Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.099
Filtrar
1.
Methods Mol Biol ; 2861: 71-85, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39395098

RESUMO

Luciferases catalyze a reaction that involves the emission of light, a phenomenon referred to as "bioluminescence". The calcium-sensing receptor (CaSR), a G protein-coupled receptor (GPCR), induces characteristic signaling pathways that stimulate extracellular signal-regulated kinase 1/2 (ERK1/2) and Ca2+ mobilization from the endoplasmic reticulum. ERK1/2 causes an activation of the serum response element (SRE), whereas Ca2+ causes an activation of the nuclear factor of activated T-cells response element (NFAT-RE). Transfection of cells with a vector containing a firefly luciferase reporter gene under the control of the SRE or NFAT-RE allows the monitoring of ERK1/2 activation and Ca2+ mobilization, respectively, by measuring luminescence. In a dual luciferase assay, firefly luminescence is normalized by co-transfecting an internal control vector, which contains a constitutively active promoter driving the expression of a second luciferase, namely, Renilla luciferase, whose activity can be quantified within the same sample. Here, a protocol for the analysis of CaSR signaling using dual luciferase assays in HEK293 cells is provided. The assays can, for example, be used to investigate functional consequences of mutations in the CaSR gene.


Assuntos
Genes Reporter , Receptores de Detecção de Cálcio , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/genética , Humanos , Células HEK293 , Transdução de Sinais , Cálcio/metabolismo , Medições Luminescentes/métodos , Luciferases/metabolismo , Luciferases/genética , Transfecção , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Luciferases de Renilla/genética , Luciferases de Renilla/metabolismo , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo
2.
PeerJ ; 12: e18222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39399421

RESUMO

Background: Osteoporosis (OP) is a chronic disease characterized by decreased bone mass, loss of skeletal structural integrity and increased susceptibility to fracture. Available studies have shown that the pyruvate dehydrogenase kinase (PDK) family is associated with osteoclastogenesis and bone loss, but the specific role of Pdk3 in bone pathology has not been systematically investigated. Methods: A cell OP model was established in receptor activator for nuclear factor-κB Ligand (RANKL)-induced bone marrow macrophages (BMMs). Hereafter, the expression levels of Pdk3 and osteoclastogenesis feature genes including nuclear factor of activated T cells 1 (Nfatc1), Cathepsin K (Ctsk), osteoclast associated Ig-like receptor (Oscar) in BMMs-derived osteoclasts were examined based on real-time quantitative PCR and western blotting methods. Further, the phosphorylation of ERK, P65 and JAK/STAT and their correlation was Pdk3 was gauged. In particular, changes in the activity of these signaling pathways were observed by silencing experiments of the Pdk3 gene (using small interfering RNA). Finally, the effects of Pdk3 gene silencing on signaling pathway activity, osteoclastogenesis, and related inflammatory and apoptotic indicators were observed by transfection with PDK3-specific siRNA. Results: Following RANKL exposure, the levels of Pdk3 and osteoclastogenesis feature genes were all elevated, and a positive correlation between Pdk3 and osteoclastogenesis feature genes was seen. Meanwhile, ERK, P65 and JAK/STAT phosphorylation was increased by RANKL, and Pdk3 was confirmed to be positively correlated with the phosphorylation of ERK, P65 and JAK/STAT. Additionally, in RANKL-exposed osteoclasts, Pdk3 knockdown diminished the phosphorylation of ERK, P65 and JAK/STAT, reduced the expressions of osteoclastogenesis feature genes. Importantly, knockdown of Pdk3 also reduced the expression of inflammatory cytokines and resulted in elevated levels of Bax and Casp3 expression, as well as downregulation of Bcl2 expression. Conclusion: This study reveals for the first time the role of Pdk3 in RANKL-induced osteoclastogenesis and OP. These findings provide a foundation for future studies on the role of Pdk3 in other bone diseases and provide new ideas for the development of OP therapeutics targeting Pdk3.


Assuntos
Diferenciação Celular , Macrófagos , Osteoclastos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ligante RANK , Animais , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Diferenciação Celular/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Transdução de Sinais/efeitos dos fármacos , Osteoporose/patologia , Osteoporose/genética , Osteoporose/metabolismo , Osteogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Células da Medula Óssea/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Catepsina K
3.
Commun Biol ; 7(1): 1290, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384976

RESUMO

High salt conditions and subsequent hyperosmolarity are injurious cellular stresses that can activate immune signaling. Nuclear factor of activated T-cells 5 (NFAT5) is an essential transcription factor that induces osmoprotective genes such as aldose reductase (AR) and betaine-GABA transporter 1 (BGT1). High salt stress-mediated NFAT5 activation is also reported to accelerate the inflammatory response and autoimmune diseases. However, the systemic regulation of NFAT5 remains unclear. Here, we performed a genome-wide siRNA screen to comprehensively identify the regulators of NFAT5. We monitored NFAT5 nuclear translocation and identified one of the Notch signaling effectors, Hairy and enhancer of split-1 (HES1), as a positive regulator of NFAT5. HES1 was induced by high salinity via ERK signaling and facilitated NFAT5 recruitment to its target promoter region, resulting in the proper induction of osmoprotective genes and cytoprotection under high salt stress. These findings suggest that, though HES1 is well known as a transcriptional repressor, it positively regulates NFAT5-dependent transcription in the context of a high salinity/hyperosmotic response.


Assuntos
Fatores de Transcrição HES-1 , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Humanos , Estresse Salino , Animais , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Camundongos , DNA/metabolismo , DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Ligação Proteica , Fatores de Transcrição
4.
Clin Transl Med ; 14(10): e70058, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39415352

RESUMO

BACKGROUND: Although RANK-LRANK interaction is essential for osteoclastogenesis, the mechanisms by which cancer cells invade bone tissues and initiate osteolytic metastasis remain unclear. Here, we show that the hyperactivation of RelB fosters prostate cancer (PCa) osteolytic metastasis by coordinating interleukin-8 (IL-8) and calcium-binging protein A4 (S100A4). METHODS: The factors promoting PCa bone metastasis were investigated in sera from PCa patients and tumour tissues derived from nude mice using immunohistochemical analysis and enzyme-linked immunosorbent assays (ELISA). Cell mobility and mineralization were quantified using BioStation CT and Osteolmage assay. The relative cistrome was investigated in advanced PCa cells by standard transcriptional analyses, including the luciferase reporter response, site-directed mutagenesis, and chromatin immunoprecipitation (ChIP) assay. PCa cell-initiated tumour formation, expansion, and bone metastasis were validated in mice using multiple approaches, including orthotopic, intraskeletal, and caudal arterial implantation models. RESULTS: IL-8 and S100A4 correlated with patient Gleason scores and bone metastasis. RelB upregulated IL-8, facilitating androgen receptor (AR)-independent growth. RelB-Sp1 interaction enhanced epithelial-mesenchymal transition (EMT) by activating Snail and Twist. RelB-NFAT1c super-enhancer upregulated S100A4 in the organization of the cytoskeleton and bone metastasis. The RelB-IL-8-S100A4 signalling axis was confirmed to promote osteolytic metastasis in nude mice. CONCLUSION: RelB-IL-8 reciprocally promoted EMT by activating inflammatory signalling and inactivating AR signalling. IL-8 is essential for provoking PCa metastasis but insufficient to drive bone metastasis. IL-8-S100A4 cooperation was necessary for metastatic cells to target the bone. HIGHLIGHTS: RelB activates inflammatory signalling by upregulating IL-8 and suppressing AR. RelB upregulates S100A4 by cooperating with NFATC1. IL-8 boosts EMT by activating Snail 1 and Twist 1, and S100A4 exacerbates osteolytic metastasis via calcium consumption. RelB harnesses IL-8 and S100A4 to drive PCa osteolytic metastasis.


Assuntos
Interleucina-8 , Camundongos Nus , Neoplasias da Próstata , Proteína A4 de Ligação a Cálcio da Família S100 , Fator de Transcrição RelB , Interleucina-8/metabolismo , Fator de Transcrição RelB/metabolismo , Fator de Transcrição RelB/genética , Animais , Camundongos , Humanos , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/genética , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Osteólise/metabolismo , Fatores de Transcrição NFATC/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal
5.
Arterioscler Thromb Vasc Biol ; 44(11): 2271-2287, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39324266

RESUMO

BACKGROUND: Store-operated calcium entry mediated by STIM (stromal interaction molecule)-1-Orai1 (calcium release-activated calcium modulator 1) is essential in endothelial cell (EC) functions, affecting signaling, NFAT (nuclear factor for activated T cells)-induced transcription, and metabolic programs. While the small GTPase Rap1 (Ras-proximate-1) isoforms, including the predominant Rap1B, are known for their role in cadherin-mediated adhesion, EC deletion of Rap1A after birth uniquely disrupts lung endothelial barrier function. Here, we elucidate the specific mechanisms by which Rap1A modulates lung vascular integrity and inflammation. METHODS: The role of EC Rap1A in lung inflammation and permeability was examined using in vitro and in vivo approaches. RESULTS: We explored Ca2+ signaling in human ECs following siRNA-mediated knockdown of Rap1A or Rap1B. Rap1A knockdown, unlike Rap1B, significantly increased store-operated calcium entry in response to a GPCR (G-protein-coupled receptor) agonist, ATP (500 µmol/L), or thapsigargin (250 nmol/L). This enhancement was attenuated by Orai1 channel blockers 10 µmol/L BTP2 (N-[4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-4-methyl-1,2,3-thiadiazole-5-carboxamide), 10 µmol/L GSK-7975A, and 5 µmol/L Gd3+. Whole-cell patch clamp measurements revealed enhanced Ca2+ release-activated Ca2+ current density in siRap1A ECs. Rap1A depletion in ECs led to increased NFAT1 nuclear translocation and activity and elevated levels of proinflammatory cytokines (CXCL1 [C-X-C motif chemokine ligand 1], CXCL11 [C-X-C motif chemokine 11], CCL5 [chemokine (C-C motif) ligand 5], and IL-6 [interleukin-6]). Notably, reducing Orai1 expression in siRap1A ECs normalized store-operated calcium entry, NFAT activity, and endothelial hyperpermeability in vitro. EC-specific Rap1A knockout (Rap1AiΔEC) mice displayed an inflammatory lung phenotype with increased lung permeability and inflammation markers, along with higher Orai1 expression. Delivery of siRNA against Orai1 to lung endothelium using lipid nanoparticles effectively normalized Orai1 levels in lung ECs, consequently reducing hyperpermeability and inflammation in Rap1AiΔEC mice. CONCLUSIONS: Our findings uncover a novel role of Rap1A in regulating Orai1-mediated Ca2+ entry and expression, crucial for NFAT-mediated transcription and endothelial inflammation. This study distinguishes the unique function of Rap1A from that of the predominant Rap1B isoform and highlights the importance of normalizing Orai1 expression in maintaining lung vascular integrity and modulating endothelial functions.


Assuntos
Sinalização do Cálcio , Permeabilidade Capilar , Pulmão , Fatores de Transcrição NFATC , Proteína ORAI1 , Proteínas rap1 de Ligação ao GTP , Animais , Humanos , Masculino , Camundongos , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/genética , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Interferência de RNA , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética
6.
Int Immunopharmacol ; 142(Pt B): 113158, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39293314

RESUMO

AIM OF THE STUDY: Osteolysis in Rheumatoid arthritis (RA) is principally provoked by osteoclast hyperactivity. This study aims to employ Corydaline (Cory), a plant extract, as an osteoclast inhibitor in treating RA-inflicted osteolysis while unveiling the corresponding mechanism. MATERIALS AND METHODS: Osteoclasts were derived from mouse bone marrow-derived monocytes (BMMs) stimulated with M-CSF and RANKL. Subsequently, utilizing network pharmacology, we performed a thorough analysis of Cory's molecular structure and discerned its preliminary therapeutic potential. Subsequently, LPS was used to simulate and establish an in vitro model of RA, and the biological effect of Cory on osteoclast behaviors was evaluated through various staining methods, RT-qPCR, and Western blot. In addition, a collagen-induced arthritis (CIA) mouse model was developed to evaluate the therapeutic effects of Cory in vivo. RESULTS: The results from network pharmacology indicated a significant correlation between Cory, oxidative stress, and calcium signaling. Subsequent in vitro experiments demonstrated Cory's capacity to inhibit the formation and function of osteoclast under inflammatory stimuli, thereby protecting against abnormal bone resorption. This effect is achieved by activating the Nrf2 signaling pathway, mitigating the generation of reactive oxygen species (ROS), and modulating the calcineurin-Nfatc1 signaling. Furthermore, this therapeutic effect of Cory on RA-associated osteolysis was proved in CIA mice models. CONCLUSIONS: Cory demonstrates the potential to activate the Nrf2 signaling pathway, effectively countering oxidative stress, and simultaneously inhibit the calcineurin-Nfatc1 signaling pathway to regulate the terminals of calcium signaling. These dual effects collectively reduce osteoclast activity, ultimately contributing to a therapeutic role in RA osteolysis. Therefore, our study presents Cory as a novel pharmaceutical candidate for the prevention and treatment of RA.


Assuntos
Artrite Reumatoide , Calcineurina , Fatores de Transcrição NFATC , Osteoclastos , Osteólise , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Osteólise/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Calcineurina/metabolismo , Masculino , Artrite Experimental/tratamento farmacológico , Células Cultivadas , Camundongos Endogâmicos DBA , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos
7.
J Immunol ; 213(9): 1380-1391, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39311642

RESUMO

Intraepithelial lymphocytes (IELs) expressing the TCRγδ survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I IFN is a central component of an antiviral immune response, yet how these proinflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFN-γ production, yet low-level TCR activation synergizes with type I IFN to induce IFN-γ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of costimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFN-γ expression in a STAT4-dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFN-γ production in vivo. However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFN-γ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and may produce IFN-γ in a TCR-dependent manner under permissive conditions.


Assuntos
Interferon Tipo I , Interferon gama , Linfócitos Intraepiteliais , Receptores de Antígenos de Linfócitos T gama-delta , Transdução de Sinais , Animais , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos Intraepiteliais/imunologia , Camundongos , Interferon gama/imunologia , Interferon gama/metabolismo , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Transdução de Sinais/imunologia , Fatores de Transcrição NFATC/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Transcrição STAT4/metabolismo , Mucosa Intestinal/imunologia , Células Cultivadas
8.
J Clin Invest ; 134(20)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196784

RESUMO

Chronic low back pain (LBP) can severely affect daily physical activity. Aberrant osteoclast-mediated resorption leads to porous endplates, which allow the sensory innervation that causes LBP. Here, we report that expression of the proton-activated chloride (PAC) channel was induced during osteoclast differentiation in the porous endplates via a RANKL/NFATc1 signaling pathway. Extracellular acidosis evoked robust PAC currents in osteoclasts. An acidic environment of porous endplates and elevated PAC activation-enhanced osteoclast fusion provoked LBP. Furthermore, we found that genetic knockout of the PAC gene Pacc1 significantly reduced endplate porosity and spinal pain in a mouse LBP model, but it did not affect bone development or homeostasis of bone mass in adult mice. Moreover, both the osteoclast bone-resorptive compartment environment and PAC traffic from the plasma membrane to endosomes to form an intracellular organelle Cl channel had a low pH of approximately 5.0. The low pH environment activated the PAC channel to increase sialyltransferase St3gal1 expression and sialylation of TLR2 in the initiation of osteoclast fusion. Aberrant osteoclast-mediated resorption is also found in most skeletal disorders, including osteoarthritis, ankylosing spondylitis, rheumatoid arthritis, heterotopic ossification, and enthesopathy. Thus, elevated Pacc1 expression and PAC activity could be a potential therapeutic target for the treatment of LBP and osteoclast-associated pain.


Assuntos
Canais de Cloreto , Modelos Animais de Doenças , Camundongos Knockout , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Osteoclastos/patologia , Canais de Cloreto/metabolismo , Canais de Cloreto/genética , Ligante RANK/metabolismo , Ligante RANK/genética , Dor Lombar/metabolismo , Dor Lombar/patologia , Dor Lombar/genética , Porosidade , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Transdução de Sinais , Concentração de Íons de Hidrogênio , Humanos
9.
Eur J Pharmacol ; 982: 176956, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39209096

RESUMO

Excessive activity of osteoclasts(OCs) lead to bone resorption in chronic inflammatory conditions. The use of natural compounds to target OCs offers significant promise in the treatment or prevention of OC-associated diseases. Irilin D (IRD), a natural isoflavone derived from Belamcanda chinensis (L.) DC., has potential effects on OC differentiation both in vitro and in vivo that have yet to be thoroughly explored. In our study, we found that IRD inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced OC differentiation, actin ring formation, and bone resorption in vitro without compromising cell viability. However, IRD did not exhibit anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophages. Furthermore, IRD reduced LPS-induced inflammatory bone loss by blocking osteoclastogenesis in a mouse model. Mechanistically, IRD disrupted RANKL-induced activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB), leading to the inhibition of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) activation. We also demonstrated that IRD inhibited RANKL-induced osteoclastic NFATc1 target genes, including DC-STAMP, ACP5, and CtsK. Our results indicate that IRD mitigates LPS-induced inflammatory bone resorption in mice by inhibiting RANKL-activated MAPKs and NF-κB signaling pathways, suggesting its potential as a natural isoflavone for preventing or treating OC-associated diseases.


Assuntos
Reabsorção Óssea , Inflamação , Isoflavonas , Sistema de Sinalização das MAP Quinases , NF-kappa B , Osteoclastos , Osteogênese , Ligante RANK , Animais , Masculino , Camundongos , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Inflamação/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Células RAW 264.7
10.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 655-666, 2024 May 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39174879

RESUMO

OBJECTIVES: Progressive bone resorption and destruction is one of the most critical clinical features of middle ear cholesteatoma, potentially leading to various intracranial and extracranial complications. However, the mechanisms underlying bone destruction in middle ear cholesteatoma remain unclear. This study aims to explore the role of parathyroid hormone-related protein (PTHrP) in bone destruction associated with middle ear cholesteatoma. METHODS: A total of 25 cholesteatoma specimens and 13 normal external auditory canal skin specimens were collected from patients with acquired middle ear cholesteatoma. Immunohistochemical staining was used to detect the expressions of PTHrP, receptor activator for nuclear factor-kappa B ligand (RANKL), and osteoprotegerin (OPG) in cholesteatoma and normal tissues. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the presence of TRAP positive multi-nucleated macrophages in cholesteatoma and normal tissues. Mono-nuclear macrophage RAW264.7 cells were subjected to interventions, divided into a RANKL intervention group and a PTHrP+ RANKL co-intervention group. TRAP staining was used to detect osteoclast formation in the 2 groups. The mRNA expression levels of osteoclast-related genes, including TRAP, cathepsin K (CTSK), and nuclear factor of activated T cell cytoplasmic 1 (NFATc1), were measured using real-time polymerase chain reaction (real-time PCR) after the interventions. Bone resorption function of osteoclasts was assessed using a bone resorption pit analysis. RESULTS: Immunohistochemical staining showed significantly increased expression of PTHrP and RANKL and decreased expression of OPG in cholesteatoma tissues (all P<0.05). PTHrP expression was significantly positively correlated with RANKL, the RANKL/OPG ratio, and negatively correlated with OPG expression (r=0.385, r=0.417, r=-0.316, all P<0.05). Additionally, the expression levels of PTHrP and RANKL were significantly positively correlated with the degree of bone destruction in cholesteatoma (r=0.413, r=0.505, both P<0.05). TRAP staining revealed a large number of TRAP-positive cells, including multi-nucleated osteoclasts with three or more nuclei, in the stroma surrounding the cholesteatoma epithelium. After 5 days of RANKL or PTHrP+RANKL co-intervention, the number of osteoclasts was significantly greater in the PTHrP+RANKL co-intervention group than that in the RANKL group (P<0.05), with increased mRNA expression levels of TRAP, CTSK, and NFATc1 (all P<0.05). Scanning electron microscopy of bone resorption pits showed that the number (P<0.05) and size of bone resorption pits on bone slices were significantly greater in the PTHrP+RANKL co-intervention group compared with the RANKL group. CONCLUSIONS: PTHrP may promote the differentiation of macrophages in the surrounding stroma of cholesteatoma into osteoclasts through RANKL induction, contributing to bone destruction in middle ear cholesteatoma.


Assuntos
Reabsorção Óssea , Diferenciação Celular , Colesteatoma da Orelha Média , Macrófagos , Osteoclastos , Osteoprotegerina , Proteína Relacionada ao Hormônio Paratireóideo , Ligante RANK , Animais , Humanos , Masculino , Camundongos , Reabsorção Óssea/metabolismo , Colesteatoma da Orelha Média/metabolismo , Colesteatoma da Orelha Média/patologia , Macrófagos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Ligante RANK/metabolismo , Ligante RANK/genética , Células RAW 264.7
11.
Nat Commun ; 15(1): 7324, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183203

RESUMO

During the progression of proliferative vitreoretinopathy (PVR) following ocular trauma, previously quiescent retinal pigment epithelial (RPE) cells transition into a state of rapid proliferation, migration, and secretion. The elusive molecular mechanisms behind these changes have hindered the development of effective pharmacological treatments, presenting a pressing clinical challenge. In this study, by monitoring the dynamic changes in chromatin accessibility and various histone modifications, we chart the comprehensive epigenetic landscape of RPE cells in male mice subjected to traumatic PVR. Coupled with transcriptomic analysis, we reveal a robust correlation between enhancer activation and the upregulation of the PVR-associated gene programs. Furthermore, by constructing transcription factor regulatory networks, we identify the aberrant activation of enhancer-driven RANK-NFATc1 pathway as PVR advanced. Importantly, we demonstrate that intraocular interventions, including nanomedicines inhibiting enhancer activity, gene therapies targeting NFATc1 and antibody therapeutics against RANK pathway, effectively mitigate PVR progression. Together, our findings elucidate the epigenetic basis underlying the activation of PVR-associated genes during RPE cell fate transitions and offer promising therapeutic avenues targeting epigenetic modulation and the RANK-NFATc1 axis for PVR management.


Assuntos
Fatores de Transcrição NFATC , Epitélio Pigmentado da Retina , Transdução de Sinais , Vitreorretinopatia Proliferativa , Animais , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/genética , Vitreorretinopatia Proliferativa/patologia , Epitélio Pigmentado da Retina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Humanos , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Modelos Animais de Doenças , Traumatismos Oculares/metabolismo , Traumatismos Oculares/genética , Traumatismos Oculares/patologia , Perfilação da Expressão Gênica , Multiômica
12.
Phytomedicine ; 132: 155890, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033726

RESUMO

BACKGROUND: Reactive Oxygen Species (ROS) is a key factor in the pathogenesis of osteoporosis (OP) primarily characterized by excessive osteoclast activity. Active fraction of Polyrhachis vicina Rogers (AFPR) exerts antioxidant effects and possesses extensive promising therapeutic effects in various conditions, however, its function in osteoclastogenesis and OP is unknown. PURPOSE: The aim of this study is to elucidate the cellular and molecular mechanisms of AFPR in OP. STUDY DESIGN AND METHODS: CCK8 assay was used to evaluate the cell viability under AFPR treatment. TRAcP staining, podosome belts staining and bone resorption were used to test the effect of AFPR on osteoclastogenesis. Immunofluorescence staining was used to observe the effect of AFPR on ROS production. si-RNA transfection, coimmunoprecipitation and Western-blot were used to clarify the underlying mechanisms. Further, an ovariectomy (OVX) -induced OP mice model was used to identify the effect of AFPR on bone loss using Micro-CT scanning and histological examination. RESULTS: In the present study, AFPR inhibited osteoclast differentiation and bone resorption induced by nuclear factor-κB receptor activator (NF-κB) ligand (RANKL) in dose-/ time-dependent with no cytotoxicity. Meanwhile, AFPR decreased RANKL-mediated ROS levels and enhanced ROS scavenging enzymes. Mechanistically, AFPR promoted proteasomal degradation of TRAF6 by significantly upregulating its K48-linked ubiquitination, subsequently inhibiting NFATc1 activity. We further observed that tripartite motif protein 38 (TRIM38) could mediate the ubiquitination of TRAF6 in response to RANKL. Moreover, TRIM38 could negatively regulate the RANKL pathway by binding to TRAF6 and promoting K48-linked polyubiquitination. In addition, TRIM38 deficiency rescued the inhibition of AFPR on ROS and NFATc1 activity and osteoclastogenesis. In line with these results, AFPR reduced OP caused by OVX through ameliorating osteoclastogenesis. CONCLUSION: AFPR alleviates ovariectomized-induced bone loss via suppressing ROS and NFATc1 by targeting Trim38 mediated proteasomal degradation of TRAF6. The research offers innovative perspectives on AFPR's suppressive impact in vivo OVX mouse model and in vitro, and clarifies the fundamental mechanism.


Assuntos
Osteoclastos , Osteogênese , Osteoporose , Extratos Vegetais , Espécies Reativas de Oxigênio , Fator 6 Associado a Receptor de TNF , Animais , Fator 6 Associado a Receptor de TNF/metabolismo , Camundongos , Osteogênese/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Feminino , Osteoporose/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas com Motivo Tripartido/metabolismo , Ligante RANK/metabolismo , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Ovariectomia , Reabsorção Óssea/tratamento farmacológico , Células RAW 264.7 , Diferenciação Celular/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Humanos
13.
Exp Mol Med ; 56(8): 1791-1806, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085359

RESUMO

Bone homeostasis is maintained by an intricate balance between osteoclasts and osteoblasts, which becomes disturbed in osteoporosis. Metallothioneins (MTs) are major contributors in cellular zinc regulation. However, the role of MTs in bone cell regulation has remained unexplored. Single-cell RNA sequencing analysis discovered that, unlike the expression of other MT members, the expression of MT3 was unique to osteoclasts among various macrophage populations and was highly upregulated during osteoclast differentiation. This unique MT3 upregulation was validated experimentally and supported by ATAC sequencing data analyses. Downregulation of MT3 by gene knockdown or knockout resulted in excessive osteoclastogenesis and exacerbated bone loss in ovariectomy-induced osteoporosis. Transcriptome sequencing of MT3 knockdown osteoclasts and gene set enrichment analysis indicated that the oxidative stress and redox pathways were enriched, which was verified by MT3-dependent regulation of reactive oxygen species (ROS). In addition, MT3 deficiency increased the transcriptional activity of SP1 in a manner dependent on intracellular zinc levels. This MT3-zinc-SP1 axis was crucial for the control of osteoclasts, as zinc chelation and SP1 knockdown abrogated the promotion of SP1 activity and osteoclastogenesis by MT3 deletion. Moreover, SP1 bound to the NFATc1 promoter, and overexpression of an inactive SP1 mutant negated the effects of MT3 deletion on NFATc1 and osteoclastogenesis. In conclusion, MT3 plays a pivotal role in controlling osteoclastogenesis and bone metabolism via dual axes involving ROS and SP1. The present study demonstrated that MT3 elevation is a potential therapeutic strategy for osteolytic bone disorders, and it established for the first time that MT3 is a crucial bone mass regulator.


Assuntos
Metalotioneína 3 , Osteoclastos , Osteogênese , Osteoporose , Animais , Osteoporose/metabolismo , Osteoporose/genética , Osteoporose/patologia , Osteoporose/etiologia , Osteogênese/genética , Camundongos , Osteoclastos/metabolismo , Metalotioneína 3/metabolismo , Diferenciação Celular/genética , Feminino , Regulação da Expressão Gênica , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Zinco/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Metalotioneína/metabolismo , Metalotioneína/genética , Camundongos Knockout
14.
Sci Signal ; 17(845): eadg4124, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012937

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K+ channel Kv1.3 in B cells enhanced KSHV lytic replication. The KSHV replication and transcription activator (RTA) protein increased the abundance of Kv1.3 and led to enhanced K+ channel activity and hyperpolarization of the B cell membrane. Enhanced Kv1.3 activity promoted intracellular Ca2+ influx, leading to the Ca2+-driven nuclear localization of KSHV RTA and host nuclear factor of activated T cells (NFAT) proteins and subsequently increased the expression of NFAT1 target genes. KSHV lytic replication and infectious virion production were inhibited by Kv1.3 blockers or silencing. These findings highlight Kv1.3 as a druggable host factor that is key to the successful completion of KSHV lytic replication.


Assuntos
Herpesvirus Humano 8 , Canal de Potássio Kv1.3 , Fatores de Transcrição NFATC , Replicação Viral , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Transativadores/metabolismo , Transativadores/genética , Linfócitos B/virologia , Linfócitos B/metabolismo , Cálcio/metabolismo , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/genética
15.
Cell Rep ; 43(8): 114528, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39052477

RESUMO

Macrophage-to-osteoclast differentiation (osteoclastogenesis) plays an essential role in tumor osteolytic bone metastasis (BM), while its specific mechanisms remain largely uncertain in lung adenocarcinoma BM. In this study, we demonstrate that integrin-binding sialoprotein (IBSP), which is highly expressed in the cancer cells from bone metastatic and primary lesions of patients with lung adenocarcinoma, can facilitate BM and directly promote macrophage-to-osteoclast differentiation independent of RANKL/M-CSF. In vivo results further suggest that osteolytic BM in lung cancer specifically relies on IBSP-induced macrophage-to-osteoclast differentiation. Mechanistically, IBSP regulates the Rac family small GTPase 1 (Rac1)-NFAT signaling pathway and mediates the forward shift of macrophage-to-osteoclast differentiation, thereby leading to early osteolysis. Moreover, inhibition of Rac1 by EHT-1864 or azathioprine in mice models can remarkably alleviate IBSP-induced BM of lung cancer. Overall, our study suggests that tumor-secreted IBSP promotes BM by inducing macrophage-to-osteoclast differentiation, with potential as an early diagnostic maker for BM, and Rac1 can be the therapeutic target for IBSP-promoted BM in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Ósseas , Diferenciação Celular , Neoplasias Pulmonares , Osteoclastos , Proteínas rac1 de Ligação ao GTP , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Humanos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoclastos/efeitos dos fármacos , Macrófagos/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Osteólise/patologia , Osteólise/metabolismo , Feminino , Sialoglicoproteínas/metabolismo , Masculino , Fatores de Transcrição NFATC/metabolismo
16.
Nutr Metab Cardiovasc Dis ; 34(11): 2455-2463, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39069466

RESUMO

BACKGROUND AND AIMS: Adipose tissue (AT) serves as a vital energy storage site and plays a pivotal role in metabolic regulation, exhibiting a high response to insulin. Impairment in this response may closely associate with obesity, and NFAT (nuclear factor of activated T cells) family genes may be involved in the process. However, human data linking NFAT and AT remains elusive. The aim of this study was to assess the expression of NFAT family genes and markers of adipogenesis in subcutaneous adipose tissue (SAT) among normal-weight and overweight/obese individuals before and after weight loss, in relation to insulin sensitivity. METHODS AND RESULTS: The study included 45 participants, 15 normal-weight (control group) and 30 overweight or obese, who underwent a 12-week dietary intervention (DI) program. Before and after the program hyperinsulinemic-euglycemic clamp and SAT biopsy were conducted. Before DI, a positive correlations was observed in the expression of NFATc1, NFATc4, and NFAT5 with insulin sensitivity. The expression of NFAT family genes and markers of adipogenesis in SAT was lower in individuals with overweight or obesity compared to normal-weight. Additionally, a positive correlation was noted between NFAT family genes and adipogenesis markers both before and after weight loss. Following the DI program, there was an increase in the expression of NFATc3, NFATc4, and NFAT5 in SAT. CONCLUSION: Decreased SAT expression of NFAT genes in obesity is partly reversed in response to weight loss. NFAT genes in SAT are associated with insulin sensitivity and adipogenesis. Registration number for clinical trial: NCT01393210.


Assuntos
Adipogenia , Resistência à Insulina , Fatores de Transcrição NFATC , Obesidade , Gordura Subcutânea , Redução de Peso , Humanos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Redução de Peso/genética , Obesidade/genética , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Masculino , Adulto , Feminino , Adipogenia/genética , Resistência à Insulina/genética , Pessoa de Meia-Idade , Resultado do Tratamento , Estudos de Casos e Controles , Fatores de Tempo
17.
Inflamm Res ; 73(9): 1581-1599, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39052064

RESUMO

OBJECTIVE AND DESIGN: The exact immunological mechanism of widespread chronic inflammatory skin disorder psoriasis has not been fully established. CD11b+Gr.1+ myeloid-derived cells are immature heterogeneous cells with T-cell suppressive property in neoplasia; however, influence of these cells on adaptive immunity is highly contextual; therefore, we dubbed these cells as myeloid-derived adjuster cells (MDAC). We studied imiquimod induced psoriasis in mouse model and evaluated for the first time the RORγt-NFAT1 axis in MDACs and the function, differentiation and interaction of these cells with T cells. MATERIALS AND METHODS: The status of T cells and MDACs; their functionality and differentiation properties, and the roles of RORγt and NFAT1 in MDACs were evaluated using flow cytometry, qRT-PCR and confocal imaging. RESULTS: We found gradual increase in T cells and MDACs and an increase in the number of IL17 -secreting MDACs and T cells in the skin of psoriatic animals. We also noted that MDAC differentiation is biased toward M1 macrophages and DCs which perpetuate inflammation. We found that psoriatic MDACs were unable to suppress T-cell proliferation or activation but seemingly helped these T cells produce more IL17. Inhibition of the RORγt/NFAT1 axis in MDACs increased the suppressive nature of MDACs, allowing these cells to suppress the activity of psoriatic T-cells. CONCLUSION: Our results indicate that altered MDAC properties in psoriatic condition sustains pathological inflammation and RORγt and NFAT1 as promising intervention target for psoriasis management.


Assuntos
Antígeno CD11b , Diferenciação Celular , Imiquimode , Interleucina-17 , Fatores de Transcrição NFATC , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Psoríase , Animais , Camundongos , Antígenos Ly , Antígeno CD11b/metabolismo , Diferenciação Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Interleucina-17/metabolismo , Camundongos Endogâmicos BALB C , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/imunologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Fenótipo , Psoríase/induzido quimicamente , Psoríase/imunologia , Pele/patologia , Pele/imunologia , Pele/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Masculino
19.
Chem Biol Interact ; 399: 111149, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39032852

RESUMO

Rhabdomyosarcoma (RMS) represents one of the most lethal soft-tissue sarcomas in children. The toxic trace element arsenic has been reported to function as a radiosensitizer in sarcomas. To investigate the role of arsenic sulfide (As4S4) in enhancing radiation sensitization in RMS, this study was conducted to elucidate its underlying mechanism in radiotherapy. The combination of As4S4 and radiotherapy showed significant inhibition in RMS cells, as demonstrated by the cell counting kit-8 (CCK-8) assay and flow cytometry. Subsequently, we demonstrated for the first time that As4S4, as well as the knockdown of NFATc3 led to double-strand break (DSB) through increased expression of RAG1. In vivo experiment confirmed that co-treatment efficiently inhibited RMS growth. Furthermore, survival analysis of a clinical cohort consisting of 59 patients revealed a correlation between NFATc3 and RAG1 expression and overall survival (OS). Cox regression analysis also confirmed the independent prognostic significance of NFATc3 and RAG1.Taken together, As4S4 enhances radiosensitivity in RMS via activating NFATc3-RAG1 mediated DSB. NFATc3 and RAG1 are potential therapeutic targets. As4S4 will hopefully serve as a prospective radio-sensitizing agent for RMS.


Assuntos
Arsenicais , Quebras de DNA de Cadeia Dupla , Fatores de Transcrição NFATC , Tolerância a Radiação , Rabdomiossarcoma , Sulfetos , Humanos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/radioterapia , Rabdomiossarcoma/patologia , Rabdomiossarcoma/genética , Linhagem Celular Tumoral , Masculino , Feminino , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Animais , Tolerância a Radiação/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Camundongos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Camundongos Nus , Criança , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Camundongos Endogâmicos BALB C
20.
Endocrinology ; 165(8)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024412

RESUMO

Osteocytes are embedded in lacunae and connected by canaliculi (lacuno-canalicular network, LCN). Bones from mice with X-linked hypophosphatemia (Hyp), which have impaired production of 1,25 dihydroxyvitamin D (1,25D) and hypophosphatemia, have abnormal LCN structure that is improved by treatment with 1,25D or an anti-FGF23 targeting antibody, supporting roles for 1,25D and phosphate in regulating LCN remodeling. Bones from mice lacking the vitamin D receptor (VDR) in osteocytes (Vdrf/f;Dmp1Cre+) and mice lacking the sodium phosphate transporter 2a (Npt2aKO), which have low serum phosphate with high serum 1,25D, have impaired LCN organization, demonstrating that osteocyte-specific actions of 1,25D and hypophosphatemia regulate LCN remodeling. In osteoclasts, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) is critical for stimulating bone resorption. Since osteocytes also resorb matrix, we hypothesize that NFATc1 plays a role in 1,25D and phosphate-mediated LCN remodeling. Consistent with this, 1,25D and phosphate suppress Nfatc1 mRNA expression in IDG-SW3 osteocytes, and knockdown of Nfatc1 expression in IDG-SW3 cells blocks 1,25D- and phosphate-mediated suppression of matrix resorption gene expression and 1,25D- and phosphate-mediated suppression of RANKL-induced acidification of the osteocyte microenvironment. To determine the role of NFATc1 in 1,25D- and phosphate-mediated LCN remodeling in vivo, histomorphometric analyses of tibiae from mice lacking osteocyte-specific Nfatc1 in Vdrf/f;Dmp1Cre+ and Npt2aKO mice were performed, demonstrating that bones from these mice have decreased lacunar size and expression of matrix resorption genes, and improved canalicular structure compared to Vdrf/f;Dmp1Cre+ and Npt2aKO control. This study demonstrates that NFATc1 is necessary for 1,25D- and phosphate-mediated regulation of LCN remodeling.


Assuntos
Remodelação Óssea , Fator de Crescimento de Fibroblastos 23 , Fatores de Transcrição NFATC , Osteócitos , Fosfatos , Vitamina D , Animais , Masculino , Camundongos , Remodelação Óssea/efeitos dos fármacos , Raquitismo Hipofosfatêmico Familiar/metabolismo , Raquitismo Hipofosfatêmico Familiar/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Osteócitos/metabolismo , Osteócitos/efeitos dos fármacos , Fosfatos/metabolismo , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Vitamina D/farmacologia , Vitamina D/análogos & derivados , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...