Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
1.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39325073

RESUMO

Deleterious mutations in the lipopolysaccharide responsive beige-like anchor protein (LRBA) gene cause severe childhood immune dysregulation. The complexity of the symptoms involving multiple organs and the broad range of unpredictable clinical manifestations of LRBA deficiency complicate the choice of therapeutic interventions. Although LRBA has been linked to Rab11-dependent trafficking of the immune checkpoint protein CTLA-4, its precise cellular role remains elusive. We show that LRBA, however, only slightly colocalizes with Rab11. Instead, LRBA is recruited by members of the small GTPase Arf protein family to the TGN and to Rab4+ endosomes, where it controls intracellular traffic. In patient-derived fibroblasts, loss of LRBA led to defects in the endosomal pathway promoting the accumulation of enlarged endolysosomes and lysosome secretion. Thus, LRBA appears to regulate flow through the endosomal system on Rab4+ endosomes. Our data strongly suggest functions of LRBA beyond CTLA-4 trafficking and provide a conceptual framework to develop new therapies for LRBA deficiency.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Endossomos , Homeostase , Lisossomos , Proteínas rab de Ligação ao GTP , Proteínas rab4 de Ligação ao GTP , Humanos , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , Proteínas rab4 de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Transporte Proteico , Fibroblastos/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Rede trans-Golgi/metabolismo , Células HeLa , Células HEK293 , Fator 1 de Ribosilação do ADP
2.
Sci Adv ; 10(36): eadq2950, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39231220

RESUMO

Eukaryotic cilia and flagella are essential for cell motility and sensory functions. Their biogenesis and maintenance rely on the intraflagellar transport (IFT). Several cargo adapters have been identified to aid IFT cargo transport, but how ciliary cargos are discharged from the IFT remains largely unknown. During our explorations of small GTPases ARL13 and ARL3 in Trypanosoma brucei, we found that ODA16, a known IFT cargo adapter present exclusively in motile cilia, is a specific effector of ARL3. In the cilia, active ARL3 GTPases bind to ODA16 and dissociate ODA16 from the IFT complex. Depletion of ARL3 GTPases stabilizes ODA16 interaction with the IFT, leading to ODA16 accumulation in cilia and defects in axonemal assembly. The interactions between human ODA16 homolog HsDAW1 and ARL GTPases are conserved, and these interactions are altered in HsDAW1 disease variants. These findings revealed a conserved function of ARL GTPases in IFT transport of motile ciliary components, and a mechanism of cargo unloading from the IFT.


Assuntos
Fatores de Ribosilação do ADP , Cílios , Proteínas de Protozoários , Trypanosoma brucei brucei , Humanos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Axonema/metabolismo , Transporte Biológico , Cílios/metabolismo , Flagelos/metabolismo , Ligação Proteica , Transporte Proteico , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/metabolismo
3.
Nat Commun ; 15(1): 7734, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232006

RESUMO

The adhesion receptor vascular endothelial (VE)-cadherin transduces an array of signals that modulate crucial lymphatic cell behaviors including permeability and cytoskeletal remodeling. Consequently, VE-cadherin must interact with a multitude of intracellular proteins to exert these functions. Yet, the full protein interactome of VE-cadherin in endothelial cells remains a mystery. Here, we use proximity proteomics to illuminate how the VE-cadherin interactome changes during junctional reorganization from dis-continuous to continuous junctions, triggered by the lymphangiogenic factor adrenomedullin. These analyses identified interactors that reveal roles for ADP ribosylation factor 6 (ARF6) and the exocyst complex in VE-cadherin trafficking and recycling. We also identify a requisite role for VE-cadherin in the in vitro and in vivo control of secretion of reelin-a lymphangiocrine glycoprotein with recently appreciated roles in governing heart development and injury repair. This VE-cadherin protein interactome shines light on mechanisms that control adherens junction remodeling and secretion from lymphatic endothelial cells.


Assuntos
Junções Aderentes , Antígenos CD , Caderinas , Células Endoteliais , Proteína Reelina , Animais , Humanos , Camundongos , Junções Aderentes/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Caderinas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Junções Intercelulares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Proteômica/métodos , Serina Endopeptidases/metabolismo
4.
Int Immunopharmacol ; 141: 112987, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39182267

RESUMO

Rheumatoid arthritis (RA) is an enduring autoimmune inflammatory condition distinguished by continual joint inflammation, hyperplasia of the synovium, erosion of bone, and deterioration of cartilage.Fibroblast-like synoviocytes (FLSs) exhibiting "tumor-like" traits are central to this mechanism.ADP-ribosylation factor-like 4c (ARL4C) functions as a Ras-like small GTP-binding protein, significantly impacting tumor migration, invasion, and proliferation.However, it remains uncertain if ARL4C participates in the stimulation of RA FLSs exhibiting "tumor-like" features, thereby fostering the advancement of RA. In our investigation, we unveiled, for the inaugural instance, via the amalgamated scrutiny of single-cell RNA sequencing (scRNA-seq) and Bulk RNA sequencing (Bulk-seq) datasets, that activated fibroblast-like synoviocytes (FLSs) showcase high expression of ARL4C, and the ARL4C protein expression in FLSs derived from RA patients significantly surpasses that observed in individuals with osteoarthritis (OA) and traumatic injury (trauma).Silencing of the ARL4C gene markedly impeded the proliferation of RA FLSs by hindered the transition of cells from the G0/G1 phase to the S phase, and intensified cell apoptosis and diminished the migratory and invasive capabilities. Co-culture of ARL4C gene-silenced RA FLSs with monocytes/macrophages significantly inhibited the polarization of monocytes/macrophages toward M1 and the repolarization of M2 to M1.Furthermore, intra-articular injection of shARL4C significantly alleviated synovial inflammation and cartilage erosion in collagen-induced arthritis (CIA) rats. In conclusion, our discoveries propose that ARL4C assumes a central role in the synovial inflammation, cartilage degradation, and bone erosion associated with RA by triggering the PI3K/AKT and MAPK signaling pathways within RA FLSs.ARL4C holds promise as a prospective target for the development of pharmaceutical agents targeting FLSs, with the aim of addressing RA.


Assuntos
Fatores de Ribosilação do ADP , Artrite Reumatoide , Macrófagos , Sinoviócitos , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Humanos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Macrófagos/imunologia , Macrófagos/metabolismo , Ratos , Análise de Célula Única , Progressão da Doença , Proliferação de Células , Células Cultivadas
5.
Nat Commun ; 15(1): 6613, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098861

RESUMO

Tumour-host immune interactions lead to complex changes in the tumour microenvironment (TME), impacting progression, metastasis and response to therapy. While it is clear that cancer cells can have the capacity to alter immune landscapes, our understanding of this process is incomplete. Herein we show that endocytic trafficking at the plasma membrane, mediated by the small GTPase ARF6, enables melanoma cells to impose an immunosuppressive TME that accelerates tumour development. This ARF6-dependent TME is vulnerable to immune checkpoint blockade therapy (ICB) but in murine melanoma, loss of Arf6 causes resistance to ICB. Likewise, downregulation of ARF6 in patient tumours correlates with inferior overall survival after ICB. Mechanistically, these phenotypes are at least partially explained by ARF6-dependent recycling, which controls plasma membrane density of the interferon-gamma receptor. Collectively, our findings reveal the importance of endomembrane trafficking in outfitting tumour cells with the ability to shape their immune microenvironment and respond to immunotherapy.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Membrana Celular , Inibidores de Checkpoint Imunológico , Melanoma , Microambiente Tumoral , Microambiente Tumoral/imunologia , Animais , Humanos , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Melanoma/imunologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Receptor de Interferon gama , Receptores de Interferon/metabolismo , Receptores de Interferon/genética , Transporte Proteico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/genética , Camundongos Endogâmicos C57BL , Feminino
6.
J Agric Food Chem ; 72(34): 19028-19039, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39150252

RESUMO

The somatic embryo (SE) has bipolar characteristics, which is an ideal material for large-scale microproduction of woody plants represented by apples, and the somatic embryo is also an excellent receptor for genetic transformation. The formation of embryogenic cells is a prerequisite for somatic embryogenesis to occur. The embryogenic cells of apples cannot be obtained without induction of exogenous auxin, but how the auxin pathway regulates this process remains unknown. In this study, via RNA sequencing, MdARF5 and MdAHL15 were identified as differentially expressed genes involved in this process. Overexpression of MdARF5 and MdAHL15 induced the formation and proliferation of embryogenic cells and thus substantially shortened the induction cycle and improved the somatic embryo proliferation efficiency. A yeast one-hybrid assay showed that MdARF5 can directly bind to the promoter of MdAHL15. ß-Glucuronidase (GUS) and dual-luciferase reporter assays revealed that MdARF5 activation of MdAHL15 transcription was substantial. In conclusion, our results suggest that MdAHL15 is induced by auxin and promotes the formation of embryogenic cells in early somatic embryogenesis via the positive regulation of MdARF5 in apples. The results will provide a theoretical basis for somatic embryogenesis-based development, reproduction, and transgenic breeding in apples.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Técnicas de Embriogênese Somática de Plantas
7.
PLoS Biol ; 22(8): e3002751, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39137170

RESUMO

ADP ribosylation factor-like GTPase 2 (Arl2) is crucial for controlling mitochondrial fusion and microtubule assembly in various organisms. Arl2 regulates the asymmetric division of neural stem cells in Drosophila via microtubule growth. However, the function of mammalian Arl2 during cortical development was unknown. Here, we demonstrate that mouse Arl2 plays a new role in corticogenesis via regulating microtubule growth, but not mitochondria functions. Arl2 knockdown (KD) leads to impaired proliferation of neural progenitor cells (NPCs) and neuronal migration. Arl2 KD in mouse NPCs significantly diminishes centrosomal microtubule growth and delocalization of centrosomal proteins Cdk5rap2 and γ-tubulin. Moreover, Arl2 physically associates with Cdk5rap2 by in silico prediction using AlphaFold multimer, which was validated by co-immunoprecipitation and proximity ligation assay. Remarkably, Cdk5rap2 overexpression significantly rescues the neurogenesis defects caused by Arl2 KD. Therefore, Arl2 plays an important role in mouse cortical development through microtubule growth via the centrosomal protein Cdk5rap2.


Assuntos
Proteínas de Ciclo Celular , Centrossomo , Microtúbulos , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Animais , Microtúbulos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Neurogênese/genética , Células-Tronco Neurais/metabolismo , Centrossomo/metabolismo , Proliferação de Células , Movimento Celular , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Tubulina (Proteína)/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética
9.
J Cell Sci ; 137(15)2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39056156

RESUMO

Small GTPases switch between GDP- and GTP-bound states during cell signaling. The ADP-ribosylation factor (ARF) family of small GTPases is involved in vesicle trafficking. Although evolutionarily well conserved, little is known about ARF and ARF-like GTPases in plants. We characterized biochemical properties and cellular localization of the essential small ARF-like GTPase TITAN 5 (TTN5; also known as HALLIMASCH, ARL2 and ARLC1) from Arabidopsis thaliana, and two TTN5 proteins with point mutants in conserved residues, TTN5T30N and TTN5Q70L, that were expected to be unable to perform nucleotide exchange and GTP hydrolysis, respectively. TTN5 exhibited very rapid intrinsic nucleotide exchange and remarkably low GTP hydrolysis activity, functioning as a non-classical small GTPase being likely present in a GTP-loaded active form. We analyzed signals from YFP-TTN5 and HA3-TTN5 by in situ immunolocalization in Arabidopsis seedlings and through use of a transient expression system. Colocalization with endomembrane markers and pharmacological treatments suggests that TTN5 can be present at the plasma membrane and that it dynamically associates with membranes of vesicles, Golgi stacks and multivesicular bodies. Although TTN5Q70L mirrored wild-type TTN5 behavior, the TTN5T30N mutant differed in some aspects. Hence, the unusual rapid nucleotide exchange activity of TTN5 is linked with its membrane dynamics, and TTN5 likely has a role in vesicle transport within the endomembrane system.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Guanosina Trifosfato/metabolismo , Membrana Celular/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Hidrólise , Complexo de Golgi/metabolismo
10.
Biochem Pharmacol ; 227: 116446, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39038552

RESUMO

Cerebral ischemia/reperfusion (CIRI) is a leading cause of death worldwide. A small GTPase known as ADP-ribosylation factor-like protein 13B (ARL13B) is essential in several illnesses. The role of ARL13B in CIRI remains unknown, though. A middle cerebral artery occlusion/reperfusion (MCAO/R) in rats as well as an oxygen-glucose deprivation/reoxygenation (OGD/R) models in PC12 cells were constructed. The neuroprotective effects of ARL13B against MCAO/R were evaluated using neurological scores, TTC staining, rotarod testing, H&E staining, and Nissl staining. To detect the expression of proteins associated with the SHH pathway and apoptosis, western blotting and immunofluorescence were employed. Apoptosis was detected using TUNEL assays and flow cytometry. There was increased expression of ARL13B in cerebral ischemia/reperfusion models. However, ARL13B knockdown aggravated CIRI nerve injury by inhibiting the sonic hedgehog (SHH) pathway. In addition, the use of SHH pathway agonist (SAG) can increased ARL13B expression, reverse the effects of ARL13B knockdown exacerbating CIRI nerve injury. ARL13B alleviated cerebral infarction and pathological injury and played a protective role against MCAO/R. Furthermore, ARL13B significantly increased the expression of SHH pathway-related proteins and the anti-apoptotic protein BCL-2, while decreased the expression of pro-apoptotic protein BAX, thus reducing apoptosis. The results from the OGD/R model in PC12 cells were consistent with those obtained in vivo. Surprisingly, we demonstrated that ARL13B regulates the cell cycle to protect against CIRI nerve injury. Our findings indicate that ARL13B protects against CIRI by reducing apoptosis through SHH-dependent pathway activation, and suggest that ARL13B plays a crucial role in CIRI pathogenesis.


Assuntos
Fatores de Ribosilação do ADP , Proteínas Hedgehog , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Apoptose/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Proteínas Hedgehog/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Fármacos Neuroprotetores/farmacologia , Células PC12 , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Transdução de Sinais/fisiologia
11.
FASEB J ; 38(13): e23739, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38884157

RESUMO

Arf6 is a member of ADP-ribosylation factor (Arf) family, which is widely implicated in the regulation of multiple physiological processes including endocytic recycling, cytoskeletal organization, and membrane trafficking during mitosis. In this study, we investigated the potential relationship between Arf6 and aging-related oocyte quality, and its roles on organelle rearrangement and cytoskeleton dynamics in porcine oocytes. Arf6 expressed in porcine oocytes throughout meiotic maturation, and it decreased in aged oocytes. Disruption of Arf6 led to the failure of cumulus expansion and polar body extrusion. Further analysis indicated that Arf6 modulated ac-tubulin for meiotic spindle organization and microtubule stability. Besides, Arf6 regulated cofilin phosphorylation and fascin for actin assembly, which further affected spindle migration, indicating the roles of Arf6 on cytoskeleton dynamics. Moreover, the lack of Arf6 activity caused the dysfunction of Golgi and ER for protein synthesis and signal transduction. Mitochondrial dysfunction was also observed in Arf6-deficient porcine oocytes, which was supported by the increased ROS level and abnormal membrane potential. In conclusion, our results reported that insufficient Arf6 was related to aging-induced oocyte quality decline through spindle organization, actin assembly, and organelle rearrangement in porcine oocytes.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Oócitos , Animais , Oócitos/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Suínos , Feminino , Meiose/fisiologia , Fuso Acromático/metabolismo , Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
FEBS Lett ; 598(12): 1491-1505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862211

RESUMO

Membrane protrusions are fundamental to cellular functions like migration, adhesion, and communication and depend upon dynamic reorganization of the cytoskeleton. GAP-dependent GTP hydrolysis of Arf proteins regulates actin-dependent membrane remodeling. Here, we show that dAsap regulates membrane protrusions in S2R+ cells by a mechanism that critically relies on its ArfGAP domain and relocalization of actin regulators, SCAR, and Ena. While our data reinforce the preference of dAsap for Arf1 GTP hydrolysis in vitro, we demonstrate that induction of membrane protrusions in S2R+ cells depends on Arf6 inactivation. This study furthers our understanding of how dAsap-dependent GTP hydrolysis maintains a balance between active and inactive states of Arf6 to regulate cell shape.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Actinas , Proteínas Ativadoras de GTPase , Animais , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Actinas/metabolismo , Camundongos , Extensões da Superfície Celular/metabolismo , Humanos , Linhagem Celular , Guanosina Trifosfato/metabolismo , Hidrólise
13.
Arch Biochem Biophys ; 758: 110049, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38879142

RESUMO

Formation of transport vesicles requires the coordinate activity of the coating machinery that selects cargo into the nascent vesicle and the membrane bending machinery that imparts curvature to the forming bud. Vesicle coating at the trans-Golgi Network (TGN) involves AP1, GGA2 and clathrin, which are recruited to membranes by activated ARF GTPases. The ARF activation at the TGN is mediated by the BIG1 and BIG2 guanine nucleotide exchange factors (GEFs). Membrane deformation at the TGN has been shown to be mediated by lipid flippases, including ATP8A1, that moves phospholipids from the inner to the outer leaflet of the TGN membrane. We probed a possible coupling between the coating and deformation machineries by testing for an interaction between BIG1, BIG2 and ATP8A1, and by assessing whether such an interaction may influence coating efficiency. Herein, we document that BIG1 and BIG2 co-localize with ATP8A1 in both, static and highly mobile TGN elements, and that BIG1 and BIG2 bind ATP8A1. We show that the interaction involves the catalytic Sec7 domain of the GEFs and the cytosolic C-terminal tail of ATP8A1. Moreover, we report that the expression of ATP8A1, but not ATP8A1 lacking the GEF-binding cytosolic tail, increases the generation of activated ARFs at the TGN and increases the selective recruitment of AP1, GGA2 and clathrin to TGN membranes. This occurs without increasing BIG1 or BIG2 levels at the TGN, suggesting that the binding of the ATP8A1 flippase tail to the Sec7 domain of BIG1/BIG2 increases their catalytic activity. Our results support a model in which a flippase component of the deformation machinery impacts the activity of the GEF component of the coating machinery.


Assuntos
Fatores de Ribosilação do ADP , Fatores de Troca do Nucleotídeo Guanina , Rede trans-Golgi , Rede trans-Golgi/metabolismo , Humanos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Adenosina Trifosfatases/metabolismo , Células HeLa , Ligação Proteica , Proteínas de Membrana , Proteínas de Transferência de Fosfolipídeos
14.
Traffic ; 25(5): e12936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725127

RESUMO

Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Endossomos , Fatores de Troca do Nucleotídeo Guanina , Fator de Crescimento Neural , Crescimento Neuronal , Receptor trkA , Animais , Camundongos , Ratos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Endossomos/metabolismo , Gânglios Espinais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos Knockout , Fator de Crescimento Neural/metabolismo , Células PC12 , Transporte Proteico , Receptor trkA/metabolismo
15.
Am J Med Genet A ; 194(9): e63658, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38712921

RESUMO

We present a case study of a patient exhibiting acquired microcephaly along with global developmental delay and drug-resistant epilepsy. Brain magnetic resonance imaging revealed distinctive features, including a Z-shaped morphology of the brainstem, volumetric reduction of white matter, diffuse thinning of the corpus callosum, and partial fusion of the cerebellar hemispheres at their most cranial portion. Whole-exome sequencing uncovered a pathogenic variant in the ARF3 gene c.200A>T, p.(Asp67Val). The neurodevelopmental disorder associated with the ARF3 gene is exceptionally rare, with only two previously documented cases in the literature. This disorder is characterized by global developmental delay and brain malformations, particularly affecting the white matter, cerebellum, and brainstem. It can also manifest as acquired microcephaly and epilepsy. These phenotypic characteristics align with Golgipathies, underscoring the significance of considering this group of conditions in relevant clinical contexts. In cases where a Z-shaped morphology of the brainstem is observed, ARF3-associated disorder should be included in the list of differential diagnoses.


Assuntos
Fatores de Ribosilação do ADP , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Fatores de Ribosilação do ADP/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Sequenciamento do Exoma , Predisposição Genética para Doença , Imageamento por Ressonância Magnética , Microcefalia/genética , Microcefalia/patologia , Microcefalia/diagnóstico , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Fenótipo , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Pré-Escolar
16.
Cancer Lett ; 594: 216994, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801885

RESUMO

Increasing evidence suggests the importance of CD24 in tumor progression, but its role and mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. The present study aims to explore the potential of CD24 as a novel predictive biomarker in ESCC, as well as its mechanism and therapeutic implications in metastasis and 5-FU chemoresistance. By using tissue microarray and immunohistochemistry, we found that CD24 expression was higher in ESCC tumor tissues than paired non-tumor tissues, further indicating that CD24 was markedly associated with poor prognosis. CD24 significantly promoted metastasis and 5-FU chemoresistance in vitro and in vivo. Mechanistically, CD24 competes with GIT2 to bind to Arf6, and stabilizes Arf6-GTP to activate the subsequent ERK pathway, thus promoting cancer progression. In addition, a significant positive correlation between CD24 and p-ERK was observed in clinical ESCC tissues. In summary, this study not only reveals CD24 as a regulatory factor for Arf6 activity, but also uncovers CD24-Arf6-ERK signaling axis as a novel mechanism of ESCC progression. Our findings suggest CD24 as a promising biomarker and therapeutic target in ESCC.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Antígeno CD24 , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Antígeno CD24/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Linhagem Celular Tumoral , Masculino , Feminino , Camundongos , Sistema de Sinalização das MAP Quinases , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Pessoa de Meia-Idade , Camundongos Nus
17.
Microbiol Res ; 285: 127779, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810485

RESUMO

Guanine nucleotide-binding proteins of the ADP ribosylation factor (Arf) family and their activating proteins (Arf-GAPs) are essential for diverse biological processes. Here, two homologous Arf-GAPs, Age1 (AoAge1) and Age2 (AoAge2), were identified in the widespread nematode-trapping fungus Arthrobotrys oligospora. Our results demonstrated that AoAge1, especially AoAge2, played crucial roles in mycelial growth, sporulation, trap production, stress response, mitochondrial activity, DNA damage, endocytosis, reactive oxygen species production, and autophagy. Notably, transcriptome data revealed that approximately 62.7% of the genes were directly or indirectly regulated by AoAge2, and dysregulated genes in Aoage2 deletion were enriched in metabolism, ribosome biogenesis, secondary metabolite biosynthesis, and autophagy. Furthermore, Aoage2 inactivation caused a substantial reduction in several compounds compared to the wild-type strain. Based on these results, a regulatory network for AoAge1 and AoAge2 was proposed and verified using a yeast two-hybrid assay. Based on our findings, AoAge1 and AoAge2 are essential for vegetative growth and mycelial development. Specifically, AoAge2 is required for sporulation and trapping morphogenesis. Our results demonstrated the critical functions of AoAge1 and AoAge2 in mycelial growth, diverse cellular processes, and pathogenicity, offering deep insights into the functions and regulatory mechanisms of Arf-GAPs in nematode-trapping fungi.


Assuntos
Ascomicetos , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Metabolismo Secundário , Esporos Fúngicos , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Autofagia , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Micélio/genética , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Transcriptoma , Virulência , Dano ao DNA , Perfilação da Expressão Gênica
18.
Adv Sci (Weinh) ; 11(29): e2309642, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816950

RESUMO

Cholesterol 25-hydroxylase (CH25H), an enzyme involved in cholesterol metabolism, regulates inflammatory responses and lipid metabolism. However, its role in kidney disease is not known.  The author found that CH25H transcript is expressed mostly in glomerular and peritubular endothelial cells and that its expression increased in human and mouse diabetic kidneys.  Global deletion of Ch25h in Leprdb/db mice aggravated diabetic kidney disease (DKD), which is associated with increased endothelial cell apoptosis. Treatment of 25-hydroxycholesterol (25-HC), the product of CH25H, alleviated kidney injury in Leprdb/db mice. Mechanistically, 25-HC binds to GTP-binding protein ADP-ribosylation factor 4 (ARF4), an essential protein required for maintaining protein transport in the Golgi apparatus. Interestingly, ARF4's GTPase-activating protein ASAP1 is also predominantly expressed in endothelial cells and its expression increased in DKD. Suppression of ARF4 activity by deleting ARF4 or overexpressing ASAP1 results in endothelial cell death. These results indicate that 25-HC binds ARF4 to inhibit its interaction with ASAP1, and thereby resulting in enhanced ARF4 activity to confer renoprotection. Therefore, treatment of 25-HC improves kidney injury in DKD in part by restoring ARF4 activity to maintain endothelial cell survival. This study provides a novel mechanism and a potential new therapy for DKD.


Assuntos
Fatores de Ribosilação do ADP , Nefropatias Diabéticas , Esteroide Hidroxilases , Animais , Humanos , Masculino , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Modelos Animais de Doenças , Hidroxicolesteróis , Camundongos Endogâmicos C57BL , Esteroide Hidroxilases/metabolismo , Esteroide Hidroxilases/genética
19.
Int J Biol Macromol ; 268(Pt 2): 131839, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663699

RESUMO

Streptococcus suis (S. suis) is a significant zoonotic microorganism that causes a severe illness in both pigs and humans and is characterized by severe meningitis and septicemia. Suilysin (SLY), which is secreted by S. suis, plays a crucial role as a virulence factor in the disease. To date, the interaction between SLY and host cells is not fully understood. In this study, we identified the interacting proteins between SLY and human brain microvascular endothelial cells (HBMECs) using the TurboID-mediated proximity labeling method. 251 unique proteins were identified in TurboID-SLY treated group, of which six plasma membrane proteins including ARF6, GRK6, EPB41L5, DSC1, TJP2, and PNN were identified. We found that the proteins capable of interacting with SLY are ARF6 and PNN. Subsequent investigations revealed that ARF6 substantially increased the invasive ability of S. suis in HBMECs. Furthermore, ARF6 promoted SLY-induced the activation of p38 MAPK signaling pathway in HBMECs. Moreover, ARF6 promoted the apoptosis in HBMECs through the activation of p38 MAPK signaling pathway induced by SLY. Finally, we confirmed that ARF6 could increase the virulence of SLY in C57BL/6 mice. These findings offer valuable insights that contribute to a deeper understanding of the pathogenic mechanism of SLY.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Apoptose , Células Endoteliais , Proteínas Hemolisinas , Streptococcus suis , Streptococcus suis/patogenicidade , Streptococcus suis/metabolismo , Humanos , Animais , Apoptose/efeitos dos fármacos , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/microbiologia , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/metabolismo , Virulência , Encéfalo/metabolismo
20.
J Biol Chem ; 300(6): 107327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679330

RESUMO

Normal receptor tyrosine kinases (RTKs) need to reach the plasma membrane (PM) for ligand-induced activation, whereas its cancer-causing mutants can be activated before reaching the PM in organelles, such as the Golgi/trans-Golgi network (TGN). Inhibitors of protein export from the endoplasmic reticulum (ER), such as brefeldin A (BFA) and 2-methylcoprophilinamide (M-COPA), can suppress the activation of mutant RTKs in cancer cells, suggesting that RTK mutants cannot initiate signaling in the ER. BFA and M-COPA block the function of ADP-ribosylation factors (ARFs) that play a crucial role in ER-Golgi protein trafficking. However, among ARF family proteins, the specific ARFs inhibited by BFA or M-COPA, that is, the ARFs involved in RTKs transport from the ER, remain unclear. In this study, we showed that M-COPA blocked the export of not only KIT but also PDGFRA/EGFR/MET RTKs from the ER. ER-retained RTKs could not fully transduce anti-apoptotic signals, thereby leading to cancer cell apoptosis. Moreover, a single knockdown of ARF1, ARF3, ARF4, ARF5, or ARF6 could not block ER export of RTKs, indicating that BFA/M-COPA treatment cannot be mimicked by the knockdown of only one ARF member. Interestingly, simultaneous transfection of ARF1, ARF4, and ARF5 siRNAs mirrored the effect of BFA/M-COPA treatment. Consistent with these results, in vitro pulldown assays showed that BFA/M-COPA blocked the function of ARF1, ARF4, and ARF5. Taken together, these results suggest that BFA/M-COPA targets at least ARF1, ARF4, and ARF5; in other words, RTKs require the simultaneous activation of ARF1, ARF4, and ARF5 for their ER export.


Assuntos
Fator 1 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Brefeldina A , Retículo Endoplasmático , Transporte Proteico , Humanos , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Retículo Endoplasmático/metabolismo , Fator 1 de Ribosilação do ADP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Brefeldina A/farmacologia , Transporte Proteico/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Células HeLa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...