Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50.681
Filtrar
1.
Sci Rep ; 14(1): 12779, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834729

RESUMO

To evaluate the safety and efficacy of combining EW-7197 with irreversible electroporation (IRE) for improving wound healing, 16 male Sprague-Dawley rats were randomly divided into four groups of four rats each after dorsal excisional wound induction: sham control group; oral administration of EW-7197 for 7 days group; one-time application of IRE group; and one-time application of IRE followed by oral administration of EW-7197 for 7 days group. Measurement of wound closure rate, laser Doppler scanning, histological staining (hematoxylin and eosin and Masson's trichrome), and immunohistochemical analyses (Ki-67 and α-SMA) were performed to evaluate the efficacy. Fifteen of 16 rats survived throughout the study. Statistically significant differences in wound closure rates were observed between the combination therapy group and the other three groups (all P < 0.05). The degrees of inflammation, α-SMA, and Ki-67 were reduced in the EW-7197 and IRE monotherapy groups; however, not statistically significant. The fibrosis score exhibited significant reduction in all three treatment groups, with the most prominent being in the combination therapy group. This study concludes that oral administration of EW-7197 combined with IRE demonstrated effectiveness in improving skin wound in a rat excisional model and may serve as a potential alternative for promoting healing outcomes.


Assuntos
Eletroporação , Ratos Sprague-Dawley , Pele , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Masculino , Ratos , Eletroporação/métodos , Pele/metabolismo , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Modelos Animais de Doenças , Terapia Combinada/métodos
2.
Nat Commun ; 15(1): 4792, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839760

RESUMO

Innate lymphoid cell precursors (ILCPs) develop into distinct subsets of innate lymphoid cells (ILCs) with specific functions. The epigenetic program underlying the differentiation of ILCPs into ILC subsets remains poorly understood. Here, we reveal the genome-wide distribution and dynamics of the DNA methylation and hydroxymethylation in ILC subsets and their respective precursors. Additionally, we find that the DNA hydroxymethyltransferase TET1 suppresses ILC1 but not ILC2 or ILC3 differentiation. TET1 deficiency promotes ILC1 differentiation by inhibiting TGF-ß signaling. Throughout ILCP differentiation at postnatal stage, gut microbiota contributes to the downregulation of TET1 level. Microbiota decreases the level of cholic acid in the gut, impairs TET1 expression and suppresses DNA hydroxymethylation, ultimately resulting in an expansion of ILC1s. In adult mice, TET1 suppresses the hyperactivation of ILC1s to maintain intestinal homeostasis. Our findings provide insights into the microbiota-mediated epigenetic programming of ILCs, which links microbiota-DNA methylation crosstalk to ILC differentiation.


Assuntos
Diferenciação Celular , Metilação de DNA , Proteínas de Ligação a DNA , Imunidade Inata , Linfócitos , Proteínas Proto-Oncogênicas , Animais , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Linfócitos/metabolismo , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal , Epigênese Genética , Camundongos Knockout , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais
3.
Sci Rep ; 14(1): 12744, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830931

RESUMO

Transforming growth factor ß (TGF-ß) is implicated in both mesothelial-to-mesenchymal transition (MMT) and cellular senescence of human peritoneal mesothelial cells (HPMCs). We previously showed that senescent HPMCs could spontaneously acquire some phenotypic features of MMT, which in young HPMCs were induced by TGF-ß. Here, we used electron microscopy, as well as global gene and protein profiling to assess in detail how exposure to TGF-ß impacts on young and senescent HPMCs in vitro. We found that TGF-ß induced structural changes consistent with MMT in young, but not in senescent HPMCs. Of all genes and proteins identified reliably in HPMCs across all treatments and states, 4,656 targets represented overlapping genes and proteins. Following exposure to TGF-ß, 137 proteins and 46 transcripts were significantly changed in young cells, compared to 225 proteins and only 2 transcripts in senescent cells. Identified differences between young and senescent HPMCs were related predominantly to wound healing, integrin-mediated signalling, production of proteases and extracellular matrix components, and cytoskeleton structure. Thus, the response of senescent HPMCs to TGF-ß differs or is less pronounced compared to young cells. As a result, the character and magnitude of the postulated contribution of HPMCs to TGF-ß-induced peritoneal remodelling may change with cell senescence.


Assuntos
Senescência Celular , Células Epiteliais , Peritônio , Fator de Crescimento Transformador beta , Humanos , Senescência Celular/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Peritônio/citologia , Peritônio/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Cultivadas , Epitélio/metabolismo , Epitélio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Perfilação da Expressão Gênica
4.
Arch Dermatol Res ; 316(7): 338, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847916

RESUMO

Diabetic foot ulcer (DFU) is a predominant complication of diabetes mellitus with poor prognosis accompanied by high amputation and mortality rates. Dang-Gui-Si-Ni decoction (DSD), as a classic formula with a long history in China, has been found to improve DFU symptoms. However, mechanism of DSD for DFU therapy remains unclear with no systematic elaboration. In vivo, following establishment of DFU rat model, DSD intervention with low, medium and high doses was done, with Metformin (DM) as a positive control group. With wound healing detection, pathological changes by HE staining, inflammatory factor expression by ELISA and qRT-PCR, oxidative stress levels by ELISA, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were performed. In vitro, intervention with LY2109761 (TGF-ß pathway inhibitor) based on DSD treatment in human dermal fibroblast-adult (HDF-a) cells was made. Cell viability by CCK8, migration ability by cell scratch, apoptosis by flow cytometry, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were measured. DFU rats exhibited elevated AGEs/RAGE expression, whereas decreased TGF-ß1 and p-Smad3/Smad3 protein expression, accompanied by higher IL-1ß, IL-6, TNF-α levels, and oxidative stress. DSD intervention reversed above effects. Glucose induction caused lower cell viability, migration, TGF-ß1 and p-Smad3/Smad3 protein expression, with increased apoptosis and AGEs/RAGE expression in HDF-a cells. These effects were reversed after DSD intervention, and further LY2109761 intervention inhibited DSD effects in cells. DSD intervention may facilitate wound healing in DFU by regulating expression of AGEs/RAGE/TGF-ß/Smad2/3, providing scientific experimental evidence for DSD clinical application for DFU therapy.


Assuntos
Pé Diabético , Medicamentos de Ervas Chinesas , Produtos Finais de Glicação Avançada , Proteína Smad2 , Proteína Smad3 , Cicatrização , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Pé Diabético/patologia , Animais , Cicatrização/efeitos dos fármacos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Proteína Smad2/metabolismo , Humanos , Proteína Smad3/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
5.
PLoS One ; 19(5): e0302786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722973

RESUMO

A role for exportin 4 (XPO4) in the pathogenesis of liver fibrosis was recently identified. We sought to determine changes in hepatic XPO4 promoter methylation levels during liver fibrosis. The quantitative real-time RT-PCR technique was used to quantify the mRNA level of XPO4. Additionally, pyrosequencing was utilized to assess the promoter methylation status of XPO4. The methylation rate of the XPO4 promoter was significantly increased with fibrosis in human and mouse models, while XPO4 mRNA expression negatively correlated with methylation of its promoter. DNA methyltransferases (DNMTs) levels (enzymes that drive DNA methylation) were upregulated in patients with liver fibrosis compared to healthy controls and in hepatic stellate cells upon transforming growth factor beta (TGFß) stimulation. The DNA methylation inhibitor 5-Aza or specific siRNAs for these DNMTs led to restoration of XPO4 expression. The process of DNA methylation plays a crucial role in the repression of XPO4 transcription in the context of liver fibrosis development.


Assuntos
Metilação de DNA , Carioferinas , Cirrose Hepática , Regiões Promotoras Genéticas , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Animais , Camundongos , Masculino , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL
6.
Med Oncol ; 41(6): 137, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705933

RESUMO

Metastasis poses a significant challenge in combating tumors. Even in papillary thyroid cancer (PTC), which typically exhibits a favorable prognosis, high recurrence rates are attributed to metastasis. Cytoplasmic linker protein 170 (CLIP170) functions as a classical microtubule plus-end tracking protein (+TIP) and has shown close association with cell migration. Nevertheless, the specific impact of CLIP170 on PTC cells remains to be elucidated. Our analysis of the GEO and TCGA databases unveiled an association between CLIP170 and the progression of PTC. To explore the impact of CLIP170 on PTC cells, we conducted various assays. We evaluated its effects through CCK-8, wound healing assay, and transwell assay after knocking down CLIP170. Additionally, the influence of CLIP170 on the cellular actin structure was examined via immunofluorescence; we further investigated the molecular expressions of epithelial-mesenchymal transition (EMT) and the transforming growth factor-ß (TGF-ß) signaling pathways through Western blotting and RT-qPCR. These findings were substantiated through an in vivo nude mouse model of lung metastasis. We observed a decreased expression of CLIP170 in PTC in contrast to normal thyroid tissue. Functionally, the knockdown of CLIP170 (CLIP170KD) notably enhanced the metastatic potential and EMT of PTC cells, both in vitro and in vivo. Mechanistically, CLIP170KD triggered the activation of the TGF-ß pathway, subsequently promoting tumor cell migration, invasion, and EMT. Remarkably, the TGF-ß inhibitor LY2157299 effectively countered TGF-ß activity and significantly reversed tumor metastasis and EMT induced by CLIP170 knockdown. In summary, these findings collectively propose CLIP170 as a promising therapeutic target to mitigate metastatic tendencies in PTC.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Associadas aos Microtúbulos , Proteínas de Neoplasias , Transdução de Sinais , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Fator de Crescimento Transformador beta , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/genética , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Fator de Crescimento Transformador beta/metabolismo
7.
Commun Biol ; 7(1): 544, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714800

RESUMO

Numerous myofibroblasts are arisen from endothelial cells (ECs) through endothelial to mesenchymal transition (EndMT) triggered by TGF-ß. However, the mechanism of ECs transforms to a different subtype, or whether there exists an intermediate state of ECs remains unclear. In present study, we demonstrate Midkine (MDK) mainly expressed by CD31 + ACTA2+ECs going through partial EndMT contribute greatly to myofibroblasts by spatial and single-cell transcriptomics. MDK is induced in TGF-ß treated ECs, which upregulates C/EBPß and increases EndMT genes, and these effects could be reversed by siMDK. Mechanistically, MDK promotes the binding ability of C/EBPß with ACTA2 promoter by stabilizing the C/EBPß protein. In vivo, knockout of Mdk or conditional knockout of Mdk in ECs reduces EndMT markers and significantly reverses fibrogenesis. In conclusion, our study provides a mechanistic link between the induction of EndMT by TGF-ß and MDK, which suggests that blocking MDK provides potential therapeutic strategies for renal fibrosis.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Fibrose , Midkina , Midkina/metabolismo , Midkina/genética , Animais , Camundongos , Humanos , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Transição Epitelial-Mesenquimal , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Rim/metabolismo , Rim/patologia , Camundongos Knockout , Transição Endotélio-Mesênquima
8.
Genome Biol ; 25(1): 117, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715110

RESUMO

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Remodelação Vascular , Pré-Eclâmpsia/genética , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Remodelação Vascular/genética , Placenta/metabolismo , Metilação de DNA , Epigênese Genética , Células Endoteliais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Impressão Genômica , Fator de Crescimento Transformador beta/metabolismo , Retardo do Crescimento Fetal/genética , Placentação/genética , Proteínas de Ligação a RNA , Proteínas Reguladoras de Apoptose
9.
10.
J Neuroinflammation ; 21(1): 144, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822334

RESUMO

Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-ß or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-ß and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-ß-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-ß. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.


Assuntos
Antígeno CD11b , Encefalomielite Autoimune Experimental , Interferon gama , Camundongos Endogâmicos C57BL , Células Mieloides , Baço , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos , Interferon gama/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Baço/imunologia , Antígeno CD11b/metabolismo , Feminino , Glicoproteína Mielina-Oligodendrócito/toxicidade , Glicoproteína Mielina-Oligodendrócito/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Fatores de Transcrição Forkhead/metabolismo , Modelos Animais de Doenças
11.
Mol Biol Rep ; 51(1): 658, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748314

RESUMO

BACKGROUND: The formation of chronic wounds accounts for considerable costs in health care systems. Despite the several benefits of decellularized small intestinal submucosa (SIS) as an appropriate scaffold for different tissue regeneration, it has shortcomings such as lack of antibacterial features and inappropriate mechanical properties for skin tissue regeneration. We aimed to examine the efficacy and safety of decellularized SIS scaffold enhanced with cellulose acetate (CA) and silver (Ag) nanoparticles (NPs) for healing full-thickness wounds. METHODS AND RESULTS: The scaffolds were prepared by decellularizing bovine SIS and electrospinning CA/Ag nanoparticles and characterized using a transmission electron microscope (TEM), scanning electron microscope (SEM), tensile testing, and X-ray diffraction. In vivo evaluations were performed using full-thickness excisions covered with sterile gauze as the control group, SIS, SIS/CA, and SIS/CA/Ag scaffolds on the dorsum of twenty male Wistar rats divided into four groups randomly with 21-days follow-up. All in vivo specimens underwent Masson's trichrome (MT) staining for evaluation of collagen deposition, transforming growth factor-ß (TGF-ß) immunohistochemistry (IHC), and Haematoxylin Eosin (H&E) staining. The IHC and MT data were analyzed with the ImageJ tool by measuring the stained area. The TEM results revealed that Ag nanoparticles are successfully incorporated into CA nanofibers. Assessment of scaffolds hydrophilicity demonstrated that the contact angle of SIS/CA/Ag scaffold was the lowest. The in vivo results indicated that the SIS/CA/Ag scaffold had the most significant wound closure. H&E staining of the in vivo specimens showed the formation of epidermal layers in the SIS/CA/Ag group on day 21. The percentage of the stained area of MT and TGF-ß IHC staining's was highest in the SIS/CA/Ag group. CONCLUSION: The decellularized SIS/CA/Ag scaffolds provided the most significant wound closure compared to other groups and caused the formation of epidermal layers and skin appendages. Additionally, the collagen deposition and expression of TGF-ß increased significantly in SIS/CA/Ag group.


Assuntos
Celulose , Mucosa Intestinal , Intestino Delgado , Nanopartículas Metálicas , Nanofibras , Ratos Wistar , Prata , Alicerces Teciduais , Cicatrização , Animais , Prata/química , Celulose/análogos & derivados , Celulose/química , Cicatrização/efeitos dos fármacos , Nanopartículas Metálicas/química , Ratos , Nanofibras/química , Alicerces Teciduais/química , Mucosa Intestinal/metabolismo , Masculino , Intestino Delgado/metabolismo , Bovinos , Fator de Crescimento Transformador beta/metabolismo , Engenharia Tecidual/métodos , Colágeno
12.
Pak J Pharm Sci ; 37(1): 33-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741398

RESUMO

The objective of this research is to assess how salvianolate impacts inflammation and oxidative stress in a laboratory setting, as well as to investigate the underlying mechanisms. HK-2 cells were subjected to different treatments, including normal glucose, mannitol, high glucose and high glucose plus salvianolate. Cell proliferation, death, MDA levels, IL-1ß, IL-6, TNF-α, MCP-1 concentrations, ROS levels, MMP, MPTP and ATP levels were assessed using various kits. The protein expressions of NOX4, TGF-ß1, P-Smad2, P-Smad3, Smad4 and Smad7 were ascertained through western blot analysis. Our results indicated salvianolate could reduce the release of IL-1ß, IL-6, TNF-α, as well as MCP-1, alleviate the levels of oxidative stress markers NOX4 and MDA, and improve mitochondrial function by increasing MMP and ATP levels while reducing ROS and MPTP opening. Furthermore, salvianolate inhibited the TGF-ß1/Smad2, Smad3 signaling pathway, suppressed Smad4 expression and increased Smad7 expression. Salvianolate seems to mitigate inflammation and oxidative stress through a variety of mechanisms. These discoveries offer valuable understanding into the possible mechanisms by which salvianolate may be employed in the treatment of diabetic nephropathy.


Assuntos
Glucose , Inflamação , Estresse Oxidativo , Transdução de Sinais , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glucose/metabolismo , Humanos , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteínas Smad/metabolismo , Extratos Vegetais/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos
13.
Bull Exp Biol Med ; 176(5): 603-606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38730107

RESUMO

Polymorphism of genes of transforming growth factor TGFB and its receptors (TGFBRI, TGFBRII, and TGFBRIIII) in patients with primary open-angle glaucoma was analyzed. The frequency of the TGFBRII CC genotype in patients is increased relative to the control group (OR=6.10, p=0.0028). Heterozygosity in this polymorphic position is reduced (OR=0.18, p=0.0052). As the effects of TGF-ß is mediated through its receptors, we analyzed complex of polymorphic variants of the studied loci in the genome of patients. Two protective complexes consisting only of receptor genes were identified: TGFBRI TT:TGFBRII CG (OR=0.10, p=0.02) and TGFBRII CG:TGFBRIII CG (OR=0.09, p=0.01). The study showed an association of TGFBRII polymorphism with primary open-angle glaucoma and the need to study functionally related genes in the development of the disease, which should contribute to its early diagnosis and prevention.


Assuntos
Glaucoma de Ângulo Aberto , Humanos , Glaucoma de Ângulo Aberto/genética , Feminino , Masculino , Pessoa de Meia-Idade , Sibéria , Idoso , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Frequência do Gene/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Estudos de Casos e Controles , Genótipo , Fator de Crescimento Transformador beta/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Polimorfismo Genético/genética
14.
NPJ Syst Biol Appl ; 10(1): 53, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760412

RESUMO

Breast cancer is one of the prevailing cancers globally, with a high mortality rate. Metastatic breast cancer (MBC) is an advanced stage of cancer, characterised by a highly nonlinear, heterogeneous process involving numerous singling pathways and regulatory interactions. Epithelial-mesenchymal transition (EMT) emerges as a key mechanism exploited by cancer cells. Transforming Growth Factor-ß (TGFß)-dependent signalling is attributed to promote EMT in advanced stages of breast cancer. A comprehensive regulatory map of TGFß induced EMT was developed through an extensive literature survey. The network assembled comprises of 312 distinct species (proteins, genes, RNAs, complexes), and 426 reactions (state transitions, nuclear translocations, complex associations, and dissociations). The map was developed by following Systems Biology Graphical Notation (SBGN) using Cell Designer and made publicly available using MINERVA ( http://35.174.227.105:8080/minerva/?id=Metastatic_Breast_Cancer_1 ). While the complete molecular mechanism of MBC is still not known, the map captures the elaborate signalling interplay of TGFß induced EMT-promoting MBC. Subsequently, the disease map assembled was translated into a Boolean model utilising CaSQ and analysed using Cell Collective. Simulations of these have captured the known experimental outcomes of TGFß induced EMT in MBC. Hub regulators of the assembled map were identified, and their transcriptome-based analysis confirmed their role in cancer metastasis. Elaborate analysis of this map may help in gaining additional insights into the development and progression of metastatic breast cancer.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Transdução de Sinais , Fator de Crescimento Transformador beta , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Feminino , Transdução de Sinais/genética , Biologia de Sistemas/métodos , Redes Reguladoras de Genes/genética , Regulação Neoplásica da Expressão Gênica/genética
15.
BMC Gastroenterol ; 24(1): 163, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745150

RESUMO

BACKGROUND: The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS: We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-ß were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS: The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-ß. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS: The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.


Assuntos
Antígeno CD11b , Cirrose Hepática , Regeneração Hepática , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides , Animais , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Camundongos , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Regeneração Hepática/fisiologia , Antígeno CD11b/metabolismo , Masculino , Modelos Animais de Doenças , Fígado/patologia , Fígado/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Concanavalina A , Ligadura , Lipopolissacarídeos , Interleucina-10/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Células Estreladas do Fígado/metabolismo , Técnicas de Cocultura , Hepatócitos/metabolismo , Hepatócitos/patologia , Ductos Biliares
16.
J Clin Invest ; 134(10)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38747285

RESUMO

Transforming growth factor ß (TGF-ß) signaling is a core pathway of fibrosis, but the molecular regulation of the activation of latent TGF-ß remains incompletely understood. Here, we demonstrate a crucial role of WNT5A/JNK/ROCK signaling that rapidly coordinates the activation of latent TGF-ß in fibrotic diseases. WNT5A was identified as a predominant noncanonical WNT ligand in fibrotic diseases such as systemic sclerosis, sclerodermatous chronic graft-versus-host disease, and idiopathic pulmonary fibrosis, stimulating fibroblast-to-myofibroblast transition and tissue fibrosis by activation of latent TGF-ß. The activation of latent TGF-ß requires rapid JNK- and ROCK-dependent cytoskeletal rearrangements and integrin αV (ITGAV). Conditional ablation of WNT5A or its downstream targets prevented activation of latent TGF-ß, rebalanced TGF-ß signaling, and ameliorated experimental fibrosis. We thus uncovered what we believe to be a novel mechanism for the aberrant activation of latent TGF-ß in fibrotic diseases and provided evidence for targeting WNT5A/JNK/ROCK signaling in fibrotic diseases as a new therapeutic approach.


Assuntos
Fibroblastos , Fibrose , Fator de Crescimento Transformador beta , Proteína Wnt-5a , Quinases Associadas a rho , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Animais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Camundongos , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/genética , Camundongos Knockout , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Sistema de Sinalização das MAP Quinases , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Transdução de Sinais , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/genética
17.
PLoS One ; 19(5): e0302662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748716

RESUMO

Kaab Dum, a prominent indigenous rice variety cultivated in the Pak Phanang Basin of Nakhon Si Thammarat, Thailand, is the focus of our study. We investigate the therapeutic potential of indigenous Kaab Dum rice extract in the context of chronic wounds. Our research encompasses an examination of the nutritional compositions and chemical profiles of Kaab Dum rice extract. Additionally, we assess how the extract affects chronic wounds in TGF-ß-induced HaCaT cells. Our evaluation methods include the detection of cellular oxidative stress, the examination of endoplasmic reticulum (ER) stress, wound healing assays, analysis of cell cycle arrest and the study of cellular senescence through senescence-associated ß-galactosidase (SA-ß-gal) staining. Our research findings demonstrate that TGF-ß induces oxidative stress in HaCaT cells, which subsequently triggers ER stress, confirmed by the expression of the PERK protein. This ER stress results in cell cycle arrest in HaCaT cells, characterized by an increase in p21 protein, a cyclin-dependent kinase inhibitor (CDKI). Ultimately, this leads to cellular senescence, as confirmed by SA-ß-gal staining. Importantly, our study reveals the effectiveness of Kaab Dum rice extract in promoting wound healing in the chronic wound model. The extract reduces ER stress and senescent cells. These beneficial effects are potentially linked to the antioxidant and anti-inflammatory properties of the rice extract. The findings of our study have the potential to make significant contributions to the development of enhanced products for both the prevention and treatment of chronic wounds.


Assuntos
Senescência Celular , Estresse do Retículo Endoplasmático , Queratinócitos , Oryza , Extratos Vegetais , Cicatrização , Humanos , Oryza/química , Senescência Celular/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Extratos Vegetais/farmacologia , Tailândia , Linhagem Celular , Células HaCaT , Estresse Oxidativo/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , População do Sudeste Asiático
18.
Sci Rep ; 14(1): 11553, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773312

RESUMO

Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-ß signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1ß, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-ß signaling pathways, and exhibiting anti-inflammatory properties.


Assuntos
Diferenciação Celular , Proliferação de Células , Condrogênese , Glicólise , Inflamação , Sericinas , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína Smad2/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Condrogênese/efeitos dos fármacos , Sericinas/farmacologia , Glicólise/efeitos dos fármacos , Camundongos , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Linhagem Celular , Bombyx/metabolismo
19.
Sci Immunol ; 9(95): eade3814, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787963

RESUMO

Patients with heart failure (HF) often experience repeated acute decompensation and develop comorbidities such as chronic kidney disease and frailty syndrome. Although this suggests pathological interaction among comorbidities, the mechanisms linking them are poorly understood. Here, we identified alterations in hematopoietic stem cells (HSCs) as a critical driver of recurrent HF and associated comorbidities. Bone marrow transplantation from HF-experienced mice resulted in spontaneous cardiac dysfunction and fibrosis in recipient mice, as well as increased vulnerability to kidney and skeletal muscle insults. HF enhanced the capacity of HSCs to generate proinflammatory macrophages. In HF mice, global chromatin accessibility analysis and single-cell RNA-seq showed that transforming growth factor-ß (TGF-ß) signaling was suppressed in HSCs, which corresponded with repressed sympathetic nervous activity in bone marrow. Transplantation of bone marrow from mice in which TGF-ß signaling was inhibited similarly exacerbated cardiac dysfunction. Collectively, these results suggest that cardiac stress modulates the epigenome of HSCs, which in turn alters their capacity to generate cardiac macrophage subpopulations. This change in HSCs may be a common driver of repeated HF events and comorbidity by serving as a key carrier of "stress memory."


Assuntos
Insuficiência Cardíaca , Imunidade Inata , Memória Imunológica , Camundongos Endogâmicos C57BL , Animais , Insuficiência Cardíaca/imunologia , Camundongos , Masculino , Multimorbidade , Fator de Crescimento Transformador beta/metabolismo , Células-Tronco Hematopoéticas/imunologia , Transdução de Sinais/imunologia , Macrófagos/imunologia , Imunidade Treinada
20.
Cancer Lett ; 592: 216953, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38729557

RESUMO

TGFBR2, a key regulator of the TGFß signaling pathway, plays a crucial role in gastric cancer (GC) metastasis through its endosomal recycling process. Despite its importance, the mechanisms governing this process remain unclear. Here, we identify integrin ß5 (ITGB5) as a critical mediator that promotes TGFBR2 endosomal recycling. Our study reveals elevated expression of ITGB5 in GC, particularly in metastatic cases, correlating with poor patient outcomes. Knockdown of ITGB5 impairs GC cell metastasis both in vitro and in vivo. Mechanistically, ITGB5 facilitates epithelial-mesenchymal transition mediated by TGFß signaling, thereby enhancing GC metastasis. Acting as a scaffold, ITGB5 interacts with TGFBR2 and SNX17, facilitating SNX17-mediated endosomal recycling of TGFBR2 and preventing lysosomal degradation, thereby maintaining its surface distribution on tumor cells. Notably, TGFß signaling directly upregulates ITGB5 expression, establishing a positive feedback loop that exacerbates GC metastasis. Our findings shed light on the role of ITGB5 in promoting GC metastasis through SNX17-mediated endosomal recycling of TGFBR2, providing insights for the development of targeted cancer therapies.


Assuntos
Endossomos , Transição Epitelial-Mesenquimal , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Neoplasias Gástricas , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Endossomos/metabolismo , Animais , Linhagem Celular Tumoral , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Camundongos , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA