Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.457
Filtrar
1.
Clin Exp Med ; 24(1): 140, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951255

RESUMO

Although renal cell carcinoma (RCC) is a prevalent type of cancer, the most common pathological subtype, clear cell renal cell carcinoma (ccRCC), still has poorly understood molecular mechanisms of progression. Moreover, interferon-stimulated gene 15 (ISG15) is associated with various types of cancer; however, its biological role in ccRCC remains unclear.This study aimed to explore the role of ISG15 in ccRCC progression.ISG15 expression was upregulated in ccRCC and associated with poor prognosis. RNA sequence analysis and subsequent experiments indicated that ISG15 modulated IL6/JAK2/STAT3 signaling to promote ccRCC proliferation, migration, and invasion. Additionally, our animal experiments confirmed that sustained ISG15 knockdown reduced tumor growth rate in nude mice and promoted cell apoptosis. ISG15 modulates the IL6/JAK2/STAT3 pathway, making it a potential therapeutic target and prognostic biomarker for ccRCC.


Assuntos
Carcinoma de Células Renais , Proliferação de Células , Citocinas , Interleucina-6 , Janus Quinase 2 , Neoplasias Renais , Camundongos Nus , Fator de Transcrição STAT3 , Transdução de Sinais , Ubiquitinas , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Janus Quinase 2/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Citocinas/metabolismo , Ubiquitinas/metabolismo , Ubiquitinas/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Camundongos , Linhagem Celular Tumoral , Masculino , Movimento Celular , Feminino , Apoptose , Regulação Neoplásica da Expressão Gênica , Prognóstico , Progressão da Doença
2.
Oncotarget ; 15: 424-438, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953895

RESUMO

Single-agent TAS102 (trifluridine/tipiracil) and regorafenib are FDA-approved treatments for metastatic colorectal cancer (mCRC). We previously reported that regorafenib combined with a fluoropyrimidine can delay disease progression in clinical case reports of multidrug-resistant mCRC patients. We hypothesized that the combination of TAS102 and regorafenib may be active in CRC and other gastrointestinal (GI) cancers and may in the future provide a treatment option for patients with advanced GI cancer. We investigated the therapeutic effect of TAS102 in combination with regorafenib in preclinical studies employing cell culture, colonosphere assays that enrich for cancer stem cells, and in vivo. TAS102 in combination with regorafenib has synergistic activity against multiple GI cancers in vitro including colorectal and gastric cancer, but not liver cancer cells. TAS102 inhibits colonosphere formation and this effect is potentiated by regorafenib. In vivo anti-tumor effects of TAS102 plus regorafenib appear to be due to anti-proliferative effects, necrosis and angiogenesis inhibition. Growth inhibition by TAS102 plus regorafenib occurs in xenografted tumors regardless of p53, KRAS or BRAF mutations, although more potent tumor suppression was observed with wild-type p53. Regorafenib significantly inhibits TAS102-induced angiogenesis and microvessel density in xenografted tumors, as well inhibits TAS102-induced ERK1/2 activation regardless of RAS or BRAF status in vivo. TAS102 plus regorafenib is a synergistic drug combination in preclinical models of GI cancer, with regorafenib suppressing TAS102-induced increase in microvessel density and p-ERK as contributing mechanisms. The TAS102 plus regorafenib drug combination may be further tested in gastric and other GI cancers.


Assuntos
Combinação de Medicamentos , Sinergismo Farmacológico , Neoplasias Gastrointestinais , Mutação , Células-Tronco Neoplásicas , Neovascularização Patológica , Compostos de Fenilureia , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Piridinas , Pirrolidinas , Fator de Transcrição STAT3 , Timina , Trifluridina , Uracila , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Trifluridina/farmacologia , Compostos de Fenilureia/farmacologia , Animais , Piridinas/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Uracila/farmacologia , Uracila/análogos & derivados , Camundongos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Timina/farmacologia , Linhagem Celular Tumoral , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Angiogênese
3.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38960622

RESUMO

A pleiotropic immunoregulatory cytokine, TGF-ß, signals via the receptor-regulated SMADs: SMAD2 and SMAD3, which are constitutively expressed in normal cells. Here, we show that selective repression of SMAD3 induces cDC differentiation from the CD115+ common DC progenitor (CDP). SMAD3 was expressed in haematopoietic cells including the macrophage DC progenitor. However, SMAD3 was specifically down-regulated in CD115+ CDPs, SiglecH- pre-DCs, and cDCs, whereas SMAD2 remained constitutive. SMAD3-deficient mice showed a significant increase in cDCs, SiglecH- pre-DCs, and CD115+ CDPs compared with the littermate control. SMAD3 repressed the mRNA expression of FLT3 and the cDC-related genes: IRF4 and ID2. We found that one of the SMAD transcriptional corepressors, c-SKI, cooperated with phosphorylated STAT3 at Y705 and S727 to repress the transcription of SMAD3 to induce cDC differentiation. These data indicate that STAT3 and c-Ski induce cDC differentiation by repressing SMAD3: the repressor of the cDC-related genes during the developmental stage between the macrophage DC progenitor and CD115+ CDP.


Assuntos
Diferenciação Celular , Células Dendríticas , Fatores Reguladores de Interferon , Fator de Transcrição STAT3 , Proteína Smad3 , Animais , Diferenciação Celular/genética , Células Dendríticas/metabolismo , Células Dendríticas/citologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Camundongos , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Fosforilação , Transdução de Sinais
4.
J Cell Mol Med ; 28(13): e18493, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38963241

RESUMO

Interleukin-5 (IL-5) has been reported to be involved in cardiovascular diseases, such as atherosclerosis and cardiac injury. This study aimed to investigate the effects of IL-5 on cardiac remodelling. Mice were infused with angiotensin II (Ang II), and the expression and source of cardiac IL-5 were analysed. The results showed that cardiac IL-5 expression was time- and dose-dependently decreased after Ang II infusion, and was mainly derived from cardiac macrophages. Additionally, IL-5-knockout (IL-5-/-) mice were used to observe the effects of IL-5 knockout on Ang II-induced cardiac remodelling. We found knockout of IL-5 significantly increased the expression of cardiac hypertrophy markers, elevated myocardial cell cross-sectional areas and worsened cardiac dysfunction in Ang II-infused mice. IL-5 deletion also promoted M2 macrophage differentiation and exacerbated cardiac fibrosis. Furthermore, the effects of IL-5 deletion on cardiac remodelling was detected after the STAT3 pathway was inhibited by S31-201. The effects of IL-5 on cardiac remodelling and M2 macrophage differentiation were reversed by S31-201. Finally, the effects of IL-5 on macrophage differentiation and macrophage-related cardiac hypertrophy and fibrosis were analysed in vitro. IL-5 knockout significantly increased the Ang II-induced mRNA expression of cardiac hypertrophy markers in myocardial cells that were co-cultured with macrophages, and this effect was reversed by S31-201. Similar trends in the mRNA levels of fibrosis markers were observed when cardiac fibroblasts and macrophages were co-cultured. In conclusions, IL-5 deficiency promote the differentiation of M2 macrophages by activating the STAT3 pathway, thereby exacerbating cardiac remodelling in Ang II-infused mice. IL-5 may be a potential target for the clinical prevention of cardiac remodelling.


Assuntos
Angiotensina II , Cardiomegalia , Fibrose , Interleucina-5 , Macrófagos , Camundongos Knockout , Fator de Transcrição STAT3 , Transdução de Sinais , Remodelação Ventricular , Animais , Angiotensina II/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Remodelação Ventricular/efeitos dos fármacos , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Interleucina-5/metabolismo , Interleucina-5/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/genética , Cardiomegalia/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Diferenciação Celular , Miocárdio/metabolismo , Miocárdio/patologia
5.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 744-748, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38948276

RESUMO

Objective: To investigate the roles of histone H3K27me3 methylation and its regulatory enzymes JMJD3 and EZH2 in the differentiation of Th17 cells in ankylosing spondylitis (AS), to unveil their potential involvement in the pathogenesis of AS, and to provide new strategies and targets for the clinical treatment of AS by analyzing the methylation state of H3K27me3 and its interactions with Th17-related factors. Methods: A total of 84 AS patients (42 active AS patiens and 42 patients in the stable phase of AS) were enrolled for the study, while 84 healthy volunteers were enrolled as the controls. Blood samples were collected. Peripheral blood mononuclear cells were isolated. ELISA assay was performed to examine Th17 cells and the relevant cytokines IL-21, IL-22, and IL-17. The mRNA expressions of RORc, JAK2, and STAT3 were analyzed by RT-PCR, the protein expressions of RORc, JAK2/STAT3 pathway protein, H3K27me3 and the relevant protease (EZH2 and JMJD3) were determined by Western blot. Correlation between H3K27me3, EZH2 and JMJD3 and the key signaling pathway molecules of Th cell differentiation was analyzed by Pearson correlation analysis. Results: The mRNA expressions of RORc, JAK2, and STAT3 were significantly higher in the active phase group than those in the stable phase group ( P<0.05). The relative grayscale values of H3K27me3 and EZH2 in the active phase group were lower than those of the stable phase group, which were lower than those of the control group, with the differences being statistically significant ( P<0.05). The relative grayscale values of JMJD3, RORc, JAK2, pJAK2, STAT3, and pSTAT3 proteins were significantly higher in the active phase group than those in the stable phase group, which were higher than those in the control group (all P<0.05). The proportion of Th17 and the expression level of inflammatory factors in the active period group were higher than those in the other two groups (P<0.05). H3K27me3 was negatively correlated with RORc, JAK2, STAT3, and IL-17, JMJD3 was positvely correlated with JAK2, STAT3, and IL-17, and EZH2 was negatively correlated with JAK2, STAT3, and IL-17 (all P<0.05). Conclusion: The low expression of H3K27me3 in AS is influenced by the gene loci JMJD3 and EZH2, which can regulate the differentiation of Th17 cells and thus play a role in the pathogenesis and progression of AS.


Assuntos
Diferenciação Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Histonas , Interleucina-17 , Histona Desmetilases com o Domínio Jumonji , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Fator de Transcrição STAT3 , Espondilite Anquilosante , Células Th17 , Humanos , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo , Células Th17/metabolismo , Células Th17/citologia , Células Th17/imunologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histonas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Metilação , Interleucinas/metabolismo , Interleucinas/genética , Interleucina 22 , Masculino , Feminino , Adulto
6.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38949650

RESUMO

Germline activating mutations in STAT3 cause a multi-systemic autoimmune and autoinflammatory condition. By studying a mouse model, Toth et al. (https://doi.org/10.1084/jem.20232091) propose a role for dysregulated IL-22 production by Th17 cells in causing some aspects of immune-mediated skin inflammation in human STAT3 GOF syndrome.


Assuntos
Interleucina 22 , Fator de Transcrição STAT3 , Pele , Células Th17 , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Animais , Humanos , Células Th17/imunologia , Células Th17/metabolismo , Pele/metabolismo , Pele/patologia , Interleucinas/genética , Interleucinas/metabolismo , Mutação com Ganho de Função , Camundongos , Inflamação/metabolismo
7.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000396

RESUMO

Latrophilins (LPHNs), a group of the G-protein-coupled receptor to which a spider venom latrotoxin (LTX) is known to bind, remain largely uncharacterized in neoplastic diseases. In the present study, we aimed to determine the role of LPHNs in the progression of prostate cancer. We assessed the actions of LPHNs, including LPHN1, LPHN2, and LPHN3, in human prostate cancer lines via their ligand (e.g., α-LTX, FLRT3) treatment or shRNA infection, as well as in surgical specimens. In androgen receptor (AR)-positive LNCaP/C4-2/22Rv1 cells, dihydrotestosterone considerably increased the expression levels of LPHNs, while chromatin immunoprecipitation assay revealed the binding of endogenous ARs, including AR-V7, to the promoter region of each LPHN. Treatment with α-LTX or FLRT3 resulted in induction in the cell viability and migration of both AR-positive and AR-negative lines. α-LTX and FLRT3 also enhanced the expression of Bcl-2 and phosphorylated forms of JAK2 and STAT3. Meanwhile, the knockdown of each LPHN showed opposite effects on all of those mediated by ligand treatment. Immunohistochemistry in radical prostatectomy specimens further showed the significantly elevated expression of each LPHN in prostate cancer, compared with adjacent normal-appearing prostate, which was associated with a significantly higher risk of postoperative biochemical recurrence in both univariate and multivariable settings. These findings indicate that LPHNs function as downstream effectors of ARs and promote the growth of androgen-sensitive, castration-resistant, or even AR-negative prostate cancer.


Assuntos
Progressão da Doença , Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Transdução de Sinais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Processamento Alternativo
8.
BMC Cardiovasc Disord ; 24(1): 365, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014329

RESUMO

BACKGROUND: M1 macrophages are closely associated with cardiac injury after myocardial infarction (MI). Increasing evidence shows that exosomes play a key role in pathophysiological regulation after MI, but the role of M1 macrophage-derived exosomes (M1-Exos) in myocardial regeneration remains unclear. In this study, we explored the impact of M1 macrophage-derived exosomes on cardiomyocytes regeneration in vitro and in vivo. METHODS: M0 macrophages were induced to differentiate into M1 macrophages with GM-CSF (50 ng/mL) and IFN-γ (20 ng/mL). Then M1-Exos were isolated and co-incubated with cardiomyocytes. Cardiomyocyte proliferation was detected by pH3 or ki67 staining. Quantitative real-time PCR (qPCR) was used to test the level of miR-155 in macrophages, macrophage-derived exosomes and exosome-treated cardiomyocytes. MI model was constructed and LV-miR-155 was injected around the infarct area, the proliferation of cardiomyocytes was counted by pH3 or ki67 staining. The downstream gene and pathway of miR-155 were predicted and verified by dual-luciferase reporter gene assay, qPCR and immunoblotting analysis. IL-6 (50 ng/mL) was added to cardiomyocytes transfected with miR-155 mimics, and the proliferation of cardiomyocytes was calculated by immunofluorescence. The protein expressions of IL-6R, p-JAK2 and p-STAT3 were detected by Western blot. RESULTS: The results showed that M1-Exos suppressed cardiomyocytes proliferation. Meanwhile, miR-155 was highly expressed in M1-Exos and transferred to cardiomyocytes. miR-155 inhibited the proliferation of cardiomyocytes and antagonized the pro-proliferation effect of interleukin 6 (IL-6). Furthermore, miR-155 targeted gene IL-6 receptor (IL-6R) and inhibited the Janus kinase 2(JAK)/Signal transducer and activator of transcription (STAT3) signaling pathway. CONCLUSION: M1-Exos inhibited cardiomyocyte proliferation by delivering miR-155 and inhibiting the IL-6R/JAK/STAT3 signaling pathway. This study provided new insight and potential treatment strategy for the regulation of myocardial regeneration and cardiac repair by macrophages.


Assuntos
Proliferação de Células , Modelos Animais de Doenças , Exossomos , Janus Quinase 2 , Macrófagos , MicroRNAs , Infarto do Miocárdio , Miócitos Cardíacos , Fator de Transcrição STAT3 , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , MicroRNAs/metabolismo , MicroRNAs/genética , Exossomos/metabolismo , Exossomos/transplante , Exossomos/genética , Animais , Proliferação de Células/efeitos dos fármacos , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/genética , Janus Quinase 2/metabolismo , Masculino , Regeneração , Ratos Sprague-Dawley , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Células Cultivadas , Fosforilação , Técnicas de Cocultura , Camundongos Endogâmicos C57BL , Interleucina-6/metabolismo
9.
PLoS One ; 19(6): e0300790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935597

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) refers to the secondary damage to myocardial tissue that occurs when blood perfusion is rapidly restored following myocardial ischemia. This process often exacerbates the injury to myocardial fiber structure and function. The activation mechanism of angiogenesis is closely related to MIRI and plays a significant role in the occurrence and progression of ischemic injury. In this study, we utilized sequencing data from the GEO database and employed WGCNA, Mfuzz cluster analysis, and protein interaction network to identify Stat3, Rela, and Ubb as hub genes involved in MIRI-angiogenesis. Additionally, the GO and KEGG analysis of differentially expressed genes highlighted their broad participation in inflammatory responses and associated signaling pathways. Moreover, the analysis of sequencing data and hub genes revealed a notable increase in the infiltration ratio of monocytes and activated mast cells. By establishing key cell ROC curves, using independent datasets, and validating the expression of hub genes, we demonstrated their high diagnostic value. Moreover, by scrutinizing single-cell sequencing data alongside trajectory analysis, it has come to light that Stat3 and Rela exhibit predominant expression within Dendritic cells. In contrast, Ubb demonstrates expression across multiple cell types, with all three genes being expressed at distinct stages of cellular development. Lastly, leveraging the CMap database, we predicted potential small molecule compounds for the identified hub genes and validated their binding activity through molecular docking. Ultimately, our research provides valuable evidence and references for the early diagnosis and treatment of MIRI from the perspective of angiogenesis.


Assuntos
Biomarcadores , Traumatismo por Reperfusão Miocárdica , Fator de Transcrição STAT3 , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Biomarcadores/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Mapas de Interação de Proteínas/genética , Neovascularização Patológica/genética , Perfilação da Expressão Gênica , Angiogênese
10.
Front Biosci (Landmark Ed) ; 29(6): 226, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38940036

RESUMO

BACKGROUND: L-Theanine, a nonproteinogenic amino acid derived from green tea, is being recognized as an anti-cancer candidate. However, it's roles in the development of cancer chemoresistance is still unknown and the molecular mechanism is urgently to be explored. METHODS: The effects of L-Theanine on lung cancer chemoresistance were validated by Cell Counting Kit-8 (CCK-8) assay, transwell assay, and in vitro tumor spheroid formation assay; the expression of proteins was detected by using polymerase chain reaction (PCR) and western blotting. RNA-sequencing (RNA-seq) and bioinformatics analysis were used to identify differentially expressed genes induced by L-Theanine. BMAL1 knockdown and overexpression were constructed by using a lentivirus-mediated transfection system. RESULTS: L-Theanine improved the chemoresistance to cis-diamminedichloroplatinum (DDP) and inhibited stemness of DDP-resistant lung cancer cells but not non-resistant lung cancer cells. The results from RNA-seq analysis showed that STAT3/NOTCH1 pathway was a potential dominant signaling involved in L-Theanine improving the chemoresistance in DDP-resistant lung cancer. Mechanistically, L-Theanine impeded migration and stemness activation of DDP-resistant lung cancer cells via regulating the expression of STAT3/NOTCH1/BMAL1 signaling-induced stemness markers as well as inhibiting the expression levels of drug resistance-related genes. In addition, a combination of L-Theanine and Stat3 blockade synergistically improved the chemoresistance in DDP-resistant lung cancer. CONCLUSION: L-Theanine improves the chemoresistance by regulating STAT3/NOTCH1/BMAL1 signaling, reducing stemness, and inhibiting the migration of DDP-resistant lung cancer cells. The finding might provide some evidence for therapeutic options in overcoming the chemoresistance in cancers, including lung cancer.


Assuntos
Fatores de Transcrição ARNTL , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Glutamatos , Neoplasias Pulmonares , Receptor Notch1 , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Glutamatos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Cisplatino/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Notch1/metabolismo , Receptor Notch1/genética , Linhagem Celular Tumoral , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células A549 , Movimento Celular/efeitos dos fármacos
11.
Nat Commun ; 15(1): 5152, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886396

RESUMO

In many cancers, a stem-like cell subpopulation mediates tumor initiation, dissemination and drug resistance. Here, we report that cancer stem cell (CSC) abundance is transcriptionally regulated by C-terminally phosphorylated p27 (p27pT157pT198). Mechanistically, this arises through p27 co-recruitment with STAT3/CBP to gene regulators of CSC self-renewal including MYC, the Notch ligand JAG1, and ANGPTL4. p27pTpT/STAT3 also recruits a SIN3A/HDAC1 complex to co-repress the Pyk2 inhibitor, PTPN12. Pyk2, in turn, activates STAT3, creating a feed-forward loop increasing stem-like properties in vitro and tumor-initiating stem cells in vivo. The p27-activated gene profile is over-represented in STAT3 activated human breast cancers. Furthermore, mammary transgenic expression of phosphomimetic, cyclin-CDK-binding defective p27 (p27CK-DD) increases mammary duct branching morphogenesis, yielding hyperplasia and microinvasive cancers that can metastasize to liver, further supporting a role for p27pTpT in CSC expansion. Thus, p27pTpT interacts with STAT3, driving transcriptional programs governing stem cell expansion or maintenance in normal and cancer tissues.


Assuntos
Neoplasias da Mama , Inibidor de Quinase Dependente de Ciclina p27 , Hiperplasia , Células-Tronco Neoplásicas , Fator de Transcrição STAT3 , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Humanos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Feminino , Fosforilação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hiperplasia/metabolismo , Camundongos , Regulação Neoplásica da Expressão Gênica , Autorrenovação Celular/genética , Linhagem Celular Tumoral , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/citologia , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética
12.
J Agric Food Chem ; 72(26): 14678-14683, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38910321

RESUMO

Matrix metalloproteinase 9 (MMP9), an MMP isozyme, plays a crucial role in tumor progression by degrading basement membranes. It has therefore been proposed that the pharmacological inhibition of MMP9 expression or activity could inhibit tumor metastasis. We previously isolated two novel methoxylated flavones, casedulones A and B, from the leaves and/or roots of Casimiroa edulis La Llave and determined that these casedulones have antitumor activity that acts via the reduction of MMP9. Here, we examined how these casedulones suppress lipopolysaccharide (LPS)-induced MMP9 expression in human monocytic THP-1 cells. The casedulones suppressed the LPS-induced signal transducer and activator of transcription 3 (STAT3) pathway, which participates in MMP9 induction. In addition, AG490 and S3I-201, inhibitors of Janus kinase (JAK) and STAT3, suppressed LPS-mediated MMP9 induction, suggesting that the casedulones suppressed MMP9 induction through the inhibition of JAK/STAT3 pathways. Based on the findings that cycloheximide, an inhibitor of de novo protein synthesis, completely inhibited LPS-mediated MMP9 induction, the role of de novo proteins in MMP9 induction was further investigated. We found that the casedulones inhibited the induction of interleukin-6 (IL-6), a key inflammatory cytokine that participates in STAT3 activation. Moreover, tumor necrosis factor-α (TNFα)-mediated MMP9 induction was significantly suppressed in the presence of the casedulones. Taken together, these findings suggest that casedulones inhibit the IL-6/STAT3 and TNFα pathways, which all involve LPS-mediated MMP9 induction.


Assuntos
Flavonas , Janus Quinases , Metaloproteinase 9 da Matriz , Extratos Vegetais , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Necrose Tumoral alfa , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonas/farmacologia , Flavonas/química , Janus Quinases/metabolismo , Janus Quinases/genética , Transdução de Sinais/efeitos dos fármacos
13.
Food Funct ; 15(13): 7046-7062, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38864415

RESUMO

Chronic kidney disease (CKD) is characterized by impaired renal function and is associated with inflammation, oxidative stress, and fibrosis. Sheep milk contains several bioactive molecules with protective effects against inflammation and oxidative stress. In the current study, we investigated the potential renoprotective effects of sheep milk and the associated mechanisms of action in an adenine-induced CKD murine model. Sheep milk delayed renal chronic inflammation (e.g., significant reduction in levels of inflammatory factors Vcam1, Icam1, Il6, and Tnfa), fibrosis (significant reduction in levels of fibrosis factors Col1a1, Fn1, and Tgfb), oxidative stress (significant increase in levels of antioxidants and decrease in oxidative markers), mineral disorders, and renal injury in adenine-treated mice (e.g. reduced levels of kidney injury markers NGAL and KIM-1). The combined proteomics and metabolomics analyses showed that sheep milk may affect the metabolic processes of several compounds, including proteins, lipids, minerals, and hormones in mice with adenine-induced chronic kidney disease. In addition, it may regulate the expression of fibrosis-related factors and inflammatory factors through the JAK1/STAT3/HIF-1α signaling pathway, thus exerting its renoprotective effects. Therefore, sheep milk may be beneficial for patients with CKD and should be evaluated in preclinical and clinical studies.


Assuntos
Adenina , Rim , Leite , Estresse Oxidativo , Insuficiência Renal Crônica , Animais , Camundongos , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Ovinos , Leite/química , Leite/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Metaboloma , Proteoma , Substâncias Protetoras/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fibrose , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteômica , Multiômica
14.
Front Biosci (Landmark Ed) ; 29(6): 207, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38940027

RESUMO

BACKGROUND: Osteosarcoma (OS) is a primary malignant bone tumor in the pediatric and adolescent populations. Long non-coding RNAs (LncRNAs), such as plasma-cytoma variant translocation 1 (PVT1), have emerged as significant regulators of OS metastasis. Recent studies have indicated that activation of signal transducer and activator of transcription 3 (STAT3) signaling, which might be controlled by PVT1, inhibits ferroptosis to promote the malignant progression of cancer. Therefore, the present study aimed to determine the role of PVT1 in OS pathogenesis and investigate whether PVT1 affects OS progression by regulating STAT3/GPX4 pathway-mediated ferroptosis. METHODS: The human OS cell line MG63 were transfected with sh-PVT1 plasmid to inhibit PVT1 expression, with or without co-transfection with a STAT3 overexpression plasmid. The expression of PVT1 was determined by real-time quantitative polymerase chain reaction (RT-qPCR). The proliferation, migration, invasion, and apoptosis of MG63 cells were determined using the cell counting kit-8 (CCK8), Transwell assay, and flow cytometry. The levels of malondialdehyde (MDA), Fe2+, and glutathione (GSH) were determined by ELISA kits, whereas reactive oxygen species (ROS) level was determined by immunofluorescence. The protein expression levels of STAT3, p-STAT3, and glutathione peroxidase 4 (GPX4) were detected by western blot (WB). RESULTS: PVT1 expression was significantly increased in MG63 cells. When knocking down PVT1 with sh-PVT1 plasmid, the proliferation, migration, and invasion of MG63 cells were markedly inhibited, while the rate of apoptosis was upregulated. Further investigation revealed that MG63 cells with PVT1 knockdown exhibited elevated levels of MDA, Fe2+, and ROS. In addition, the inhibition of PVT1 expression resulted in decreased levels of GSH and inhibited expression of p-STAT3 and GPX4. When sh-PVT1 was co-transfected with STAT3 overexpression plasmid in MG63 cells, the increased levels of MDA, Fe2+, and ROS were downregulated, and the decreased expressions of GSH, p-STAT3, and GPX4 were upregulated. CONCLUSION: PVT1 promotes OS metastasis by activating the STAT3/GPX4 pathway to inhibit ferroptosis. Targeting PVT1 might be a novel therapeutic strategy for OS treatment.


Assuntos
Neoplasias Ósseas , Ferroptose , Osteossarcoma , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , RNA Longo não Codificante , Fator de Transcrição STAT3 , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ferroptose/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Linhagem Celular Tumoral , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Proliferação de Células/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Movimento Celular/genética , Progressão da Doença , Apoptose/genética , Regulação Neoplásica da Expressão Gênica
15.
Commun Biol ; 7(1): 753, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902349

RESUMO

Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs) and is involved in various cellular processes, including cancer development. PRMT2 expression is increased in several cancer types although its role in acute myeloid leukemia (AML) remains unknown. Here, we investigate the role of PRMT2 in a cohort of patients with AML, PRMT2 knockout AML cell lines as well as a Prmt2 knockout mouse model. In patients, low PRMT2 expressors are enriched for inflammatory signatures, including the NF-κB pathway, and show inferior survival. In keeping with a role for PRMT2 in control of inflammatory signaling, bone marrow-derived macrophages from Prmt2 KO mice display increased pro-inflammatory cytokine signaling upon LPS treatment. In PRMT2-depleted AML cell lines, aberrant inflammatory signaling has been linked to overproduction of IL6, resulting from a deregulation of the NF-κB signaling pathway, therefore leading to hyperactivation of STAT3. Together, these findings identify PRMT2 as a key regulator of inflammation in AML.


Assuntos
Inflamação , Leucemia Mieloide Aguda , Camundongos Knockout , NF-kappa B , Proteína-Arginina N-Metiltransferases , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Inflamação/metabolismo , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
16.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861030

RESUMO

Germline gain-of-function (GOF) variants in STAT3 cause an inborn error of immunity associated with early-onset poly-autoimmunity and immune dysregulation. To study tissue-specific immune dysregulation, we used a mouse model carrying a missense variant (p.G421R) that causes human disease. We observed spontaneous and imiquimod (IMQ)-induced skin inflammation associated with cell-intrinsic local Th17 responses in STAT3 GOF mice. CD4+ T cells were sufficient to drive skin inflammation and showed increased Il22 expression in expanded clones. Certain aspects of disease, including increased epidermal thickness, also required the presence of STAT3 GOF in epithelial cells. Treatment with a JAK inhibitor improved skin disease without affecting local Th17 recruitment and cytokine production. These findings collectively support the involvement of Th17 responses in the development of organ-specific immune dysregulation in STAT3 GOF and suggest that the presence of STAT3 GOF in tissues is important for disease and can be targeted with JAK inhibition.


Assuntos
Mutação com Ganho de Função , Imiquimode , Fator de Transcrição STAT3 , Células Th17 , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Células Th17/imunologia , Camundongos , Humanos , Imiquimode/farmacologia , Pele/patologia , Pele/metabolismo , Pele/imunologia , Interleucina 22 , Dermatite/imunologia , Dermatite/genética , Dermatite/patologia , Dermatite/metabolismo , Camundongos Endogâmicos C57BL , Interleucinas/genética , Interleucinas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/imunologia , Inflamação/patologia
17.
Biochem Pharmacol ; 225: 116334, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38824967

RESUMO

Alcoholic liver injury (ALI) stands as a prevalent affliction within the spectrum of complex liver diseases. Prolonged and excessive alcohol consumption can pave the way for liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Recent findings have unveiled the protective role of proline serine-threonine phosphatase interacting protein 2 (PSTPIP2) in combating liver ailments. However, the role of PSTPIP2 in ALI remains mostly unknown. This study aimed to determine the expression profile of PSTPIP2 in ALI and to uncover the mechanism through which PSTPIP2 affects the survival and apoptosis of hepatocytes in ALI, using both ethyl alcohol (EtOH)-fed mice and an EtOH-induced AML-12 cell model. We observed a consistent decrease in PSTPIP2 expression both in vivo and in vitro. Functionally, we assessed the impact of PSTPIP2 overexpression on ALI by administering adeno-associated virus 9 (AAV9)-PSTPIP2 into mice. The results demonstrated that augmenting PSTPIP2 expression significantly shielded against liver parenchymal distortion and curbed caspase-dependent hepatocyte apoptosis in EtOH-induced ALI mice. Furthermore, enforcing PSTPIP2 expression reduced hepatocyte apoptosis in a stable PSTPIP2-overexpressing AML-12 cell line established through lentivirus-PSTPIP2 transfection in vitro. Mechanistically, this study also identified signal transducer and activator of transcription 3 (STAT3) as a direct signaling pathway regulated by PSTPIP2 in ALI. In conclusion, our findings provide compelling evidence that PSTPIP2 has a regulatory role in hepatocyte apoptosis via the STAT3 pathway in ALI, suggesting PSTPIP2 as a promising therapeutic target for ALI.


Assuntos
Apoptose , Fator de Transcrição STAT3 , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/efeitos dos fármacos , Linhagem Celular , Etanol/toxicidade , Etanol/administração & dosagem , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/prevenção & controle , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
18.
Int Immunopharmacol ; 137: 112447, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38909497

RESUMO

CD8+ tumor-infiltrating lymphocytes (TILs) exhaustion is a major barrier to effective tumor control in diffuse large B-cell lymphoma (DLBCL) and may consist of heterogeneous populations with different functional states. We profiled the CD8+TILs exhaustion heterogeneity and explored its clinical significance as well as the underlying mechanism through single-cell RNA sequencing (n = 7), bulk RNA sequencing (n = 3300), immunohistochemistry (n = 116), and reverse transcription-quantitative polymerase chain reaction (n = 95), and somatic mutation data (n = 48). Our results demonstrated that exhausted CD8+TILs in DLBCL were composed of progenitor and terminal states characterized by CCL5 and TUBA1B, respectively. High terminally exhausted CD8+TILs indicated an immunosuppressive tumor microenvironment, activated B-cell-like subtype, inferior prognosis, and poor response to immune checkpoint blockade therapy in DLBCL. Our study further demonstrated that the CD39/A2AR-related signaling may be the potential pathway that promoted the transition of progenitor toward terminally exhausted CD8+TILs in DLBCL. Furthermore, the CD39/A2AR-related pathway in DLBCL may be regulated by BATF and STAT3 in exhausted CD8+TILs, and MYD88 mutation in tumor cells. Our study highlights CD8+TILs exhaustion heterogeneity and its possible regulatory mechanism provides a novel prognostic indicator and can facilitate the optimization of individualized immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Linfoma Difuso de Grandes Células B , Microambiente Tumoral , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Microambiente Tumoral/imunologia , Mutação , Prognóstico , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Feminino
19.
Cell Mol Life Sci ; 81(1): 255, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856747

RESUMO

Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor; GBM's inevitable recurrence suggests that glioblastoma stem cells (GSC) allow these tumors to persist. Our previous work showed that FOSL1, transactivated by the STAT3 gene, functions as a tumorigenic gene in glioma pathogenesis and acts as a diagnostic marker and potential drug target in glioma patients. Accumulating evidence shows that STAT3 and NF-κB cooperate to promote the development and progression of various cancers. The link between STAT3 and NF-κB suggests that NF-κB can also transcriptionally regulate FOSL1 and contribute to gliomagenesis. To investigate downstream molecules of FOSL1, we analyzed the transcriptome after overexpressing FOSL1 in a PDX-L14 line characterized by deficient FOSL1 expression. We then conducted immunohistochemical staining for FOSL1 and NF-κB p65 using rabbit polyclonal anti-FOSL1 and NF-κB p65 in glioma tissue microarrays (TMA) derived from 141 glioma patients and 15 healthy individuals. Next, mutants of the human FOSL1 promoter, featuring mutations in essential binding sites for NF-κB were generated using a Q5 site-directed mutagenesis kit. Subsequently, we examined luciferase activity in glioma cells and compared it to the wild-type FOSL1 promoter. Then, we explored the mutual regulation between NF-κB signaling and FOSL1 by modulating the expression of NF-κB or FOSL1. Subsequently, we assessed the activity of FOSL1 and NF-κB. To understand the role of FOSL1 in cell growth and stemness, we conducted a CCK-8 assay and cell cycle analysis, assessing apoptosis and GSC markers, ALDH1, and CD133 under varying FOSL1 expression conditions. Transcriptome analyses of downstream molecules of FOSL1 show that NF-κB signaling pathway is regulated by FOSL1. NF-κB p65 protein expression correlates to the expression of FOSL1 in glioma patients, and both are associated with glioma grades. NF-κB is a crucial transcription factor activating the FOSL1 promoter in glioma cells. Mutual regulation between NF-κB and FOSL1 contributes to glioma tumorigenesis and stemness through promoting G1/S transition and inhibiting apoptosis. Therefore, the FOSL1 molecular pathway is functionally connected to NF-κB activation, enhances stemness, and is indicative that FOSL1 may potentially be a novel GBM drug target.


Assuntos
Regulação Neoplásica da Expressão Gênica , NF-kappa B , Células-Tronco Neoplásicas , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fos , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , NF-kappa B/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética
20.
Front Immunol ; 15: 1374967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881895

RESUMO

Background: Cholangiocarcinoma (CCA) is a typical inflammation-induced malignancy, and elevated serum interleukin-6 (IL-6) levels have been reported to be linked to the onset and progression of CCA. We aim to investigate the potential prognostic value of the IL-6 pathway for CCA. Methods: We detected the expressions of IL-6, IL-6R, glycoprotein (gp130), C-reactive protein (CRP), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3) in CCA tissue microarray using multiplex immunofluorescence. Furthermore, the clinical associations and prognostic values were assessed. Finally, single-cell transcriptome analysis was performed to evaluate the expression level of IL-6 pathway genes in CCA. Results: The results revealed that the expression of IL-6 was lower, while the expression of STAT3 was higher in tumor tissues compared to normal tissues. Especially in tumor microenvironment, the expression of IL-6 pathway genes was generally downregulated. Importantly, gp130 was strongly correlated with JAK2 in tumor tissues, while it was moderately correlated with JAK2 in normal tissue. Although none of the gene expressions were directly associated with overall survival and disease-free survival, our study found that IL-6, IL-6R, CRP, gp130, and JAK2 were inversely correlated with vascular invasion, which is a risk factor for poor prognosis in patients with CCA. Conclusion: The findings from this study suggest that the IL-6 signaling pathway may have a potential prognostic value for CCA. Further investigation is needed to understand the underlying molecular mechanisms of the IL-6 pathway in CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Receptor gp130 de Citocina , Interleucina-6 , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/mortalidade , Colangiocarcinoma/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Masculino , Feminino , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Pessoa de Meia-Idade , Prognóstico , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Idoso , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Relevância Clínica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...