Knockout , Fagocitose , Receptores de Superfície Celular , Serina-Treonina Quinases TOR , Animais , Camundongos , Fagocitose/imunologia , Autofagia/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Candidíase/imunologia , Candida albicans/imunologia , Candida albicans/fisiologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/imunologia , Macrófagos/imunologia , Humanos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Endogâmicos C57BL , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Transdução de Sinais/imunologia
5.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508315

RESUMO

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Assuntos
Fator Regulador 7 de Interferon , NF-kappa B , Animais , Humanos , Camundongos , Células HEK293 , Inflamação/genética , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Vírus Sendai/fisiologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/imunologia , Replicação Viral , Mutação , Regulação da Expressão Gênica/genética , Vírus da Hepatite Murina/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Respirovirus/imunologia
6.
Adv Sci (Weinh) ; 11(13): e2304991, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286661

RESUMO

Radiotherapy (RT) can induce tumor regression outside the irradiation field, known as the abscopal effect. However, the detailed underlying mechanisms remain largely unknown. A tumor-bearing mouse model is successfully constructed by inducing both subcutaneous tumors and lung metastases. Single-cell RNA sequencing, immunofluorescence, and flow cytometry are performed to explore the regulation of tumor microenvironment (TME) by RT. A series of in vitro assays, including luciferase reporter, RNA Pulldown, and fluorescent in situ hybridization (FISH) assays, are performed to evaluate the detailed mechanism of the abscopal effect. In addition, in vivo assays are performed to investigate combination therapy strategies for enhancing the abscopal effect. The results showed that RT significantly inhibited localized tumor and lung metastasis progression and improved the TME. Mechanistically, RT promoted the release of tumor-derived exosomes carrying circPIK3R3, which is taken up by macrophages. circPIK3R3 promoted Type I interferon (I-IFN) secretion and M1 polarization via the miR-872-3p/IRF7 axis. Secreted I-IFN activated the JAK/STAT signaling pathway in CD8+ T cells, and promoted IFN-γ and GZMB secretion. Together, the study shows that tumor-derived exosomes promote I-IFN secretion via the circPIK3R3/miR-872-3p/IRF7 axis in macrophages and enhance the anti-tumor immune response of CD8+ T cells.


Assuntos
Exossomos , Neoplasias Pulmonares , Melanoma , MicroRNAs , Animais , Camundongos , Anticorpos , Linfócitos T CD8-Positivos , Exossomos/efeitos da radiação , Hibridização in Situ Fluorescente , Interferons , Neoplasias Pulmonares/radioterapia , Macrófagos/efeitos da radiação , Melanoma/radioterapia , MicroRNAs/genética , Microambiente Tumoral , Fator Regulador 7 de Interferon/imunologia , Fator Regulador 7 de Interferon/efeitos da radiação
7.
Front Immunol ; 14: 1236923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638030

RESUMO

Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.


Assuntos
Autoimunidade , Imunidade Inata , Fator Regulador 7 de Interferon , Interferon Tipo I , Humanos , COVID-19 , Fator Regulador 7 de Interferon/imunologia
8.
Front Immunol ; 12: 727161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603298

RESUMO

Plasmacytoid dendritic cells (pDCs) are known to respond to viral infections. However, the activation of pDCs by bacterial components such as lipopolysaccharides (LPS) has not been well studied. Here, we found that pDCs, conventional dendritic cells (cDCs), and B cells express high levels of toll-like receptor 4 (TLR4), a receptor for LPS. Moreover, LPS could effectively bind to not only cDCs but also pDCs and B cells. Intraperitoneal administration of LPS promoted activation of splenic pDCs and cDCs. LPS treatment led to upregulation of interferon regulatory factor 7 (IRF7) and induced production of interferon-alpha (IFN-α) in splenic pDCs. Furthermore, LPS-dependent upregulation of co-stimulatory molecules in pDCs did not require the assistance of other immune cells, such as cDCs. However, the production levels of IFN-α were decreased in cDC-depleted splenocytes, indicating that cDCs may contribute to the enhancement of IFN-α production in pDCs. Finally, we showed that activation of pDCs by LPS requires the TLR4 and myeloid differentiation factor 2 (MD2) signaling pathways. Thus, these results demonstrate that the gram-negative component LPS can directly stimulate pDCs via TLR4/MD2 stimulation in mice.


Assuntos
Células Dendríticas/imunologia , Lipopolissacarídeos , Antígeno 96 de Linfócito/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Feminino , Fator Regulador 7 de Interferon/imunologia , Interferon-alfa/imunologia , Antígeno 96 de Linfócito/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/citologia , Baço/imunologia , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
9.
PLoS Pathog ; 17(9): e1009901, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506605

RESUMO

Neddylation, an important type of post-translational modification, has been implicated in innate and adapted immunity. But the role of neddylation in innate immune response against RNA viruses remains elusive. Here we report that neddylation promotes RNA virus-induced type I IFN production, especially IFN-α. More importantly, myeloid deficiency of UBA3 or NEDD8 renders mice less resistant to RNA virus infection. Neddylation is essential for RNA virus-triggered activation of Ifna gene promoters. Further exploration has revealed that mammalian IRF7undergoes neddylation, which is enhanced after RNA virus infection. Even though neddylation blockade does not hinder RNA virus-triggered IRF7 expression, IRF7 mutant defective in neddylation exhibits reduced ability to activate Ifna gene promoters. Neddylation blockade impedes RNA virus-induced IRF7 nuclear translocation without hindering its phosphorylation and dimerization with IRF3. By contrast, IRF7 mutant defective in neddylation shows enhanced dimerization with IRF5, an Ifna repressor when interacting with IRF7. In conclusion, our data demonstrate that myeloid neddylation contributes to host anti-viral innate immunity through targeting IRF7 and promoting its transcriptional activity.


Assuntos
Imunidade Inata/imunologia , Fator Regulador 7 de Interferon/imunologia , Células Mieloides/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , Animais , Fator Regulador 7 de Interferon/biossíntese , Camundongos , Células Mieloides/metabolismo , Proteína NEDD8/deficiência , Processamento de Proteína Pós-Traducional , Ubiquitinas/deficiência
10.
Front Immunol ; 12: 699633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367159

RESUMO

High risk for virus-induced asthma exacerbations in children is associated with an IRF7lo immunophenotype, but the underlying mechanisms are unclear. Here, we applied a Systems Biology approach to an animal model comprising rat strains manifesting high (BN) versus low susceptibility (PVG) to experimental asthma, induced by virus/allergen coexposure, to elucidate the mechanism(s)-of-action of the high-risk asthma immunophenotype. We also investigated potential risk mitigation via pretreatment with the immune training agent OM-85. Virus/allergen coexposure in low-risk PVG rats resulted in rapid and transient airways inflammation alongside IRF7 gene network formation. In contrast, responses in high-risk BN rats were characterized by severe airways eosinophilia and exaggerated proinflammatory responses that failed to resolve, and complete absence of IRF7 gene networks. OM-85 had more profound effects in high-risk BN rats, inducing immune-related gene expression changes in lung at baseline and reducing exaggerated airway inflammatory responses to virus/allergen coexposure. In low-risk PVG rats, OM-85 boosted IRF7 gene networks in the lung but did not alter baseline gene expression or cellular influx. Distinct IRF7-associated asthma risk immunophenotypes have dichotomous responses to virus/allergen coexposure and respond differentially to OM-85 pretreatment. Extrapolating to humans, our findings suggest that the beneficial effects OM-85 pretreatment may preferentially target those in high-risk subgroups.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Infecções por Cardiovirus/imunologia , Extratos Celulares/farmacologia , Fator Regulador 7 de Interferon/imunologia , Animais , Asma/etiologia , Imunofenotipagem , Masculino , Ratos
11.
EMBO J ; 40(15): e107176, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34124789

RESUMO

Dendritic cell (DC) activation by viral RNA sensors such as TLR3 and MDA-5 is critical for initiating antiviral immunity. Optimal DC activation is promoted by type I interferon (IFN) signaling which is believed to occur in either autocrine or paracrine fashion. Here, we show that neither autocrine nor paracrine type I IFN signaling can fully account for DC activation by poly(I:C) in vitro and in vivo. By controlling the density of type I IFN-producing cells in vivo, we establish that instead a quorum of type I IFN-producing cells is required for optimal DC activation and that this process proceeds at the level of an entire lymph node. This collective behavior, governed by type I IFN diffusion, is favored by the requirement for prolonged cytokine exposure to achieve DC activation. Furthermore, collective DC activation was found essential for the development of innate and adaptive immunity in lymph nodes. Our results establish how collective rather than cell-autonomous processes can govern the initiation of immune responses.


Assuntos
Células Dendríticas/fisiologia , Interferon Tipo I/metabolismo , Linfonodos/citologia , Percepção de Quorum/fisiologia , Animais , Linfócitos T CD8-Positivos/fisiologia , Contagem de Células , Células Dendríticas/efeitos dos fármacos , Imunidade Inata/imunologia , Inflamação/patologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/farmacologia , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Poli I-C/farmacologia
12.
J Immunol ; 206(12): 2909-2923, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127522

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic porcine enteropathogenic coronavirus causing severe enteritis and lethal watery diarrhea in piglets. PEDV infection suppresses the synthesis of type I IFN, and multiple viral proteins of PEDV have been shown to target the adaptors of innate immune pathways to inhibit type I IFN production. In this study, we identified PEDV membrane (M) protein as a new antagonist of type I IFN production in both human embryonic kidney HEK293T cells and porcine kidney PK-15 cells and determined the antagonistic mechanism used by M protein to target IFN regulatory factor 7 (IRF7), an important regulator of type I IFN production. IRF7 is phosphorylated and activated by TBK1 and IKKε in response to viral infection. We found that PEDV M protein interacted with the inhibitory domain of IRF7 and significantly suppressed TBK1/IKKε-induced IRF7 phosphorylation and dimerization of IRF7, leading to the decreased expression of type I IFN, although it did not affect the interaction between TBK1/IKKε and IRF7. As expected, overexpression of M protein significantly increased PEDV replication in porcine cells. The M proteins of both epidemic PEDV strains and vaccine strain showed similar antagonistic effect on type I IFN production, and the 1-55 region of M protein was essential for disruption of IRF7 function by interacting with IRF7. Taken together, our data identified a new, to our knowledge, IFN antagonist of PEDV, as well as a novel, to our knowledge, antagonistic mechanism evolved by PEDV to inhibit type I IFN production.


Assuntos
Infecções por Coronavirus/imunologia , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/biossíntese , Proteínas de Membrana/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Doenças dos Suínos/imunologia , Animais , Linhagem Celular , Humanos , Interferon Tipo I/imunologia , Suínos
13.
Mol Immunol ; 134: 183-191, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812250

RESUMO

Interferon regulatory factor 7 (IRF7) is a crucial regulator of type I interferons (IFNs) against pathogen infections and plays a significant role in the endosomal Toll-like receptor signaling (namely, TLR7 and TLR9) in plasmacytoid dendritic cells (pDCs). In this study, we identify MEKK3, one of the MAP3K kinase, as a potent stimulator of IRF7 upon cellular activation of the TLR7/9 signaling pathways to induce various type I IFNs. The knockdown of MEKK3 in vivo substantially impairs type I IFN induction and increases susceptibility to HSV-1 infection in mice. Overexpression of MEKK3 significantly activates IRF7 to trigger strong induction of type I IFNs, while cells deficient in MEKK3 expression show abrogated innate immune responses to TLR7/TLR9 ligands stimulation. We confirmed that the IFNs' induction is due to a MEKK3 and IRF7 interaction; it leads to the phosphorylation of IRF7 at multiple sites. Moreover, endogenous MEKK3 can bind and phosphorylate IRF7 after TLR9 activation by its specific ligand CpG DNA. It is the first time to report the role of MEKK3 on type I IFN, which indicates crosstalk between MAP3K activation and type I IFNs' induction in the endosomal Toll-like receptor pathways.


Assuntos
Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/biossíntese , MAP Quinase Quinase Quinase 3/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Fator Regulador 7 de Interferon/imunologia , Interferon Tipo I/imunologia , MAP Quinase Quinase Quinase 3/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia
14.
Am J Respir Cell Mol Biol ; 65(1): 30-40, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33761305

RESUMO

Acute respiratory infections caused by influenza A virus (IAV) spread widely and lead to substantial morbidity and mortality. Host cell induction of type I interferon (IFN-I) plays a fundamental role in eliminating the virus during the innate antiviral response. The potential role of N-myc and STAT interactor (NMI) and its underlying mechanisms of action during IAV infection, however, remain elusive. In this study, we found that the expression of NMI increased after IAV infection. Nmi-knockout mice infected with IAV displayed increased survival rate, decreased weight loss, lower viral replication, and attenuated lung inflammation when compared with wild-type mice. Deficiency of NMI promoted the production of IFN-I and IFN-stimulated genes in vivo and in vitro. Reduced levels of NMI also resulted in an increase of the expression of IFN regulator factor (IRF) 7. Further studies have revealed that NMI could interact with IRF7 after IAV infection, and this interaction involved its NID1 and NID2 domain. In addition, NMI facilitated ubiquitination and proteasome-dependent degradation of IRF7 through recruitment of the E3 ubiquitin ligase TRIM21 (tripartite motif-containing 21) to limit the IAV-triggered innate immunity. Our findings reveal a clearer understanding of the role of NMI in regulating the host innate antiviral response and provide a potential therapeutic target for controlling IAV infection.


Assuntos
Imunidade Inata , Vírus da Influenza A/imunologia , Fator Regulador 7 de Interferon/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteólise , Ribonucleoproteínas/imunologia , Células A549 , Animais , Cães , Células HEK293 , Humanos , Fator Regulador 7 de Interferon/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Ribonucleoproteínas/genética
15.
Dev Comp Immunol ; 119: 104026, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33497733

RESUMO

In order to breed new birds with strong disease resistance, it is necessary to first understand the mechanism of avian antiviral response. Interferon regulatory factor 7 (IRF7) is not only a member of type I interferons (IFNs) regulatory factor (IRFs) family, but also a major regulator of the IFN response in mammals. However, whether IRF7 is involved in the host innate immune response remains unclear in poultry, due to the absence of IRF3. Here, we first observed by HE stains that with the increase of the time of ALV-J challenge, the thymus was obviously loose and swollen, the arrangement of liver cell was disordered, and the bursa of fabricius formed vacuolated. Real-time PCR detection showed that the expression level of IRF7 gene and related immune genes in ALV-J group was significantly higher than that in control group (P < 0.05). To further study the role of chicken IRF7 during avian leukosis virus subgroup J (ALV-J) infection, we constructed an induced IRF7 overexpression and interfered chicken embryo fibroblasts (CEFs) cell and performed in vitro infection using low pathogenic ALV-J and virus analog poly(I:C). In ALV-J and poly(I:C) stimulated CEFs cells, the expression level of STAT1, IFN-α, IFN-ß, TLR3 and TLR7 were increased after IRF7 overexpressed, while the results were just the opposite after IRF7 interfered, which indicating that IRF7 may be associated with Toll-like receptor signaling pathway and JAK-STAT signaling pathway. These findings suggest that chicken IRF7 is an important regulator of IFN and is involved in chicken anti-ALV-J innate immunity.


Assuntos
Vírus da Leucose Aviária/imunologia , Proteínas Aviárias/imunologia , Galinhas/imunologia , Imunidade Inata/imunologia , Fator Regulador 7 de Interferon/imunologia , Interferon-alfa/imunologia , Transdução de Sinais/imunologia , Animais , Vírus da Leucose Aviária/fisiologia , Proteínas Aviárias/genética , Células Cultivadas , Embrião de Galinha , Galinhas/genética , Galinhas/virologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/virologia , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Fator Regulador 7 de Interferon/genética , Interferon-alfa/metabolismo , Poli I-C/farmacologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Transdução de Sinais/genética
16.
Dev Comp Immunol ; 117: 103959, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33316357

RESUMO

Vibrio harveyi is regarded as serious pathogen for marine fishes. However, host defense mechanisms involved in V. harveyi infection remain incompletely defined. The transcription factor IFN regulatory factor 7 (IRF7) is largely associated with host defense against viral infections, and the role of IRF7 during V. harveyi infection in fish has not been well illuminated previously. In this study, IRF7 from golden pompano (Trachinotus ovatus) was characterized (TroIRF7). The TroIRF7 gene is 1323 bp, which encodes 440 amino acid residues. Multiple amino acid alignments of TroIRF7 shows 30.37%-80.18% identity with other fish IRF7s, including Epinephelus coioides (80.18%), Larimichthys crocea (79.72%), Collichthys lucidus (79.26%), Miichthys miiuy (79.26%), Channa argus (78.77%), Cynoglossus semilaevis (72.67%), and Gadus morhua (65.23%). Like other IRF7s, TroIRF7 also contains 3 conserved domains: an N-terminal DNA-binding domain (DBD), an IRF association domain (IAD), and a C-terminal serine-rich domain (SRD). In the DBD, 4-5 conserved tryptophans were observed, which is a characteristic unique to all fish IRF7 members. TroIRF7 was constitutively expressed, with high levels in gill, head kidney, spleen, skin, and intestine. V. harveyi infection-induced TroIRF7 transcripts significantly up-regulation and translocation to the nucleus. TroIRF7 overexpression promote the fish to inhibit the replication of V. harveyi. And TroIRF7 knockdown led to decreased bacterial clearance in fish tissue. Furthermore, over-expression of TroIRF7 resulted in an increased production of interferon a3 and IFN signaling molecule in the spleen, suggesting that V. harveyi activates the IRF7- IFN pathway. These results suggest that TroIRF7 is an important component of immune responses against V. harveyi infection.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Peixes/imunologia , Fator Regulador 7 de Interferon/imunologia , Vibrioses/imunologia , Vibrio/imunologia , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/microbiologia , Regulação da Expressão Gênica/imunologia , Brânquias/imunologia , Brânquias/metabolismo , Brânquias/microbiologia , Rim Cefálico/imunologia , Rim Cefálico/metabolismo , Rim Cefálico/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade/genética , Imunidade/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/imunologia , Baço/metabolismo , Baço/microbiologia , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/microbiologia
17.
Cell Rep ; 33(5): 108345, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147460

RESUMO

Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.


Assuntos
Quirópteros/imunologia , Regulação da Expressão Gênica/imunologia , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 7 de Interferon/imunologia , Viroses/imunologia , Animais , Herpesvirus Humano 1/imunologia , Vírus da Influenza A/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Orthoreovirus/imunologia
18.
Mol Immunol ; 128: 33-40, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053462

RESUMO

The bovine viral diarrhea virus (BVDV-1) is a pathogen with the capacity to modulate the interferon type I system. To further investigate the effects of BVDV-1 on the production of the immune response, the Madin-Darby bovine kidney cell line was infected with the cytopathic CH001 field isolate of BVDV-1, and the IFNbeta expression profiles were analyzed. The results showed that cpBVDV-1 was able to induce the production of IFNbeta in a way similar to polyinosinic-polycytidylic acid, but with less intensity. Interestingly, all cpBVDV-1 activities were blocked by pharmacological inhibitors of the IRF-1, IRF-7, and NF-κB signaling pathway, and the level of IFNbeta decreased at the level of transcript and protein. These results, together with in silico analyses showing the presence of several regulatory consensus target motifs, suggest that cpBVDV-1 regulates IFNbeta expression in bovines through the activation of several key transcription factors. Collectively, the results suggest that during cpBVDV-1 infection, cross talk is evident between various signaling pathways involved in transcriptional activation of IFNbeta in cattle.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/genética , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Fator Regulador 1 de Interferon/genética , Fator Regulador 7 de Interferon/genética , NF-kappa B/genética , Animais , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Bovinos , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/virologia , Expressão Gênica/imunologia , Regulação da Expressão Gênica/imunologia , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 7 de Interferon/imunologia , NF-kappa B/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
19.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967960

RESUMO

Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with a variety of malignancies, including lymphomas. Interferon regulatory factor 7 (IRF-7) is an innate immune transcription factor that restricts acute replication of diverse viruses, including murine gammaherpesvirus 68 (MHV68). Importantly, very little is known about the role of IRF-7 during chronic virus infections. In this study, we demonstrate that IRF-7 attenuates chronic infection by restricting establishment of gammaherpesvirus latency in the peritoneal cavity and, to a lesser extent, viral reactivation in the spleen. Despite the classical role of IRF-7 as a stimulator of type I interferon (IFN) transcription, there were no global effects on the expression of IFN-induced genes (ISGs) in the absence of IRF-7, with only a few ISGs showing attenuated expression in IRF-7-deficient peritoneal cells. Further, IRF-7 expression was dispensable for the induction of a virus-specific CD8 T cell response. In contrast, IRF-7 expression restricted latent gammaherpesvirus infection in the peritoneal cavity under conditions where the viral latent reservoir is predominantly hosted by peritoneal B cells. This report is the first demonstration of the antiviral role of IRF-7 during the chronic stage of gammaherpesvirus infection.IMPORTANCE The innate immune system of the host is critical for the restriction of acute viral infections. In contrast, the role of the innate immune network during chronic herpesvirus infection remains poorly defined. Interferon regulatory factor 7 (IRF-7) is a transcription factor with many target genes, including type I interferons (IFNs). In this study, we show that the antiviral role of IRF-7 continues into the chronic phase of gammaherpesvirus infection, wherein IRF-7 restricts the establishment of viral latency and viral reactivation. This study is, to our knowledge, the first to define the role of IRF-7 in chronic virus infection.


Assuntos
Gammaherpesvirinae/imunologia , Infecções por Herpesviridae/imunologia , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/imunologia , Fator Regulador 7 de Interferon/metabolismo , Adenosina Desaminase , Animais , Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Fator Regulador 7 de Interferon/efeitos dos fármacos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/virologia , Latência Viral
20.
Vet Microbiol ; 250: 108853, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32992291

RESUMO

Coronaviruses (CoVs) is showing obvious interspecies transmission, such as the SARS-CoV, MERS-CoV and SARS-CoV-2. Here, the emerging porcine deltacoronavirus (PDCoV) strain, isolated from Shanghai, China, broadly infects porcine, human and chicken cells in vitro. Previously studies by our group and others have confirmed that PDCoV nucleocapsid (N) protein performs an important role in antagonizing retinoic acid-induced gene I-like receptor (RLR) activation. However, the mechanism of PDCoV N protein suppressing porcine type I IFN production remains unclear, especially the downstream of porcine RLR signaling pathway. In the present study, porcine IRF7 (poIRF7) was identified as the interaction protein of PDCoV N protein through LC-MS/MS. The poIRF7 (268-487aa) was the key region of binding PDCoV N protein. Although IRF7 is a conserved functional protein in species, the PDCoV N protein has been confirmed to interact with only poIRF7 and significantly decrease poIRF7-induced type I IFN production, but not human or chicken IRF7. Furthermore, PDCoV N protein can promote poIRF7 degradation via the ubiquitin-proteasome pathway, which directly increased the K6, K11, and K29-linked polyubiquitination of poIRF7. Lysine 359 of poIRF7 was a key site in PDCoV N protein inducing poIRF7 degradation. Taken together, our results reveal a novel mechanism that PDCoV N protein could species-specifically interact with poIRF7 and then promote its degradation to suppress porcine type I IFN production. The novel findings provide a new insight into PDCoV and other zoonotic coronavirus evading the innate immune response of different species.


Assuntos
Coronavirus/química , Fator Regulador 7 de Interferon/imunologia , Interferons/metabolismo , Proteínas do Nucleocapsídeo/imunologia , Animais , Western Blotting , Linhagem Celular , Galinhas , China , Cromatografia Líquida , Coronavirus/classificação , Técnica Indireta de Fluorescência para Anticorpo , Células HEK293 , Humanos , Imunoprecipitação , Interferons/imunologia , Células LLC-PK1 , Filogenia , Plasmídeos , Complexo de Endopeptidases do Proteassoma/metabolismo , Especificidade da Espécie , Suínos , Espectrometria de Massas em Tandem , Ubiquitina/metabolismo , Sequenciamento Completo do Genoma/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...