Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 49(7): 743-750, 2024 Jul 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39020493

RESUMO

OBJECTIVES: To observe the effect of electroacupuncture (EA) pre-conditioning on the expression rhythm of clock gene Bmal1 in the uterine tissue of rats with controlled ovarian hyperstimulation(COH), so as to explore its mechanisms underlying improvement of the endometrial receptivity of ovarian superovulation during implantation. METHODS: Seventy-two female SD rats with typical estrous cycles were randomly divided into normal control, model and EA pre-conditioning (pre-EA) groups, with 24 rats in each group. The COH model was established by giving the rats with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (HCG) by intraperitoneal injection. The rats of the pre-EA group received EA stimulation (1 Hz/5 Hz, a tolerable strength) of "Guanyuan"(CV4) and "Sanyinjiao"(SP6) for 15 min each time, once daily (at 21:00 every day). After successive EA intervention during the first two estrous cycles, the modeling began in the third estrus cycle and the EA intervention was continued till the end of modeling, followed by raising the rats with superovulation induction and male rats undergoing vasoligation in one cage (1∶1). The rats during the estrum in the normal control group or those of the model group at the end of modeling were raised together with the male rats undergoing vasoligation in one cage. On the 5th day (04:00 AM) after raising in one cage, the rats in the three groups were sacrificed in six batches every 4 hours, with 4 rats in each group in each batch. The H.E. staining was used for revealing alterations of the endometrial thickness, number of glands and blood vessels and tissue histology, and ELISA employed to ascertain the contents of estradiol (E2) and progesterone (Pg) in serum. The expression rhythm of core clock gene Bmal1 [In the present study, Zeitgeber time (ZT) is an artificially set laboratory time, i.e., ZT7 (07:00) is light on and ZT19 (19:00) is light off.] and the expression of endometrial HoxA10 and leukemia inhibitory factor (LIF) mRNAs were detected by quantitative real-time PCR. The Western blot was employed to detect the expression levels of HoxA10 and LIF proteins. RESULTS: Findings of the clock gene Bmal1 level showed that the expression peak was at ZT12 and the valley value at ZT20 in the normal control group, and that of the peak value was at ZT20 and valley value at ZT12 in the model group, while in the pre-EA group, the peak value was at ZT8, and the valley value at ZT4. The difference of Bmal1 levels among the three groups was most significant at ZT12 (12:00), therefore, the tissue samples were taken at ZT12 in this study for comparison of the levels of different indexes among the 3 groups. Compared with the control group, the endometrial thickness, number of glands and blood vessels, HoxA10 and LIF mRNAs and proteins were significantly down-regulated (P<0.01, P<0.05), and contents of serum E2 and Pg were considerably up-regulated in the model group (P<0.01, P<0.05). Relevant to the model group, the pre-EA group had an apparent increase in the endometrial thickness, number of glands and blood vessels, and expression levels of HoxA10 and LIF mRNAs and proteins (P<0.05, P<0.01), and a marked decrease in the serum Pg (P<0.05). At the ZT12 (12:00 noon), compared with the normal control group, the mRNA level of Bmal1 was significantly decreased in the model group (P<0.01);and compared with the model group, the level of Bmal1 mRNA was significantly increased in the pre-EA group (P<0.05). In addition, at the node of ZT16, the mRNA level of Bmal1 was significantly decreased in the model group in comparison with the normal control group (P<0.01). CONCLUSIONS: EA preconditioning can improve the endometrial receptivity during the implantation window period in rats with COH, which may be related to its functions in regulating the expression of clock gene Bmal1 in the uterine tissue and in correcting the disturbance of clock gene rhythm.


Assuntos
Fatores de Transcrição ARNTL , Eletroacupuntura , Ratos Sprague-Dawley , Útero , Animais , Feminino , Ratos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Útero/metabolismo , Humanos , Masculino , Pontos de Acupuntura , Indução da Ovulação
2.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000480

RESUMO

The regulation of the circadian clock plays an important role in influencing physiological conditions. While it is reported that the timing and quantity of energy intake impact circadian regulation, the underlying mechanisms remain unclear. This study investigated the impact of dietary protein intake on peripheral clocks. Firstly, transcriptomic analysis was conducted to investigate molecular targets of low-protein intake. Secondly, mPer2::Luc knock-in mice, fed with either a low-protein, normal, or high-protein diet for 6 weeks, were analyzed for the oscillation of PER2 expression in peripheral tissues and for the expression profiles of circadian and metabolic genes. Lastly, the candidate pathway identified by the in vivo analysis was validated using AML12 cells. As a result, using transcriptomic analysis, we found that the low-protein diet hardly altered the circadian rhythm in the central clock. In animal experiments, expression levels and period lengths of PER2 were different in peripheral tissues depending on dietary protein intake; moreover, mRNA levels of clock-controlled genes and endoplasmic reticulum (ER) stress genes were affected by dietary protein intake. Induction of ER stress in AML12 cells caused an increased amplitude of Clock and Bmal1 and an advanced peak phase of Per2. This result shows that the intake of different dietary protein ratios causes an alteration of the circadian rhythm, especially in the peripheral clock of mice. Dietary protein intake modifies the oscillation of ER stress genes, which may play key roles in the regulation of the circadian clock.


Assuntos
Ritmo Circadiano , Proteínas Alimentares , Proteínas Circadianas Period , Animais , Camundongos , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Alimentares/administração & dosagem , Estresse do Retículo Endoplasmático , Relógios Circadianos/genética , Masculino , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Perfilação da Expressão Gênica , Linhagem Celular , Transcriptoma
3.
Nutrients ; 16(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39064706

RESUMO

Circadian rhythm plays an important role in intestinal homeostasis and intestinal immune function. Circadian rhythm dysregulation was reported to induce intestinal microbiota dysbiosis, intestinal barrier disruption, and trigger intestinal inflammation. However, the relationship between intestinal microbiota metabolites and the circadian rhythm of the intestinal barrier was still unclear. Urolithin A (UA), a kind of intestinal microbial metabolite, was selected in this study. Results showed UA influenced on the expression rhythm of the clock genes BMAL1 and PER2 in intestinal epithelial cells. Furthermore, the study investigated the effects of UA on the expression rhythms of clock genes (BMAL1 and PER2) and tight junctions (OCLN, TJP1, and CLND1), all of which were dysregulated by inflammation. In addition, UA pre-treatment by oral administration to female C57BL/6 mice showed the improvement in the fecal IgA concentrations, tight junction expression (Clnd1 and Clnd4), and clock gene expression (Bmal1 and Per2) in a DSS-induced colitis model induced using DSS treatment. Finally, the Nrf2-SIRT1 signaling pathway was confirmed to be involved in UA's effect on the circadian rhythm of intestinal epithelial cells by antagonist treatment. This study also showed evidence that UA feeding showed an impact on the central clock, which are circadian rhythms in SCN. Therefore, this study highlighted the potential of UA in treating diseases like IBD with sleeping disorders by improving the dysregulated circadian rhythms in both the intestinal barrier and the SCN.


Assuntos
Ritmo Circadiano , Colite , Cumarínicos , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Animais , Ritmo Circadiano/efeitos dos fármacos , Feminino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Camundongos , Cumarínicos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Sulfato de Dextrana , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoglobulina A/metabolismo , Sirtuína 1
4.
CNS Neurosci Ther ; 30(7): e14798, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015099

RESUMO

BACKGROUND: Sleep deprivation (SD) is a growing global health problem with many deleterious effects, such as cognitive impairment. Microglia activation-induced neuroinflammation may be an essential factor in this. Propofol has been shown to clear sleep debt after SD in rats. This study aims to evaluate the effects of propofol-induced sleep on ameliorating sleep quality impairment and cognitive decline after 48 h SD. METHODS: Almost 8-12-week-old rats were placed in the SD system for 48 h of natural sleep or continuous SD. Afterwards, rats received propofol (20 mg·kg-1·h-1, 6 h) via the tail or slept naturally. The Morris water maze (MWM) and Y-maze test assessed spatial learning and memory abilities. Rat EEG/EMG monitored sleep. The expression of brain and muscle Arnt-like protein 1 (BMAL1), brain-derived neurotrophic factor (BDNF) in the hippocampus and BMAL1 in the hypothalamus were assessed by western blot. Enzyme-linked immunosorbent assay detected IL-6, IL-1ß, arginase 1 (Arg1), and IL-10 levels in the hippocampus. Immunofluorescence was used to determine microglia expression as well as morphological changes. RESULTS: Compared to the control group, the sleep-deprived rats showed poor cognitive performance on both the MWM test and the Y-maze test, accompanied by disturbances in sleep structure, including increased total sleep time, and increased time spent and delta power in non-rapid eye movement sleep. In addition, SD induces abnormal expression of the circadian rhythm protein BMAL1, activates microglia, and causes neuroinflammation and nerve damage. Propofol reversed these changes and saved sleep and cognitive impairment. Furthermore, propofol treatment significantly reduced hippocampal IL-1ß and IL-6 levels, increased BDNF, Arg1, and IL-10 levels, and switched microglia surface markers from the inflammatory M1 type to the anti-inflammatory M2 type. CONCLUSION: Propofol reduces SD-induced cognitive impairment and circadian rhythm disruption, possibly by lowering neuronal inflammation and switching the microglia phenotype from an M1 to an M2 activated state, thus exerting neuroprotective effects.


Assuntos
Fatores de Transcrição ARNTL , Disfunção Cognitiva , Aprendizagem em Labirinto , Microglia , Propofol , Ratos Sprague-Dawley , Privação do Sono , Animais , Privação do Sono/complicações , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/biossíntese , Masculino , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Ratos , Propofol/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Sono/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
5.
Mol Metab ; 86: 101980, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950777

RESUMO

OBJECTIVE: In this investigation, we addressed the contribution of the core circadian clock factor, BMAL1, in skeletal muscle to both acute transcriptional responses to exercise and transcriptional remodeling in response to exercise training. Additionally, we adopted a systems biology approach to investigate how loss of skeletal muscle BMAL1 altered peripheral tissue homeostasis as well as exercise training adaptations in iWAT, liver, heart, and lung of male mice. METHODS: Combining inducible skeletal muscle specific BMAL1 knockout mice, physiological testing and standardized exercise protocols, we performed a multi-omic analysis (transcriptomics, chromatin accessibility and metabolomics) to explore loss of muscle BMAL1 on muscle and peripheral tissue responses to exercise. RESULTS: Muscle-specific BMAL1 knockout mice demonstrated a blunted transcriptional response to acute exercise, characterized by the lack of upregulation of well-established exercise responsive transcription factors including Nr4a3 and Ppargc1a. Six weeks of exercise training in muscle-specific BMAL1 knockout mice induced significantly greater and divergent transcriptomic and metabolomic changes in muscle. Surprisingly, liver, lung, inguinal white adipose and heart showed divergent exercise training transcriptomes with less than 5% of 'exercise-training' responsive genes shared for each tissue between genotypes. CONCLUSIONS: Our investigation has uncovered the critical role that BMAL1 plays in skeletal muscle as a key regulator of gene expression programs for both acute exercise and training adaptations. In addition, our work has uncovered the significant impact that altered exercise response in muscle and its likely impact on the system plays in the peripheral tissue adaptations to exercise training. Our work also demonstrates that if the muscle adaptations diverge to a more maladaptive state this is linked to increased gene expression signatures of inflammation across many tissues. Understanding the molecular targets and pathways contributing to health vs. maladaptive exercise adaptations will be critical for the next stage of therapeutic design for exercise mimetics.


Assuntos
Fatores de Transcrição ARNTL , Camundongos Knockout , Músculo Esquelético , Condicionamento Físico Animal , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Músculo Esquelético/metabolismo , Camundongos , Condicionamento Físico Animal/fisiologia , Masculino , Adaptação Fisiológica , Transcriptoma , Fígado/metabolismo , Treino Aeróbico , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Resistência Física/fisiologia , Resistência Física/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
6.
Free Radic Res ; 58(5): 311-322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38946540

RESUMO

It is well known that the adaptations of muscular antioxidant system to aerobic exercise depend on the frequency, intensity, duration, type of the exercise. Nonetheless, the timing of aerobic exercise, related to circadian rhythms or biological clock, may also affect the antioxidant defense system, but its impact remains uncertain. Bain and muscle ARNT-like 1 (BMAL1) is the core orchestrator of molecular clock, which can maintain cellular redox homeostasis by directly controlling the transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2). So, our research objective was to evaluate the impacts of aerobic exercise training at various time points of the day on BMAL1 and NRF2-mediated antioxidant system in skeletal muscle. C57BL/6J mice were assigned to the control group, the group exercising at Zeitgeber Time 12 (ZT12), and the group exercising at ZT24. Control mice were not intervened, while ZT12 and ZT24 mice were trained for four weeks at the early and late time point of their active phase, respectively. We observed that the skeletal muscle of ZT12 mice exhibited higher total antioxidant capacity and lower reactive oxygen species compared to ZT24 mice. Furthermore, ZT12 mice improved the colocalization of BMAL1 with nucleus, the protein expression of BMAL1, NRF2, NAD(P)H quinone oxidoreductase 1, heme oxygenase 1, glutamate-cysteine ligase modifier subunit and glutathione reductase in comparison to those of ZT24 mice. In conclusion, the 4-week aerobic training performed at ZT12 is more effective for enhancing NRF2-mediated antioxidant responses of skeletal muscle, which may be attributed to the specific activation of BMAL1.


Assuntos
Fatores de Transcrição ARNTL , Antioxidantes , Camundongos Endogâmicos C57BL , Músculo Esquelético , Condicionamento Físico Animal , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Músculo Esquelético/metabolismo , Camundongos , Antioxidantes/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo
7.
Exp Mol Med ; 56(7): 1655-1666, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956298

RESUMO

Circadian disruption, as a result of shiftwork, jet lag, and other lifestyle factors, is a common public health problem associated with a wide range of diseases, such as metabolic disorders, neurodegenerative diseases, and cancer. In the present study, we established a chronic jet lag model using a time shift method every 3 days and assessed the effects of circadian disruption on ocular surface homeostasis. Our results indicated that jet lag increased corneal epithelial defects, cell apoptosis, and proinflammatory cytokine expression. However, the volume of tear secretion and the number of conjunctival goblet cells did not significantly change after 30 days of jet lag. Moreover, further analysis of the pathogenic mechanism using RNA sequencing revealed that jet lag caused corneal transmembrane mucin deficiency, specifically MUC4 deficiency. The crucial role of MUC4 in pathogenic progression was demonstrated by the protection of corneal epithelial cells and the inhibition of inflammatory activation following MUC4 replenishment. Unexpectedly, genetic ablation of BMAL1 in mice caused MUC4 deficiency and dry eye disease. The underlying mechanism was revealed in cultured human corneal epithelial cells in vitro, where BMAL1 silencing reduced MUC4 expression, and BMAL1 overexpression increased MUC4 expression. Furthermore, melatonin, a circadian rhythm restorer, had a therapeutic effect on jet lag-induced dry eye by restoring the expression of BMAL1, which upregulated MUC4. Thus, we generated a novel dry eye mouse model induced by circadian disruption, elucidated the underlying mechanism, and identified a potential clinical treatment.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Síndromes do Olho Seco , Mucina-4 , Animais , Humanos , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/genética , Modelos Animais de Doenças , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/etiologia , Síndromes do Olho Seco/patologia , Regulação da Expressão Gênica , Síndrome do Jet Lag/metabolismo , Síndrome do Jet Lag/genética , Melatonina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-4/metabolismo , Mucina-4/genética
8.
Open Biol ; 14(7): 240089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981514

RESUMO

Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.


Assuntos
Fatores de Transcrição ARNTL , Artrite Experimental , Ritmo Circadiano , Fibroblastos , Sinoviócitos , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Relógios Circadianos/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Camundongos Knockout , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino
9.
J Pineal Res ; 76(5): e12993, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39054842

RESUMO

The interplay between circadian rhythms and epilepsy has gained increasing attention. The suprachiasmatic nucleus (SCN), which acts as the master circadian pacemaker, regulates physiological and behavioral rhythms through its complex neural networks. However, the exact role of the SCN and its Bmal1 gene in the development of epilepsy remains unclear. In this study, we utilized a lithium-pilocarpine model to induce epilepsy in mice and simulated circadian disturbances by creating lesions in the SCN and specifically knocking out the Bmal1 gene in the SCN neurons. We observed that the pilocarpine-induced epileptic mice experienced increased daytime seizure frequency, irregular oscillations in core body temperature, and circadian gene alterations in both the SCN and the hippocampus. Additionally, there was enhanced activation of GABAergic projections from the SCN to the hippocampus. Notably, SCN lesions intensified seizure activity, concomitant with hippocampal neuronal damage and GABAergic signaling impairment. Further analyses using the Gene Expression Omnibus database and gene set enrichment analysis indicated reduced Bmal1 expression in patients with medial temporal lobe epilepsy, potentially affecting GABA receptor pathways. Targeted deletion of Bmal1 in SCN neurons exacerbated seizures and pathology in epilepsy, as well as diminished hippocampal GABAergic efficacy. These results underscore the crucial role of the SCN in modulating circadian rhythms and GABAergic function in the hippocampus, aggravating the severity of seizures. This study provides significant insights into how circadian rhythm disturbances can influence neuronal dysfunction and epilepsy, highlighting the therapeutic potential of targeting SCN and the Bmal1 gene within it in epilepsy management.


Assuntos
Ritmo Circadiano , Hipocampo , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático , Animais , Núcleo Supraquiasmático/metabolismo , Camundongos , Hipocampo/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Masculino , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Epilepsia/genética , Pilocarpina , Convulsões/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/fisiopatologia , Camundongos Knockout , Neurônios GABAérgicos/metabolismo
10.
Open Biol ; 14(7): 240051, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39045857

RESUMO

Maintaining proper circadian rhythms is essential for coordinating biological functions in mammals. This study investigates the effects of daily arrhythmicity using Bmal1-knockout (KO) mice as a model, aiming to understand behavioural and motivational implications. By employing a new mathematical analysis based on entropy divergence, we identified disrupted intricate activity patterns in mice derived by the complete absence of BMAL1 and quantified the difference regarding the activity oscillation's complexity. Changes in locomotor activity coincided with disturbances in circadian gene expression patterns. Additionally, we found a dysregulated gene expression profile particularly in brain nuclei like the ventral striatum, impacting genes related to reward and motivation. Further investigation revealed that arrhythmic mice exhibited heightened motivation for food and water rewards, indicating a link between circadian disruptions and the reward system. This research sheds light on how circadian clock alterations impact the gene expression regulating the reward system and how this, in turn, can lead to altered seeking behaviour and motivation for natural rewards. In summary, the present study contributes to our understanding of how reward processing is under the regulation of circadian clock machinery.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Camundongos Knockout , Motivação , Animais , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Camundongos , Regulação da Expressão Gênica , Relógios Circadianos/genética , Recompensa , Masculino , Perfilação da Expressão Gênica , Comportamento Animal , Locomoção , Transcriptoma
11.
Cell Death Dis ; 15(7): 466, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956029

RESUMO

Metastasis is the major culprit of treatment failure in nasopharyngeal carcinoma (NPC). Aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2), a core circadian gene, plays a crucial role in the development of various tumors. Nevertheless, the biological role and mechanism of ARNTL2 are not fully elucidated in NPC. In this study, ARNTL2 expression was significantly upregulated in NPC tissues and cells. Overexpression of ARNTL2 facilitated NPC cell migration and invasion abilities, while inhibition of ARNTL2 in similarly treated cells blunted migration and invasion abilities in vitro. Consistently, in vivo xenograft tumor models revealed that ARNTL2 silencing reduced nude mice inguinal lymph node and lung metastases, as well as tumor growth. Mechanistically, ARNTL2 negatively regulated the transcription expression of AMOTL2 by directly binding to the AMOTL2 promoter, thus reducing the recruitment and stabilization of AMOTL2 to LATS1/2 kinases, which strengthened YAP nuclear translocation by suppressing LATS-dependent YAP phosphorylation. Inhibition of AMOTL2 counteracted the effects of ARNTL2 knockdown on NPC cell migration and invasion abilities. These findings suggest that ARNTL2 may be a promising therapeutic target to combat NPC metastasis and further supports the crucial roles of circadian genes in cancer development.


Assuntos
Fatores de Transcrição ARNTL , Proteínas Adaptadoras de Transdução de Sinal , Angiomotinas , Movimento Celular , Camundongos Nus , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Invasividade Neoplásica , Fatores de Transcrição , Proteínas de Sinalização YAP , Animais , Feminino , Humanos , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Metástase Neoplásica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP/metabolismo
12.
FASEB J ; 38(11): e23719, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38837828

RESUMO

Chronic disruption of circadian rhythms by night shift work is associated with an increased breast cancer risk. However, little is known about the impact of night shift on peripheral circadian genes (CGs) and circadian-controlled genes (CCGs) associated with breast cancer. Hence, we assessed central clock markers (melatonin and cortisol) in plasma, and peripheral CGs (PER1, PER2, PER3, and BMAL1) and CCGs (ESR1 and ESR2) in peripheral blood mononuclear cells (PBMCs). In day shift nurses (n = 12), 24-h rhythms of cortisol and melatonin were aligned with day shift-oriented light/dark schedules. The mRNA expression of PER2, PER3, BMAL1, and ESR2 showed 24-h rhythms with peak values in the morning. In contrast, night shift nurses (n = 10) lost 24-h rhythmicity of cortisol with a suppressed morning surge but retained normal rhythmic patterns of melatonin, leading to misalignment between cortisol and melatonin. Moreover, night shift nurses showed disruption of rhythmic expressions of PER2, PER3, BMAL1, and ESR2 genes, resulting in an impaired inverse correlation between PER2 and BMAL1 compared to day shift nurses. The observed trends of disrupted circadian markers were recapitulated in additional day (n = 20) and night (n = 19) shift nurses by measurement at early night and midnight time points. Taken together, this study demonstrated the misalignment of cortisol and melatonin, associated disruption of PER2 and ESR2 circadian expressions, and internal misalignment in peripheral circadian network in night shift nurses. Morning plasma cortisol and PER2, BMAL1, and ESR2 expressions in PBMCs may therefore be useful biomarkers of circadian disruption in shift workers.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Hidrocortisona , Melatonina , Jornada de Trabalho em Turnos , Humanos , Feminino , Melatonina/metabolismo , Melatonina/sangue , Adulto , Jornada de Trabalho em Turnos/efeitos adversos , Relógios Circadianos/genética , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Ritmo Circadiano/fisiologia , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Enfermeiras e Enfermeiros , Leucócitos Mononucleares/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Tolerância ao Trabalho Programado/fisiologia , Condições de Trabalho
13.
Life Sci ; 351: 122800, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880169

RESUMO

BACKGROUND: Aging increases the prevalence of prostate cancer. The circadian clock coordinates metabolism, cell cycle, and tumor suppressor p53. Although physical exercise has several effects on preventing prostate diseases, its effect on regulating genes and proteins of the circadian rhythm of the prostate needs to be better evaluated. The present study verified expression of REV-ERBα (Nr1d1), Bmal1, apoptosis, tumor suppressors, energetic metabolism markers, and androgen receptors in the prostatic microenvironment in 18-month-old mice submitted to combined physical training. METHODS: C57BL/6 J mice were divided into 2 groups: 6 months-old (n = 10) and 18 months-old, (n = 20). The 18-month-old animals were divided into 2 subgroups: sedentary (n = 10, 18 m Sed) and submitted to combined physical training (n = 10, 18 m TR). Combined physical training protocol was performed by running on the treadmill (40-60 % of incremental load test) and climbing strength training (40-50 % of maximum repetition test), consisting of 5×/week (3 days aerobic and 2 days strength) for 3 weeks. The prostate was prepared for Western blot and RT-qPCR analysis, and the plasm was prepared for the biochemistry analysis. RESULTS: Combined physical exercise during aging led to increased levels of Bmal1 and decreased levels of REV-ERBα in the prostate. These results were accompanied by a reduction in the AMPK/SIRT1/PGC-1α proteins and an increase in the PI3K/AKT and p53/PTEN/caspase 3 pathways, promoting apoptotic potential. CONCLUSION: These findings suggest that strength and aerobic physical exercise may be preventive in the development of preneoplastic molecular alterations and age-related features by re-synchronizes Bmal1 and REV-ERBα in prostatic tissues.


Assuntos
Fatores de Transcrição ARNTL , Envelhecimento , Apoptose , Camundongos Endogâmicos C57BL , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Condicionamento Físico Animal , Próstata , Masculino , Animais , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Camundongos , Condicionamento Físico Animal/fisiologia , Envelhecimento/metabolismo , Próstata/metabolismo , Próstata/patologia , Regulação para Cima , Ritmo Circadiano/fisiologia
14.
Front Immunol ; 15: 1402395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895112

RESUMO

Background: Circadian rhythm disruption (CRD) is thought to increase the risk of inflammatory bowel disease. The deletion of Bmal1, a core transcription factor, leads to a complete loss of the circadian rhythm and exacerbates the severity of dextran sodium sulfate (DSS)-induced colitis in mice. However, the underlying mechanisms by which CRD and Bmal1 mediate IBD are still unclear. Methods: We used a CRD mouse model, a mouse colitis model, and an in vitro model of colonic epithelial cell monolayers. We also knocked down and overexpressed Bmal1 in Caco-2 cells by transfecting lentivirus in vitro. The collected colon tissue and treated cells were assessed and analyzed using immunohistochemistry, immunofluorescence staining, quantitative reverse transcription-polymerase chain reaction, western blot, flow cytometry, transmission electron microscopy, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. Results: We found that CRD mice with downregulated Bmal1 expression were more sensitive to DSS-induced colitis and had more severely impaired intestinal barrier function than wild-type mice. Bmal1-/- mice exhibited more severe colitis, accompanied by decreased tight junction protein levels and increased apoptosis of intestinal epithelial cells compared with wild-type mice, which were alleviated by using the autophagy agonist rapamycin. Bmal1 overexpression attenuated Lipopolysaccharide-induced apoptosis of intestinal epithelial cells and impaired intestinal epithelial cells barrier function in vitro, while inhibition of autophagy reversed this protective effect. Conclusion: This study suggests that CRD leads to the downregulation of Bmal1 expression in the colon, which may exacerbate DSS-induced colitis in mice, and that Bmal1 may serve as a novel target for treating inflammatory bowel disease.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Colite , Sulfato de Dextrana , Modelos Animais de Doenças , Regulação para Baixo , Mucosa Intestinal , Camundongos Knockout , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Humanos , Ritmo Circadiano/genética , Células CACO-2 , Camundongos Endogâmicos C57BL , Apoptose , Masculino , Transtornos Cronobiológicos/metabolismo , Transtornos Cronobiológicos/genética
16.
Am J Physiol Endocrinol Metab ; 327(1): E111-E120, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836780

RESUMO

The master circadian clock, located in the suprachiasmatic nuclei (SCN), organizes the daily rhythm in minute ventilation (V̇e). However, the extent that the daily rhythm in V̇e is secondary to SCN-imposed O2 and CO2 cycles (i.e., metabolic rate) or driven by other clock mechanisms remains unknown. Here, we experimentally shifted metabolic rate using time-restricted feeding (without affecting light-induced synchronization of the SCN) to determine the influence of metabolic rate in orchestrating the daily V̇e rhythm. Mice eating predominantly at night exhibited robust daily rhythms in O2 consumption (V̇o2), CO2 production (V̇co2), and V̇e with similar peak times (approximately ZT18) that were consistent with SCN organization. However, feeding mice exclusively during the day separated the relative timing of metabolic and ventilatory rhythms, resulting in an approximately 8.5-h advance in V̇co2 and a disruption of the V̇e rhythm, suggesting opposing circadian and metabolic influences on V̇e. To determine if the molecular clock of cells involved in the neural control of breathing contributes to the daily V̇e rhythm, we examined V̇e in mice lacking BMAL1 in Phox2b-expressing respiratory cells (i.e., BKOP mice). The ventilatory and metabolic rhythms of predominantly night-fed BKOP mice did not differ from wild-type mice. However, in contrast to wild-type mice, exclusive day feeding of BKOP mice led to an unfettered daily V̇e rhythm with a peak time aligning closely with the daily V̇co2 rhythm. Taken together, these results indicate that both daily V̇co2 changes and intrinsic circadian time-keeping within Phox2b respiratory cells are predominant orchestrators of the daily rhythm in ventilation.NEW & NOTEWORTHY The master circadian clock organizes the daily rhythm in ventilation; however, the extent that this rhythm is driven by SCN regulation of metabolic rate versus other clock mechanisms remains unknown. We report that metabolic rate alone is insufficient to explain the daily oscillation in ventilation and that neural respiratory clocks within Phox2b-expressing cells additionally optimize breathing. Collectively, these findings advance our mechanistic understanding of the circadian rhythm in ventilatory control.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Camundongos Endogâmicos C57BL , Núcleo Supraquiasmático , Animais , Camundongos , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Masculino , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiologia , Consumo de Oxigênio/fisiologia , Dióxido de Carbono/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Comportamento Alimentar/fisiologia , Respiração , Ventilação Pulmonar/fisiologia , Metabolismo Energético/fisiologia
17.
BMC Ophthalmol ; 24(1): 268, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907352

RESUMO

BACKGROUND: Sleep deprivation (SD) is a common public health problem that contributes to various physiological disorders and increases the risk of ocular diseases. However, whether sleep loss can damage corneal endothelial function remains unclear. This study aimed to determine the effect and possible mechanism of SD on the corneal endothelium. METHODS: Male C57BL/6J mice were subjected to establish SD models. After 10 days, quantitative RT-PCR (qRT-PCR) and western blot or immunostaining for the expression levels of zonula occludens-1 (ZO-1), ATPase Na+/K + transporting subunit alpha 1 (Atp1a1), and core clock genes in the corneal endothelium were evaluated. Reactive oxygen species staining and mitochondrial abundance characterized the mitochondrial function. The regulatory role of Bmal1 was confirmed by specifically knocking down or overexpressing basic helix-loop-helix ARNT like 1 protein (Bmal1) in vivo. In vitro, a mitochondrial stress test was conducted on cultured human corneal endothelial cells upon Bmal1 knockdown. RESULTS: SD damaged the barrier and pump functions of mouse corneal endothelium, accompanied by mitochondrial dysfunction. Interestingly, SD dramatically downregulated the core clock gene Bmal1 expression level. Bmal1 knockdown disrupted corneal endothelial function, while overexpression of Bmal1 ameliorated the dysfunction induced by SD. Mitochondrial bioenergetic deficiency mediated by Bmal1 was an underlying mechanism for SD induced corneal endothelial dysfunction. CONCLUSION: The downregulation of Bmal1 expression caused by SD led to corneal endothelial dysfunction via impairing mitochondrial bioenergetics. Our findings offered insight into how SD impairs the physiological function of the corneal endothelium and expanded the understanding of sleep loss leading to ocular diseases.


Assuntos
Fatores de Transcrição ARNTL , Endotélio Corneano , Privação do Sono , Animais , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Endotélio Corneano/metabolismo , Endotélio Corneano/patologia , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Privação do Sono/complicações , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia
18.
Front Immunol ; 15: 1426682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938563

RESUMO

Background: The disruption of the circadian clock is associated with inflammatory and immunological disorders. BMAL2, a critical circadian protein, forms a dimer with CLOCK, activating transcription. Extracellular cold-inducible RNA-binding protein (eCIRP), released during sepsis, can induce macrophage endotoxin tolerance. We hypothesized that eCIRP induces BMAL2 expression and promotes macrophage endotoxin tolerance through triggering receptor expressed on myeloid cells-1 (TREM-1). Methods: C57BL/6 wild-type (WT) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Serum levels of eCIRP 20 h post-CLP were assessed by ELISA. Peritoneal macrophages (PerM) were treated with recombinant mouse (rm) CIRP (eCIRP) at various doses for 24 h. The cells were then stimulated with LPS for 5 h. The levels of TNF-α and IL-6 in the culture supernatants were assessed by ELISA. PerM were treated with eCIRP for 24 h, and the expression of PD-L1, IL-10, STAT3, TREM-1 and circadian genes such as BMAL2, CRY1, and PER2 was assessed by qPCR. Effect of TREM-1 on eCIRP-induced PerM endotoxin tolerance and PD-L1, IL-10, and STAT3 expression was determined by qPCR using PerM from TREM-1-/- mice. Circadian gene expression profiles in eCIRP-treated macrophages were determined by PCR array and confirmed by qPCR. Induction of BMAL2 activation in bone marrow-derived macrophages was performed by transfection of BMAL2 CRISPR activation plasmid. The interaction of BMAL2 in the PD-L1 promoter was determined by computational modeling and confirmed by the BIAcore assay. Results: Serum levels of eCIRP were increased in septic mice compared to sham mice. Macrophages pre-treated with eCIRP exhibited reduced TNFα and IL-6 release upon LPS challenge, indicating macrophage endotoxin tolerance. Additionally, eCIRP increased the expression of PD-L1, IL-10, and STAT3, markers of immune tolerance. Interestingly, TREM-1 deficiency reversed eCIRP-induced macrophage endotoxin tolerance and significantly decreased PD-L1, IL-10, and STAT3 expression. PCR array screening of circadian clock genes in peritoneal macrophages treated with eCIRP revealed the elevated expression of BMAL2, CRY1, and PER2. In eCIRP-treated macrophages, TREM-1 deficiency prevented the upregulation of these circadian genes. In macrophages, inducible BMAL2 expression correlated with increased PD-L1 expression. In septic human patients, blood monocytes exhibited increased expression of BMAL2 and PD-L1 in comparison to healthy subjects. Computational modeling and BIAcore assay identified a putative binding region of BMAL2 in the PD-L1 promoter, suggesting BMAL2 positively regulates PD-L1 expression in macrophages. Conclusion: eCIRP upregulates BMAL2 expression via TREM-1, leading to macrophage endotoxin tolerance in sepsis. Targeting eCIRP to maintain circadian rhythm may correct endotoxin tolerance and enhance host resistance to bacterial infection.


Assuntos
Proteínas de Ligação a RNA , Sepse , Animais , Humanos , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Modelos Animais de Doenças , Endotoxinas/imunologia , Tolerância Imunológica , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sepse/imunologia , Sepse/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
19.
J Biol Chem ; 300(7): 107434, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830405

RESUMO

During postnatal cardiac hypertrophy, cardiomyocytes undergo mitotic exit, relying on DNA replication-independent mechanisms of histone turnover to maintain chromatin organization and gene transcription. In other tissues, circadian oscillations in nucleosome occupancy influence clock-controlled gene expression, suggesting a role for the circadian clock in temporal control of histone turnover and coordinated cardiomyocyte gene expression. We sought to elucidate roles for the master circadian transcription factor, Bmal1, in histone turnover, chromatin organization, and myocyte-specific gene expression and cell growth in the neonatal period. Bmal1 knockdown in neonatal rat ventricular myocytes decreased myocyte size, total cellular protein synthesis, and transcription of the fetal hypertrophic gene Nppb after treatment with serum or the α-adrenergic agonist phenylephrine. Depletion of Bmal1 decreased the expression of clock-controlled genes Per2 and Tcap, as well as Sik1, a Bmal1 target upregulated in adult versus embryonic hearts. Bmal1 knockdown impaired Per2 and Sik1 promoter accessibility as measured by micrococcal nuclease-quantitative PCR and impaired histone turnover as measured by metabolic labeling of acid-soluble chromatin fractions. Sik1 knockdown in turn decreased myocyte size, while simultaneously inhibiting natriuretic peptide B transcription and activating Per2 transcription. Linking these changes to chromatin remodeling, depletion of the replication-independent histone variant H3.3a inhibited myocyte hypertrophy and prevented phenylephrine-induced changes in clock-controlled gene transcription. Bmal1 is required for neonatal myocyte growth, replication-independent histone turnover, and chromatin organization at the Sik1 promoter. Sik1 represents a novel clock-controlled gene that coordinates myocyte growth with hypertrophic and clock-controlled gene transcription. Replication-independent histone turnover is required for transcriptional remodeling of clock-controlled genes in cardiac myocytes in response to growth stimuli.


Assuntos
Fatores de Transcrição ARNTL , Histonas , Miócitos Cardíacos , Proteínas Circadianas Period , Animais , Histonas/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Ratos , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Ritmo Circadiano , Fenilefrina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Coração/embriologia , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Ratos Sprague-Dawley , Montagem e Desmontagem da Cromatina , Células Cultivadas , Regiões Promotoras Genéticas
20.
Life Sci ; 352: 122860, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936603

RESUMO

Infertility is intricately linked with alterations in circadian rhythms along with physiological decline and stem cell senescence. Yet, the direct involvement of circadian mechanisms in nicotine-induced injury to the testes, especially the senescence of spermatogonia stem cells (SSCs), is not well comprehended. This study revealed that nicotine exposure induced testis injury by triggering SSCs senescence along with the upregulation of senescence marker genes and senescence-associated secretory phenotype components. Moreover, nicotine treatment caused mitochondrial hyper-fusion, increased oxidative stress, and DNA damage. Exposure to nicotine was found to suppress the expression of sirtuin 6 (SIRT6), which accelerated the senescence of spermatogonia stem cells (SSCs). This acceleration led to increased acetylation of brain and muscle ARNT-like protein (Bmal1), consequently reducing the expression of Bmal1 protein. Conversely, the overexpression of Bmal1 alleviated mitochondrial hyper-fusion and senescence phenotypes induced by nicotine. Overall, this study unveiled a novel molecular mechanism behind nicotine-induced disorders in spermatogenesis and highlighted the SIRT6/Bmal1 regulatory pathway as a potential therapeutic target for combating nicotine-associated infertility.


Assuntos
Fatores de Transcrição ARNTL , Senescência Celular , Ritmo Circadiano , Dinâmica Mitocondrial , Nicotina , Sirtuínas , Sirtuínas/metabolismo , Sirtuínas/genética , Masculino , Animais , Nicotina/farmacologia , Nicotina/efeitos adversos , Senescência Celular/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Camundongos , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Homeostase/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Germinativas Adultas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...