Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.030
Filtrar
1.
Nature ; 632(8024): 419-428, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020166

RESUMO

The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.


Assuntos
Sistemas CRISPR-Cas , Carcinoma de Células Escamosas , Transformação Celular Neoplásica , Evolução Clonal , Células Clonais , Análise de Célula Única , Fatores de Necrose Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Evolução Clonal/genética , Células Clonais/citologia , Células Clonais/metabolismo , Células Clonais/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos/metabolismo , Mutação , Invasividade Neoplásica/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Comunicação Autócrina , Análise de Sobrevida
2.
Biol Reprod ; 111(2): 322-331, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38984926

RESUMO

Intrauterine adhesion (IUA) is manifestations of endometrial fibrosis and excessive extracellular matrix deposition. C1q/tumor necrosis factor-related protein-6 (CTRP6) is a newly identified adiponectin paralog which has been reported to modulate the fibrosis process of several diseases; however, the endometrial fibrosis function of CTRP6 remains unknown. Our study aimed to assess the role of CTRP6 in endometrial fibrosis and further explore the underlying mechanism. Here, we found that the expression of CTRP6 was downregulated in the endometrial tissues of IUA. In vitro experiments demonstrated the reduced level of CTRP6 in facilitated transforming growth factor-ß1 (TGF-ß1)-induced human endometrial stromal cells (HESCs). In addition, CTRP6 inhibited the expression of α-smooth muscle actin (α-SMA) and collagen I in TGF-ß1-treated HESCs. Mechanistically, CTRP6 activated the AMP-activated protein kinase (AMPK) and protein kinase B (AKT) pathway in HESCs, and AMPK inhibitor (AraA) or PI3K inhibitor (LY294002) pretreatment abolished the protective effect of CTRP6 on TGF-ß1-induced fibrosis. CTRP6 markedly decreased TGF-ß1-induced Smad3 phosphorylation and nuclear translocation, and AMPK or AKT inhibition reversed these effects. Notably, CTRP6-overexpressing treatment alleviated the fibrosis of endometrium in vivo. Therefore, CTRP6 ameliorates endometrial fibrosis, among which AMPK and AKT are essential for the anti-fibrotic effect of CTRP6 via the Smad3 pathway. Taken together, CTRP6 may be a potential therapeutic target for the treatment of intrauterine adhesion.


Assuntos
Endométrio , Fibrose , Transdução de Sinais , Proteína Smad3 , Animais , Feminino , Humanos , Camundongos , Adipocinas/metabolismo , Colágeno , Endométrio/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/patologia , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Proteína Smad3/genética , Aderências Teciduais/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/genética , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia
3.
Nature ; 630(8016): 447-456, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839969

RESUMO

Increasing rates of autoimmune and inflammatory disease present a burgeoning threat to human health1. This is compounded by the limited efficacy of available treatments1 and high failure rates during drug development2, highlighting an urgent need to better understand disease mechanisms. Here we show how functional genomics could address this challenge. By investigating an intergenic haplotype on chr21q22-which has been independently linked to inflammatory bowel disease, ankylosing spondylitis, primary sclerosing cholangitis and Takayasu's arteritis3-6-we identify that the causal gene, ETS2, is a central regulator of human inflammatory macrophages and delineate the shared disease mechanism that amplifies ETS2 expression. Genes regulated by ETS2 were prominently expressed in diseased tissues and more enriched for inflammatory bowel disease GWAS hits than most previously described pathways. Overexpressing ETS2 in resting macrophages reproduced the inflammatory state observed in chr21q22-associated diseases, with upregulation of multiple drug targets, including TNF and IL-23. Using a database of cellular signatures7, we identified drugs that might modulate this pathway and validated the potent anti-inflammatory activity of one class of small molecules in vitro and ex vivo. Together, this illustrates the power of functional genomics, applied directly in primary human cells, to identify immune-mediated disease mechanisms and potential therapeutic opportunities.


Assuntos
Inflamação , Macrófagos , Proteína Proto-Oncogênica c-ets-2 , Feminino , Humanos , Masculino , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Cromossomos Humanos Par 21/genética , Bases de Dados Factuais , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genômica , Haplótipos/genética , Inflamação/genética , Doenças Inflamatórias Intestinais/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteína Proto-Oncogênica c-ets-2/genética , Proteína Proto-Oncogênica c-ets-2/metabolismo , Reprodutibilidade dos Testes , Fatores de Necrose Tumoral/metabolismo , Interleucina-23/metabolismo
4.
Dev Comp Immunol ; 159: 105217, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38901503

RESUMO

Norepinephrine (NE) is involved in regulating cytokine expression and phagocytosis of immune cells in the innate immunity of vertebrates. In the present study, the modulation mechanism of NE on the biosynthesis of TNFs in oyster granulocytes was explored. The transcripts of CgTNF-1, CgTNF-2 and CgTNF-3 were highly expressed in granulocytes, and they were significantly up-regulated after LPS stimulation, while down-regulated after NE treatment. The phagocytic rate and apoptosis index of oyster granulocytes were also triggered by LPS stimulation and suppressed by NE treatment. The mRNA expressions of CgMAPK14 and CgRelish were significantly induced after NE treatment, and the translocation of CgRelish from cytoplasm to nucleus was observed. The concentration of intracellular Ca2+ in granulocytes was significantly up-regulated upon NE incubation, and this trend reverted after the treatment with DOX (specific antagonist for NE receptor, CgA1AR-1). No obvious significance was observed in intracellular cAMP concentrations in the PBS, NE and NE + DOX groups. Once CgA1AR-1 was blocked by DOX, the mRNA expressions of CgMAPK14 and CgRelish were significantly inhibited, and the translocation of CgRelish from cytoplasm to nucleus was also dramatically suppressed, while the mRNA expression of CgTNF-1 and the apoptosis index increased significantly to the same level with those in LPS group, respectively. These results collectively suggested that NE modulated TNF expression in oyster granulocyte through A1AR-p38 MAPK-Relish signaling pathway.


Assuntos
Crassostrea , Granulócitos , Imunidade Inata , Lipopolissacarídeos , Norepinefrina , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Crassostrea/imunologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia , Granulócitos/imunologia , Granulócitos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/imunologia , Apoptose , Transdução de Sinais , Fagocitose , Células Cultivadas , Fator de Necrose Tumoral alfa/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/imunologia , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/genética
5.
Cancer Cell ; 42(5): 885-903.e4, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38608702

RESUMO

With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.


Assuntos
Caquexia , Citocina TWEAK , Macrófagos , Neoplasias Pancreáticas , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/complicações , Citocina TWEAK/metabolismo , Animais , Humanos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Atrofia Muscular/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Quimiocina CCL5/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Fatores de Necrose Tumoral/metabolismo , Receptores CCR2/metabolismo , Quimiocina CCL2/metabolismo , Camundongos Endogâmicos C57BL
6.
J Am Heart Assoc ; 13(4): e030054, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38348774

RESUMO

BACKGROUND: This study investigated whether gCTRP9 (globular C1q/tumor necrosis factor-related protein-9) could restore high-glucose (HG)-suppressed endothelial progenitor cell (EPC) functions by activating the endothelial nitric oxide synthase (eNOS). METHODS AND RESULTS: EPCs were treated with HG (25 mmol/L) and gCTRP9. Migration, adhesion, and tube formation assays were performed. Adiponectin receptor 1, adiponectin receptor 2, and N-cadherin expression and AMP-activated protein kinase, protein kinase B, and eNOS phosphorylation were measured by Western blotting. eNOS activity was determined using nitrite production measurement. In vivo reendothelialization and EPC homing assays were performed using Evans blue and immunofluorescence in mice. Treatment with gCTRP9 at physiological levels enhanced migration, adhesion, and tube formation of EPCs. gCTRP9 upregulated the phosphorylation of AMP-activated protein kinase, protein kinase B, and eNOS and increased nitrite production in a concentration-dependent manner. Exposure of EPCs to HG-attenuated EPC functions induced cellular senescence and decreased eNOS activity and nitric oxide synthesis; the effects of HG were reversed by gCTRP9. Protein kinase B knockdown inhibited eNOS phosphorylation but did not affect gCTRP9-induced AMP-activated protein kinase phosphorylation. HG impaired N-cadherin expression, but treatment with gCTRP9 restored N-cadherin expression after HG stimulation. gCTRP9 restored HG-impaired EPC functions through both adiponectin receptor 1 and N-cadherin-mediated AMP-activated protein kinase /protein kinase B/eNOS signaling. Nude mice that received EPCs treated with gCTRP9 under HG medium showed a significant enhancement of the reendothelialization capacity compared with those with EPCs incubated under HG conditions. CONCLUSIONS: CTRP9 promotes EPC migration, adhesion, and tube formation and restores these functions under HG conditions through eNOS-mediated signaling mechanisms. Therefore, CTRP9 modulation could eventually be used for vascular healing after injury.


Assuntos
Adiponectina , Células Progenitoras Endoteliais , Glicoproteínas , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Progenitoras Endoteliais/metabolismo , Complemento C1q/metabolismo , Complemento C1q/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Citocinas/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Camundongos Nus , Receptores de Adiponectina/metabolismo , Nitritos , Movimento Celular , Glucose/farmacologia , Glucose/metabolismo , Caderinas/metabolismo , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/farmacologia , Óxido Nítrico/metabolismo , Células Cultivadas
7.
Cell Death Dis ; 15(2): 114, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321001

RESUMO

As an alternative pathway for liver regeneration, liver progenitor cells and their derived ductular reaction cells increase during the progression of many chronic liver diseases. However, the mechanism underlying their hepatocyte repopulation after liver injury remains unknown. Here, we conducted progenitor cell lineage tracing in mice and found that fewer than 2% of hepatocytes were derived from liver progenitor cells after 9 weeks of injury with a choline-deficient diet supplemented with ethionine (CDE), and this percentage increased approximately three-fold after 3 weeks of recovery. We also found that the proportion of liver progenitor cells double positive for the ligand of glucocorticoid-induced tumour necrosis factor receptor (GITRL, also called Tnfsf18) and SRY-related HMG box transcription 9 (Sox9) among nonparenchymal cells increased time-dependently upon CDE injury and reduced after recovery. When GITRL was conditionally knocked out from hepatic progenitor cells, its expression in nonparenchymal cells was downregulated by approximately fifty percent, and hepatocyte repopulation increased by approximately three folds. Simultaneously, conditional knockout of GITRL reduced the proportion of liver-infiltrating CD8+ T lymphocytes and glucocorticoid-induced tumour necrosis factor receptor (GITR)-positive CD8+ T lymphocytes. Mechanistically, GITRL stimulated cell proliferation but suppressed the differentiation of liver progenitor organoids into hepatocytes, and CD8+ T cells further reduced their hepatocyte differentiation by downregulating the Wnt/ß-catenin pathway. Therefore, GITRL expressed by liver progenitor cells impairs hepatocyte differentiation, thus hindering progenitor cell-mediated liver regeneration.


Assuntos
Linfócitos T CD8-Positivos , Glucocorticoides , Animais , Camundongos , Linfócitos T CD8-Positivos/patologia , Fibrose , Glucocorticoides/metabolismo , Hepatócitos/metabolismo , Inflamação/patologia , Fígado/patologia , Receptores do Fator de Necrose Tumoral/metabolismo , Células-Tronco/metabolismo , Fatores de Necrose Tumoral/metabolismo
8.
Exp Mol Med ; 56(1): 192-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200153

RESUMO

Tumor necrosis factor superfamily (TNFSF) resistance contributes to the development and progression of tumors and resistance to various cancer therapies. Tumor-intrinsic alterations involved in the adaptation to the TNFSF response remain largely unknown. Here, we demonstrate that protein kinase C substrate 80K-H (PRKCSH) abundance in lung cancers boosts oncogenic IGF1R activation, leading to TNFSF resistance. PRKCSH abundance is correlated with IGF1R upregulation in lung cancer tissues. Specifically, PRKCSH interacts with IGF1R and extends its half-life. The PRKCSH-IGF1R axis in tumor cells impairs caspase-8 activation, increases Mcl-1 expression, and inhibits caspase-9, leading to an imbalance between cell death and survival. PRKCSH deficiency augmented the antitumor effects of natural killer (NK) cells, representative TNFSF effector cells, in a tumor xenograft IL-2Rg-deficient NOD/SCID (NIG) mouse model. Our data suggest that PRKCSH plays a critical role in TNFSF resistance and may be a potential target to improve the efficacy of NK cell-based cancer therapy.


Assuntos
Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Meia-Vida , Linhagem Celular Tumoral , Camundongos Endogâmicos NOD , Camundongos SCID , Fatores de Necrose Tumoral/metabolismo , Proteínas de Ligação ao Cálcio , Glucosidases/metabolismo , Receptor IGF Tipo 1/metabolismo
9.
Theranostics ; 14(2): 496-509, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169605

RESUMO

Background: Selective TNFR2 activation can be used to treat immune pathologies by activating and expanding regulatory T-cells (Tregs) but may also restore anti-tumour immunity by co-stimulating CD8+ T-cells. Oligomerized TNFR2-specific TNF mutants or anti-TNFR2 antibodies can activate TNFR2 but suffer either from poor production and pharmacokinetics or in the case of anti-TNFR2 antibodies typically from the need of FcγR binding to elicit maximal agonistic activity. Methods: To identify the major factor(s) determining FcγR-independent agonism of anti-TNFR2 antibodies, we systematically investigated a comprehensive panel of anti-TNFR2 antibodies and antibody-based constructs differing in the characteristics of their TNFR2 binding domains but also in the number and positioning of the latter. Results: We identified the domain architecture of the constructs as the pivotal factor enabling FcγR-independent, thus intrinsic TNFR2-agonism. Anti-TNFR2 antibody formats with either TNFR2 binding sites on opposing sites of the antibody scaffold or six or more TNFR2 binding sites in similar orientation regularly showed strong FcγR-independent agonism. The affinity of the TNFR2 binding domain and the epitope recognized in TNFR2, however, were found to be of only secondary importance for agonistic activity. Conclusion: Generic design principles enable the generation of highly active bona fide TNFR2 agonists from nearly any TNFR2-specific antibody.


Assuntos
Receptores de IgG , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores de IgG/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Reguladores , Anticorpos/metabolismo , Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Front Immunol ; 14: 1287367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143742

RESUMO

Background and aims: The co-infection of hepatitis B (HBV) patients with the hepatitis D virus (HDV) causes the most severe form of viral hepatitis and thus drastically worsens the course of the disease. Therapy options for HBV/HDV patients are still limited. Here, we investigated the potential of natural killer (NK) cells that are crucial drivers of the innate immune response against viruses to target HDV-infected hepatocytes. Methods: We established in vitro co-culture models using HDV-infected hepatoma cell lines and human peripheral blood NK cells. We determined NK cell activation by flow cytometry, transcriptome analysis, bead-based cytokine immunoassays, and NK cell-mediated effects on T cells by flow cytometry. We validated the mechanisms using CRISPR/Cas9-mediated gene deletions. Moreover, we assessed the frequencies and phenotype of NK cells in peripheral blood of HBV and HDV superinfected patients. Results: Upon co-culture with HDV-infected hepatic cell lines, NK cells upregulated activation markers, interferon-stimulated genes (ISGs) including the death receptor ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), produced interferon (IFN)-γ and eliminated HDV-infected cells via the TRAIL-TRAIL-R2 axis. We identified IFN-ß released by HDV-infected cells as an important enhancer of NK cell activity. In line with our in vitro data, we observed activation of peripheral blood NK cells from HBV/HDV co-infected, but not HBV mono-infected patients. Conclusion: Our data demonstrate NK cell activation in HDV infection and their potential to eliminate HDV-infected hepatoma cells via the TRAIL/TRAIL-R2 axis which implies a high relevance of NK cells for the design of novel anti-viral therapies.


Assuntos
Carcinoma Hepatocelular , Hepatite D , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Ligantes , Hepatite D/metabolismo , Interferons/metabolismo , Vírus Delta da Hepatite/genética , Células Matadoras Naturais , Fatores de Necrose Tumoral/metabolismo , Apoptose , Neoplasias Hepáticas/metabolismo
11.
Nature ; 623(7986): 415-422, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914939

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1ß (IL-1ß)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1ß+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1ß activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1ß axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.


Assuntos
Inflamação , Interleucina-1beta , Neoplasias Pancreáticas , Macrófagos Associados a Tumor , Humanos , Carcinogênese , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Dinoprostona/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Fatores de Necrose Tumoral/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
12.
Cancer Biol Med ; 20(11)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37921408

RESUMO

OBJECTIVE: Immature vasculature lacking pericyte coverage substantially contributes to tumor growth, drug resistance, and cancer cell dissemination. We previously demonstrated that tumor necrosis factor superfamily 15 (TNFSF15) is a cytokine with important roles in modulating hematopoiesis and vascular homeostasis. The main purpose of this study was to explore whether TNFSF15 might promote freshly isolated myeloid cells to differentiate into CD11b+ cells and further into pericytes. METHODS: A model of Lewis lung cancer was established in mice with red fluorescent bone marrow. After TNFSF15 treatment, CD11b+ myeloid cells and vascular pericytes in the tumors, and the co-localization of pericytes and vascular endothelial cells, were assessed. Additionally, CD11b+ cells were isolated from wild-type mice and treated with TNFSF15 to determine the effects on the differentiation of these cells. RESULTS: We observed elevated percentages of bone marrow-derived CD11b+ myeloid cells and vascular pericytes in TNFSF15-treated tumors, and the latter cells co-localized with vascular endothelial cells. TNFSF15 protected against CD11b+ cell apoptosis and facilitated the differentiation of these cells into pericytes by down-regulating Wnt3a-VEGFR1 and up-regulating CD49e-FN signaling pathways. CONCLUSIONS: TNFSF15 facilitates the production of CD11b+ cells in the bone marrow and promotes the differentiation of these cells into pericytes, which may stabilize the tumor neovasculature.


Assuntos
Neoplasias , Pericitos , Animais , Humanos , Camundongos , Diferenciação Celular , Células Endoteliais , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Neoplasias/metabolismo , Pericitos/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/farmacologia
13.
Biomed Pharmacother ; 169: 115925, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38007933

RESUMO

BACKGROUND: Rhabdomyolysis is a severe clinical syndrome associated to acute kidney injury (AKI) and chronic kidney disease (CKD). TWEAK/Fn14 signaling axis regulates renal inflammation and tubular cell death. However, the functional role of TWEAK/Fn14 in rhabdomyolysis remains unknown. METHODS: Rhabdomyolysis was induced in wild-type, TWEAK- and Fn14-deficient mice or mice treated with TWEAK blocking antibody. Renal injury, inflammation, fibrosis and cell death were assessed. Additionally, we performed in vivo and in vitro studies to explore the possible signalling pathways involved in Fn14 regulation. FINDINGS: Fn14 renal expression was increased in mice with rhabdomyolysis, correlating with decline of renal function. Mechanistically, myoglobin (Mb) induced Fn14 expression via ERK and p38 pathway, whereas Nrf2 activation diminished Mb-mediated Fn14 upregulation in cultured renal cells. TWEAK or Fn14 genetic depletion ameliorated rhabdomyolysis-associated loss of renal function, histological damage, tubular cell death, inflammation, and expression of both tubular and endothelial injury markers. Deficiency of TWEAK or Fn14 also decreased long-term renal inflammation and fibrosis in mice with rhabdomyolysis. Finally, pharmacological treatment with a blocking TWEAK antibody diminished the expression of acute renal injury markers and cell death and lessened residual kidney fibrosis and chronic inflammation in rhabdomyolysis. INTERPRETATION: TWEAK/Fn14 axis participates in the pathogenesis of rhabdomyolysis-AKI and subsequent AKI-CKD transition. Blockade of this signaling pathway may represent a promising therapeutic strategy for reducing rhabdomyolysis-mediated renal injury. FUNDING: Spanish Ministry of Science and Innovation, ISCIII and Junta de Andalucía.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Rabdomiólise , Animais , Camundongos , Injúria Renal Aguda/metabolismo , Citocina TWEAK/metabolismo , Fibrose , Inflamação , Rabdomiólise/complicações , Fatores de Necrose Tumoral/metabolismo , Receptor de TWEAK/metabolismo
14.
Open Vet J ; 13(10): 1268-1276, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38027401

RESUMO

Background: Pomegranate granatum (molasses and peels) and its constituents showed protective effects against natural toxins such as phenylhydrazine (PHZ) as well as chemical toxicants such as arsenic, diazinon, and carbon tetrachloride. Aim: The current study aimed to assess the effect of pomegranate molasses (PM), white peel extract, and red peel extract on nephrotoxicity induced by PHZ. Methods: 80 male rats were divided into eight equal groups; a control group, PM pure group, white peel pomegranate pure group, red peel pomegranate pure group, PHZ group, PM + PHZ group, white peel pomegranate + PHZ group and red peel pomegranate + PHZ group. Kidney function, inflammation markers, antioxidant activities, and renal tissue histopathology were investigated. Results: The results revealed that PHZ group showed a significant increase in lactate Dehydrogenase (LDH), malondialdehyde (MDA), creatinine, uric acid, BUNBUN, C - reactive protein (CRP), tumor necrosis factor, thiobarbituric acid reactive substances (TBARSs), and total antioxidant capacity (TAC) with a significant decrease of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) as compared with a control group. Other pomegranate-treated and PHZ co-treated groups with pomegranate showed a significant decrease of LDH, MDA, creatinine, uric acid, BUN, tumor necrosis factor, TBARSs, and TAC with a significant increase of CAT, GPx, and SOD as compared with PHZ group. Conclusion: Collectively, our data suggest that red, white peels, and molasses have anti-toxic and anti-inflammatory effects on renal function and tissues.


Assuntos
Antioxidantes , Punica granatum , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/análise , Antioxidantes/metabolismo , Punica granatum/metabolismo , Frutas/química , Frutas/metabolismo , Ácido Úrico/análise , Ácido Úrico/metabolismo , Creatinina/análise , Creatinina/metabolismo , Extratos Vegetais/farmacologia , Rim/metabolismo , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo , Fatores de Necrose Tumoral/análise , Fatores de Necrose Tumoral/metabolismo , Fenil-Hidrazinas/análise , Fenil-Hidrazinas/metabolismo
15.
Cells ; 12(19)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37830584

RESUMO

Different studies have reported that inhibiting the mevalonate pathway with statins may increase the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), although the signaling mechanism leading to this sensitization remains largely unknown. We investigated the role of the YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex in the metabolic control of TRAIL sensitivity by the mevalonate pathway. We show that depleting nuclear YAP/TAZ in tumor cells, either via treatment with statins or by silencing YAP/TAZ expression with siRNAs, facilitates the activation of apoptosis by TRAIL. Furthermore, the blockage of TEAD transcriptional activity either pharmacologically or through the ectopic expression of a disruptor of the YAP/TAZ interaction with TEAD transcription factors, overcomes the resistance of tumor cells to the induction of apoptosis by TRAIL. Our results show that the mevalonate pathway controls cellular the FLICE-inhibitory protein (cFLIP) expression in tumor cells. Importantly, inhibiting the YAP/TAZ-TEAD signaling pathway induces cFLIP down-regulation, leading to a marked sensitization of tumor cells to apoptosis induction by TRAIL. Our data suggest that a combined strategy of targeting TEAD activity and selectively activating apoptosis signaling by agonists of apoptotic TRAIL receptors could be explored as a potential therapeutic approach in cancer treatment.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias , Apoptose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Ácido Mevalônico , Neoplasias/genética , Fatores de Transcrição de Domínio TEA , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fatores de Necrose Tumoral/metabolismo , Proteínas de Sinalização YAP , Humanos
16.
Front Immunol ; 14: 1267772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868973

RESUMO

Background: Apoptosis regulates normal development, homeostasis, immune tolerance and response to environmental stress by eliminating unwanted or diseased cells, and plays a key role in non-specific immunity of invertebrates. The exogenous pathway mediated by death receptors and death ligands is a very important pathway for cell apoptosis. Death ligands are mainly members of the tumour necrosis factor (TNF) family, of which FasL is an important member. The deep involvement of FasL in vertebrates cell apoptosis and immunity has been reported many times, but there is limited research on the FasL gene in shellfish, and its functional importance in oyster cell apoptosis and immunity remains unclear. Methods: The full length of ChFasL was identified and cloned based on the genome of Crassostrea hongkongensis. Quantitative PCR was used to detect the relative expression of ChFasL in different developmental stages and tissues, as well as the changes of relative expression in hemocytes after bacterial infection. The expression position of ChFasL in HEK293T cells was also located by subcellular localization, and the effect of increased recombinant protein content on the activity of reporter genes p53 and p21 was studied by dual-fluorescence reporter gene. Finally, the changes of apoptosis rate in hemocytes after ChFasL silencing was identified by RNA interference technology. Results: We identified a novel FasL gene from C. hongkongensis and named it ChFasL. We found that ChFasL has potential N-linked glycosylation site, a transmembrane domain and a TNF region, which was a typical characteristics of TNF family. ChFasL was expressed in all developmental stages of larvae and in all tissues of oysters. After stimulation by V. alginolyticus or S. haemolyticus, its relative expression in hemocytes increased significantly, suggesting that ChFasL was deeply engaged in the immune response process of C. hongkongensis to external microbial stimulation. The results of subcellular localization showed that ChFasL was mainly distributed in the cytoplasm of HEK293T cells. With the overexpression of the recombinant protein pcDNA3 1- ChFasL, the activity of p53 and p21 significantly increased, showing a positive regulatory effect. Moreover, after dsRNA successfully reduced the relative expression of ChFasL, the apoptosis rate of hemocytes was significantly lower than that the dsGFP group. Conclusion: These results comprehensively confirmed the important role of ChFasL in the apoptosis process of C. hongkongensis, which provided the basis and premise for the in-depth understanding of the immune function of apoptosis in molluscs, and also contributed to the research on the pathogenic death mechanism and disease resistance breeding of marine bivalves.


Assuntos
Crassostrea , Humanos , Animais , Sequência de Bases , Sequência de Aminoácidos , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Crassostrea/metabolismo , Proteína Supressora de Tumor p53/genética , Células HEK293 , Clonagem Molecular , Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes/genética , Apoptose/genética
17.
J Pathol ; 261(4): 427-441, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776271

RESUMO

Heart and kidney have a closely interrelated pathophysiology. Acute kidney injury (AKI) is associated with significantly increased rates of cardiovascular events, a relationship defined as cardiorenal syndrome type 3 (CRS3). The underlying mechanisms that trigger heart disease remain, however, unknown, particularly concerning the clinical impact of AKI on cardiac outcomes and overall mortality. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are independently involved in the pathogenesis of both heart and kidney failure, and recent studies have proposed TWEAK as a possible therapeutic target; however, its specific role in cardiac damage associated with CRS3 remains to be clarified. Firstly, we demonstrated in a retrospective longitudinal clinical study that soluble TWEAK plasma levels were a predictive biomarker of mortality in patients with AKI. Furthermore, the exogenous application of TWEAK to native ventricular cardiomyocytes induced relevant calcium (Ca2+ ) handling alterations. Next, we investigated the role of the TWEAK-Fn14 axis in cardiomyocyte function following renal ischaemia-reperfusion (I/R) injury in mice. We observed that TWEAK-Fn14 signalling was activated in the hearts of AKI mice. Mice also showed significantly altered intra-cardiomyocyte Ca2+ handling and arrhythmogenic Ca2+ events through an impairment in sarcoplasmic reticulum Ca2+ -adenosine triphosphatase 2a pump (SERCA2a ) and ryanodine receptor (RyR2 ) function. Administration of anti-TWEAK antibody after reperfusion significantly improved alterations in Ca2+ cycling and arrhythmogenic events and prevented SERCA2a and RyR2 modifications. In conclusion, this study establishes the relevance of the TWEAK-Fn14 pathway in cardiac dysfunction linked to CRS3, both as a predictor of mortality in patients with AKI and as a Ca2+ mishandling inducer in cardiomyocytes, and highlights the cardioprotective benefits of TWEAK targeting in CRS3. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Injúria Renal Aguda , Cálcio , Humanos , Camundongos , Animais , Cálcio/metabolismo , Receptor de TWEAK/metabolismo , Estudos Retrospectivos , Citocina TWEAK/metabolismo , Fatores de Necrose Tumoral/metabolismo , Miócitos Cardíacos/metabolismo , Injúria Renal Aguda/metabolismo
18.
J Transl Med ; 21(1): 544, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580750

RESUMO

BACKGROUND: Tumour necrosis factor superfamily protein 14 (TNFSF14), also called LIGHT, is an important regulator of immunological and fibrosis diseases. However, its specific involvement in cardiac fibrosis and atrial fibrillation (AF) has not been fully elucidated. The objective of this study is to examine the influence of LIGHT on the development of myocardial fibrosis and AF. METHODS: PCR arrays of peripheral blood mononuclear cells (PBMCs) from patients with AF and sinus rhythm was used to identify the dominant differentially expressed genes, followed by ELISA to evaluate its serum protein levels. Morphological, functional, and electrophysiological changes in the heart were detected in vivo after the tail intravenous injection of recombinant LIGHT (rLIGHT) in mice for 4 weeks. rLIGHT was used to stimulate bone marrow-derived macrophages (BMDMs) to prepare a macrophage-conditioned medium (MCM) in vitro. Then, the MCM was used to culture mouse cardiac fibroblasts (CFs). The expression of relevant proteins and genes was determined using qRT-PCR, western blotting, and immunostaining. RESULTS: The mRNA levels of LIGHT and TNFRSF14 were higher in the PBMCs of patients with AF than in those of the healthy controls. Additionally, the serum protein levels of LIGHT were higher in patients with AF than those in the healthy controls and were correlated with left atrial reverse remodelling. Furthermore, we demonstrated that rLIGHT injection promoted macrophage infiltration and M2 polarisation in the heart, in addition to promoting atrial fibrosis and AF inducibility in vivo, as detected with MASSON staining and atrial burst pacing respectively. RNA sequencing of heart samples revealed that the PI3Kγ/SGK1 pathway may participate in these pathological processes. Therefore, we confirmed the hypothesis that rLIGHT promotes BMDM M2 polarisation and TGB-ß1 secretion, and that this process can be inhibited by PI3Kγ and SGK1 inhibitors in vitro. Meanwhile, increased collagen synthesis and myofibroblast transition were observed in LIGHT-stimulated MCM-cultured CFs and were ameliorated in the groups treated with PI3Kγ and SGK1 inhibitors. CONCLUSION: LIGHT protein levels in peripheral blood can be used as a prognostic marker for AF and to evaluate its severity. LIGHT promotes cardiac fibrosis and AF inducibility by promoting macrophage M2 polarisation, wherein PI3Kγ and SGK1 activation is indispensable.


Assuntos
Fibrilação Atrial , Animais , Camundongos , Fibrilação Atrial/genética , Fibrose , Átrios do Coração/patologia , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Fatores de Necrose Tumoral/metabolismo , Humanos
19.
J Biochem Mol Toxicol ; 37(12): e23483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37503908

RESUMO

This study aimed to investigate the role and mechanism of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in liver fibrosis. The liver Kupffer cells (KCs) and mononuclear macrophages (J774A.1) were used as the objects of study to induce M1 polarization with LPS/IFN-γ. After TWEAK intervention, the M1 cell proportion and marker cytokine levels were detected. Thereafter, CD266 expression was silenced, and NLRP3 expression was inhibited by the NLRP3 inhibitor, so as to investigate the impact of TWEAK on M1 polarization of KCs. In addition, the mouse model of liver fibrosis was constructed to observe the influence of TWEAK on mouse liver fibrosis. According to our results, TWEAK promoted M1 polarization of liver KCs and J774A.1 cells, and silencing CD266 expression or treatment with the NLRP3 inhibitor suppressed the effect of TWEAK. In the mouse experiment, it was discovered that after knocking down NLRP3 expression or using NLRP3 inhibitor to antagonize the effect of TWEAK, the mouse liver function and M1 cell level in liver tissues were improved.


Assuntos
Cirrose Hepática , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Necrose Tumoral/metabolismo
20.
Front Immunol ; 14: 1178188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292216

RESUMO

Background: Neuroinflammation is an important factor causing numerous neurodegenerative pathologies. Inflammation can lead to abnormal neuronal structure and function and even death, followed by cognitive dysfunction. There is growing evidence that chlorogenic acid has anti-inflammatory effects and immunomodulatory activity. Purpose: The aim of this study was to elucidate the potential targets and molecular mechanisms of chlorogenic acid in the treatment of neuroinflammation. Methods: We used the lipopolysaccharide-induced neuroinflammation mouse model and the lipopolysaccharide-stimulated BV-2 cells in vitro model. Behavioral scores and experiments were used to assess cognitive dysfunction in mice. HE staining and immunohistochemistry were used to assess neuronal damage in the mouse brain. Immunofluorescence detected microglia polarization in mouse brain. Western blot and flow cytometry detected the polarization of BV-2 cells. The migration of BV-2 cells was detected by wound healing assay and transwell assay. Potential targets for chlorogenic acid to exert protective effects were predicted by network pharmacology. These targets were then validated using molecular docking and experiments. Results: The results of in vivo experiments showed that chlorogenic acid had an obvious ameliorating effect on neuroinflammation-induced cognitive dysfunction. We found that chlorogenic acid was able to inhibit BV-2 cells M1 polarization and promote BV-2 cells M2 polarization in vitro while also inhibiting the abnormal migration of BV-2 cells. Based on the network pharmacology results, we identified the TNF signaling pathway as a key signaling pathway in which chlorogenic acid exerts anti-neuroinflammatory effects. Among them, Akt1, TNF, MMP9, PTGS2, MAPK1, MAPK14, and RELA are the core targets for chlorogenic acid to function. Conclusion: Chlorogenic acid can inhibit microglial polarization toward the M1 phenotype and improve neuroinflammation-induced cognitive dysfunction in mice by modulating these key targets in the TNF signaling pathway.


Assuntos
Disfunção Cognitiva , Doenças Neuroinflamatórias , Disfunção Cognitiva/tratamento farmacológico , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias/induzido quimicamente , Ácido Clorogênico/uso terapêutico , Encéfalo , Transdução de Sinais , Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...