Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.042
Filtrar
1.
Sci Transl Med ; 16(750): eadk9811, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838134

RESUMO

Clinical evidence indicates a close association between muscle dysfunction and bone loss; however, the underlying mechanisms remain unclear. Here, we report that muscle dysfunction-related bone loss in humans with limb-girdle muscular dystrophy is associated with decreased expression of folliculin-interacting protein 1 (FNIP1) in muscle tissue. Supporting this finding, murine gain- and loss-of-function genetic models demonstrated that muscle-specific ablation of FNIP1 caused decreased bone mass, increased osteoclastic activity, and mechanical impairment that could be rescued by myofiber-specific expression of FNIP1. Myofiber-specific FNIP1 deficiency stimulated expression of nuclear translocation of transcription factor EB, thereby activating transcription of insulin-like growth factor 2 (Igf2) at a conserved promoter-binding site and subsequent IGF2 secretion. Muscle-derived IGF2 stimulated osteoclastogenesis through IGF2 receptor signaling. AAV9-mediated overexpression of IGF2 was sufficient to decrease bone volume and impair bone mechanical properties in mice. Further, we found that serum IGF2 concentration was negatively correlated with bone health in humans in the context of osteoporosis. Our findings elucidate a muscle-bone cross-talk mechanism bridging the gap between muscle dysfunction and bone loss. This cross-talk represents a potential target to treat musculoskeletal diseases and osteoporosis.


Assuntos
Osso e Ossos , Fator de Crescimento Insulin-Like II , Animais , Feminino , Humanos , Masculino , Camundongos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Osso e Ossos/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Transdução de Sinais
2.
J Nanobiotechnology ; 22(1): 312, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840221

RESUMO

Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Caderinas , Endocitose , Epiderme , Alvo Mecanístico do Complexo 1 de Rapamicina , Óxido de Zinco , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Endocitose/efeitos dos fármacos , Camundongos , Caderinas/metabolismo , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Desmossomos/metabolismo , Nanopartículas/química , Estresse Mecânico
3.
J Environ Sci (China) ; 145: 117-127, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844312

RESUMO

Atmospheric particulate matter (PM) exacerbates the risk factor for Alzheimer's and Parkinson's diseases (PD) by promoting the alpha-synuclein (α-syn) pathology in the brain. However, the molecular mechanisms of astrocytes involvement in α-syn pathology underlying the process remain unclear. This study investigated PM with particle size <200 nm (PM0.2) exposure-induced α-syn pathology in ICR mice and primary astrocytes, then assessed the effects of mammalian target of rapamycin inhibitor (PP242) in vitro studies. We observed the α-syn pathology in the brains of exposed mice. Meanwhile, PM0.2-exposed mice also exhibited the activation of glial cell and the inhibition of autophagy. In vitro study, PM0.2 (3, 10 and 30 µg/mL) induced inflammatory response and the disorders of α-syn degradation in primary astrocytes, and lysosomal-associated membrane protein 2 (LAMP2)-mediated autophagy underlies α-syn pathology. The abnormal function of autophagy-lysosome was specifically manifested as the expression of microtubule-associated protein light chain 3 (LC3II), cathepsin B (CTSB) and lysosomal abundance increased first and then decreased, which might both be a compensatory mechanism to toxic α-syn accumulation induced by PM0.2. Moreover, with the transcription factor EB (TFEB) subcellular localization and the increase in LC3II, LAMP2, CTSB, and cathepsin D proteins were identified, leading to the restoration of the degradation of α-syn after the intervention of PP242. Our results identified that PM0.2 exposure could promote the α-syn pathological dysregulation in astrocytes, providing mechanistic insights into how PM0.2 increases the risk of developing PD and highlighting TFEB/LAMP2 as a promising therapeutic target for antagonizing PM0.2 toxicity.


Assuntos
Astrócitos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteína 2 de Membrana Associada ao Lisossomo , Lisossomos , Camundongos Endogâmicos ICR , Material Particulado , alfa-Sinucleína , Animais , Astrócitos/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Autofagia/efeitos dos fármacos , Camundongos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Material Particulado/toxicidade , Poluentes Atmosféricos/toxicidade
4.
Clin Nucl Med ; 49(7): 693-694, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38775942

RESUMO

ABSTRACT: A 23-year-old woman presenting with gross hematuria was found to have a left renal mass suspicious for renal cell carcinoma on abdominal contrast-enhanced CT. An 18 F-PSMA-1007 PET/CT scan was performed for evaluating the renal mass. 18 F-PSMA-1007 PET/CT showed focal activity of the renal mass, which was a transcription factor E3-rearranged renal cell carcinoma proved after nephrectomy. Surprisingly, diffuse heterogeneous intense activity of the bilateral breasts and moderate activity of the right accessory breast was observed. There was no morphological abnormality of the bilateral breasts and right accessory breast on CT images, indicating physiological PSMA uptake.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Mama , Carcinoma de Células Renais , Neoplasias Renais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Feminino , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/metabolismo , Mama/diagnóstico por imagem , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Adulto Jovem , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Oligopeptídeos , Rearranjo Gênico , Compostos Heterocíclicos com 1 Anel , Niacinamida/análogos & derivados
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759815

RESUMO

Lymphatic dysfunction is a pivotal pathological mechanism underlying the development of early atherosclerotic plaques. Potential targets of lymphatic function must be identified to realize the early prevention and treatment of atherosclerosis (AS). The immunity-related GTPase Irgm1 is involved in orchestrating cellular autophagy and apoptosis. However, the effect of Irgm1 on early AS progression, particularly through alterations in lymphatic function, remains unclear. In this study, we confirmed the protective effect of lymphangiogenesis on early-AS in vivo. Subsequently, an in vivo model of early AS mice with Irgm1 knockdown shows that Irgm1 reduces early atherosclerotic plaque burden by promoting lymphangiogenesis. Given that lymphatic endothelial cell (LEC) autophagy significantly contributes to lymphangiogenesis, Irgm1 may enhance lymphatic circulation by promoting LEC autophagy. Moreover, Irgm1 orchestrates autophagy in LECs by inhibiting mTOR and facilitating nuclear translocation of Tfeb. Collectively, these processes lead to lymphangiogenesis. Thus, this study establishes a link between Irgm1 and early AS, thus revealing a novel mechanism by which Irgm1 exerts an early protective influence on AS within the context of lymphatic circulation. The insights gained from this study have the potential to revolutionize the approach and management of AS onset.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Endoteliais , Linfangiogênese , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Masculino , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Transporte Proteico
6.
Cytopathology ; 35(4): 481-487, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38751143

RESUMO

BACKGROUND: Clear cell papillary renal cell tumour (CCPRCT) was renamed from previous clear cell papillary renal cell carcinoma (CCPRCC) in the latest WHO Classification of Tumours. It is essential to differentiate RCC from CCPRCT in renal mass biopsies (RMB). DESIGN: RMB cases with subsequent resections were reviewed. The pathology reports and pertinent clinical information were recorded. RESULTS: Fifteen cases displaying either CCPRCT morphology (20% diffuse, 67% focal) or immunohistochemical patterns (cup-like CA9: 20% diffuse, 47% focal; CK7: 33% diffuse, 40% focal) were identified. One case was positive for TFE3. TSC mutation was identified in one case. Both cases exhibited both CCPRCT morphology and immunohistochemical patterns for CA9 and CK7, with focal high-grade nuclei. RMB diagnoses were as follows: 6 (40%) as CCRCC, 2 (13%) as CCPRCT, 2 (13%) as CCRCC versus CCPRCT, 2 (13%) as CCRCC versus PRCC, 1 (7%) as RCC with TSC mutation versus CCPRCT, 1 (7%) as TFE3-rearranged RCC versus PRCC, and 1 (7%) as cyst with low-grade atypia. 71% of patients underwent nephrectomy, 21% received systemic treatment for stage 4 RCCs, and 7% with ablation for small renal mass (1.6 cm) with low-grade CCRCC. CONCLUSIONS: Our study highlights that morphologic and immunochemical features of CCPRCT may be present in RCCs, including RCC-TFE3 expression and TSC-associated RCC, a critical pitfall to misdiagnose aggressive RCC as indolent CCPRCT and result in undertreatment. Careful examination of morphology and immunostains for CA9, CK7, and TFE3, as well as molecular tests, is crucial for distinguishing aggressive RCC from indolent CCPRCT.


Assuntos
Carcinoma de Células Renais , Imuno-Histoquímica , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Neoplasias Renais/patologia , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Imuno-Histoquímica/métodos , Adulto , Biomarcadores Tumorais/genética , Rim/patologia , Biópsia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Citodiagnóstico/métodos , Diagnóstico Diferencial , Mutação/genética , Citologia
7.
J Biotechnol ; 390: 39-49, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38740306

RESUMO

The TFE3 fusion gene, byproduct of Xp11.2 translocation, is the diagnostic marker for translocation renal cell carcinoma (tRCC). Absence of any clinically recognized therapy for tRCC, pressing a need to create novel and efficient therapeutic approaches. Previous studies shown that stabilization of the G-quadruplex structure in oncogenes suppresses their expression machinery. To combat the oncogenesis caused by fusion genes, our objective is to locate and stabilize the G-quadruplex structure within the PRCC-TFE3 fusion gene. Using the Quadruplex-forming G Rich Sequences (QGRS) mapper and the Non-B DNA motif search tool (nBMST) online server, we found putative G-quadruplex forming sequences (PQS) in the PRCC-TFE3 fusion gene. Circular dichroism demonstrating a parallel G-quadruplex in the targeted sequence. Fluorescence and UV-vis spectroscopy results suggest that pyridostatin binds to this newly discovered G-quadruplex. The PCR stop assay, as well as transcriptional or translational inhibition using real time PCR and Dual luciferase assay, revealed that stable G-quadruplex formation affects biological processes. Confocal microscopy of HEK293T cells transfected with the fusion transcript confirmed G-quadruplexes formation in cell. This investigation may shed light on G-quadruplex's functions in fusion genes and may help in the development of therapies specifically targeted against fusion oncogenes, which would enhance the capability of current tRCC therapy approach.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Carcinoma de Células Renais , Quadruplex G , Neoplasias Renais , Proteínas de Fusão Oncogênica , Translocação Genética , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/tratamento farmacológico , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Neoplasias Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas de Fusão Oncogênica/genética , Células HEK293 , Dicroísmo Circular , Aminoquinolinas , Proteínas de Neoplasias , Ácidos Picolínicos , Proteínas de Ciclo Celular
8.
Diagn Pathol ; 19(1): 66, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730456

RESUMO

BACKGROUND: TFEB/6p21/VEGFA-amplified renal cell carcinoma (RCC) is rare and difficult to diagnose, with diverse histological patterns and immunohistochemical and poorly defined molecular genetic characteristics. CASE PRESENTATION: We report a case of a 63-year-old male admitted in 2017 with complex histomorphology, three morphological features of clear cell, eosinophilic and papillary RCC and resembling areas of glomerular and tubular formation. The immunophenotype also showed a mixture of CD10 and P504s. RCC with a high suspicion of collision tumors was indicated according to the 2014 WHO classification system; no precise diagnosis was possible. The patient was diagnosed at a different hospital with poorly differentiated lung squamous cell carcinoma one year after RCC surgery. We exploited molecular technology advances to retrospectively investigate the patient's molecular genetic alterations by whole-exome sequencing. The results revealed a 6p21 amplification in VEGFA and TFEB gene acquisition absent in other RCC subtypes. Clear cell, papillary, chromophobe, TFE3-translocation, eosinophilic solid and cystic RCC were excluded. Strong TFEB and Melan-A protein positivity prompted rediagnosis as TFEB/6p21/VEGFA-amplified RCC as per 2022 WHO classification. TMB-L (low tumor mutational load), CCND3 gene acquisition and MRE11A and ATM gene deletion mutations indicated sensitivity to PD-1/PD-L1 inhibitor combinations and the FDA-approved targeted agents Niraparib (Grade C), Olaparib (Grade C), Rucaparib (Grade C) and Talazoparib (Class C). GO (Gene Ontology) and KEGG enrichment analyses revealed major mutations and abnormal CNVs in genes involved in biological processes such as the TGF-ß, Hippo, E-cadherin, lysosomal biogenesis and autophagy signaling pathways, biofilm synthesis cell adhesion substance metabolism regulation and others. We compared TFEB/6p21/VEGFA-amplified with TFEB-translocated RCC; significant differences in disease onset age, histological patterns, pathological stages, clinical prognoses, and genetic characteristics were revealed. CONCLUSION: We clarified the patient's challenging diagnosis and discussed the clinicopathology, immunophenotype, differential diagnosis, and molecular genetic information regarding TFEB/6p21/VEGFA-amplified RCC via exome analysis and a literature review.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Carcinoma de Células Renais , Sequenciamento do Exoma , Neoplasias Renais , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Biomarcadores Tumorais/genética
9.
Commun Biol ; 7(1): 574, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750105

RESUMO

Metastases are the major cause of cancer-related death, yet, molecular weaknesses that could be exploited to prevent tumor cells spreading are poorly known. Here, we found that perturbing hydrolase transport to lysosomes by blocking either the expression of IGF2R, the main receptor responsible for their trafficking, or GNPT, a transferase involved in the addition of the specific tag recognized by IGF2R, reduces melanoma invasiveness potential. Mechanistically, we demonstrate that the perturbation of this traffic, leads to a compensatory lysosome neo-biogenesis devoided of degradative enzymes. This regulatory loop relies on the stimulation of TFEB transcription factor expression. Interestingly, the inhibition of this transcription factor playing a key role of lysosome production, restores melanomas' invasive potential in the absence of hydrolase transport. These data implicate that targeting hydrolase transport in melanoma could serve to develop new therapies aiming to prevent metastasis by triggering a physiological response stimulating TFEB expression in melanoma.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Hidrolases , Lisossomos , Melanoma , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Lisossomos/metabolismo , Hidrolases/metabolismo , Hidrolases/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Receptor IGF Tipo 2/metabolismo , Receptor IGF Tipo 2/genética , Metástase Neoplásica , Transporte Proteico , Regulação Neoplásica da Expressão Gênica
10.
PLoS Pathog ; 20(5): e1012205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701094

RESUMO

Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in CD11clo monocyte-derived cells but promotes recruitment of monocytes that develop into permissive lung cells, mediated by the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome functions of macrophages in vitro and in vivo, improving control of Mtb infection. Our results suggest that Mtb exploits lysosome-poor lung cells for persistence and targeting lysosome biogenesis is a potential host-directed therapy for tuberculosis.


Assuntos
Lisossomos , Macrófagos Alveolares , Monócitos , Mycobacterium tuberculosis , Lisossomos/metabolismo , Lisossomos/microbiologia , Animais , Monócitos/metabolismo , Monócitos/microbiologia , Camundongos , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/metabolismo , Pulmão/microbiologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Doença Crônica , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Humanos , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
11.
Cells ; 13(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38786097

RESUMO

Neurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer's disease (AD). We recently developed the first CB2R bitopic/dualsteric ligand, namely FD22a, which revealed the ability to induce neuroprotection with fewer side effects. To explore the potential of FD22a as a multitarget drug for the treatment of NDDs, we investigated here its ability to prevent the toxic effect of ß-amyloid (Aß25-35 peptide) on human cellular models of neurodegeneration, such as microglia (HMC3) and glioblastoma (U87-MG) cell lines. Our results displayed that FD22a efficiently prevented Aß25-35 cytotoxic and proinflammatory effects in both cell lines and counteracted ß-amyloid-induced depression of autophagy in U87-MG cells. Notably, a quantitative proteomic analysis of U87-MG cells revealed that FD22a was able to potently stimulate the autophagy-lysosomal pathway (ALP) by activating its master transcriptional regulator TFEB, ultimately increasing the potential of this novel CB2R bitopic/dualsteric ligand as a multitarget drug for the treatment of NDDs.


Assuntos
Peptídeos beta-Amiloides , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteômica , Receptor CB2 de Canabinoide , Humanos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Proteômica/métodos , Receptor CB2 de Canabinoide/metabolismo , Ligantes , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Autofagia/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Linhagem Celular Tumoral
12.
Chem Biol Interact ; 394: 110990, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579922

RESUMO

Swainsonine (SW) is the main toxic component of locoweed. Previous studies have shown that kidney damage is an early pathologic change in locoweed poisoning in animals. Trehalose induces autophagy and alleviates lysosomal damage, while its protective effect and mechanism against the toxic injury induced by SW is not clear. Based on the published literature, we hypothesize that transcription factor EB(TFEB) -regulated is targeted by SW and activating TFEB by trehalose would reverse the toxic effects. In this study, we investigate the mechanism of protective effects of trehalose using renal tubular epithelial cells. The results showed that SW induced an increase in the expression level of microtubule-associated protein light chain 3-II and p62 proteins and a decrease in the expression level of ATPase H+ transporting V1 Subunit A, Cathepsin B, Cathepsin D, lysosome-associated membrane protein 2 and TFEB proteins in renal tubular epithelial cells in a time and dose-dependent manner suggesting TFEB-regulated lysosomal pathway is adversely affected by SW. Conversely, treatment with trehalose, a known activator of TFEB promote TFEB nuclear translocation suggesting that TFEB plays an important role in protection against SW toxicity. We demonstrated in lysosome staining that SW reduced the number of lysosomes and increased the luminal pH, while trehalose could counteract these SW-induced effects. In summary, our results demonstrated for the first time that trehalose could alleviate the autophagy degradation disorder and lysosomal damage induced by SW. Our results provide an interesting method for reversion of SW-induced toxicity in farm animals and furthermore, activation of TFEB by trehalose suggesting novel mechanism of treating lysosomal storage diseases.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Epiteliais , Túbulos Renais , Lisossomos , Swainsonina , Trealose , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/citologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Swainsonina/toxicidade , Trealose/farmacologia
13.
Diagn Pathol ; 19(1): 62, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643139

RESUMO

BACKGROUND: Alveolar soft part sarcoma is a rare tumour of soft tissues, mostly localized in muscles or deep soft tissues of the extremities. In rare occasions, this tumour develops in deep tissues of the abdomen or pelvis. CASE PRESENTATION: In this case report, we described the case of a 46 year old man who developed a primary splenic alveolar soft part sarcoma. The tumour displayed typical morphological alveolar aspect, as well as immunohistochemical profile notably TFE3 nuclear staining. Detection of ASPSCR1 Exon 7::TFE3 Exon 6 fusion transcript in molecular biology and TFE3 rearrangement in FISH confirmed the diagnosis. CONCLUSION: We described the first case of primary splenic alveolar soft part sarcoma, which questions once again the cell of origin of this rare tumour.


Assuntos
Sarcoma Alveolar de Partes Moles , Masculino , Humanos , Pessoa de Meia-Idade , Sarcoma Alveolar de Partes Moles/diagnóstico , Sarcoma Alveolar de Partes Moles/genética , Sarcoma Alveolar de Partes Moles/patologia , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Éxons
14.
BMC Genomics ; 25(1): 397, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654166

RESUMO

BACKGROUND: Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS: To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS: All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sítios de Ligação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Genoma de Planta , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
15.
Ren Fail ; 46(1): 2338933, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616177

RESUMO

Thioredoxin-interacting protein (TXNIP) is an important regulatory protein for thioredoxin (TRX) that elicits the generation of reactive oxygen species (ROS) by inhibiting the redox function of TRX. Abundant evidence suggests that TXNIP is involved in the fibrotic process of diabetic kidney disease (DKD). However, the potential mechanism of TXNIP in DKD is not yet well understood. In this study, we found that TXNIP knockout suppressed renal fibrosis and activation of mammalian target of rapamycin complex 1 (mTORC1) and restored transcription factor EB (TFEB) and autophagy activation in diabetic kidneys. Simultaneously, TXNIP interference inhibited epithelial-to-mesenchymal transformation (EMT), collagen I and fibronectin expression, and mTORC1 activation, increased TFEB nuclear translocation, and promoted autophagy restoration in HK-2 cells exposed to high glucose (HG). Rapamycin, an inhibitor of mTORC1, increased TFEB nuclear translocation and autophagy in HK-2 cells under HG conditions. Moreover, the TFEB activators, curcumin analog C1 and trehalose, effectively restored HG-induced autophagy, and abrogated HG-induced EMT and collagen I and fibronectin expression in HK-2 cells. Taken together, these findings suggest that TXNIP deficiency ameliorates renal fibrosis by regulating mTORC1/TFEB-mediated autophagy in diabetic kidney diseases.


Assuntos
Nefropatias Diabéticas , Humanos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas de Transporte/genética , Colágeno Tipo I , Nefropatias Diabéticas/etiologia , Fibronectinas , Fibrose , Alvo Mecanístico do Complexo 1 de Rapamicina , Tiorredoxinas
16.
J Biol Chem ; 300(5): 107270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599381

RESUMO

Higher demand for nutrients including glucose is characteristic of cancer. "Starving cancer" has been pursued to curb tumor progression. An intriguing regime is to inhibit glucose transporter GLUT1 in cancer cells. In addition, during cancer progression, cancer cells may suffer from insufficient glucose supply. Yet, cancer cells can somehow tolerate glucose starvation. Uncovering the underlying mechanisms shall shed insight into cancer progression and benefit cancer therapy. TFE3 is a transcription factor known to activate autophagic genes. Physiological TFE3 activity is regulated by phosphorylation-triggered translocation responsive to nutrient status. We recently reported TFE3 constitutively localizes to the cell nucleus and promotes cell proliferation in kidney cancer even under nutrient replete condition. It remains unclear whether and how TFE3 responds to glucose starvation. In this study, we show TFE3 promotes kidney cancer cell resistance to glucose starvation by exposing cells to physiologically relevant glucose concentration. We find glucose starvation triggers TFE3 protein stabilization through increasing its O-GlcNAcylation. Furthermore, through an unbiased functional genomic study, we identify SLC36A1, a lysosomal amino acid transporter, as a TFE3 target gene sensitive to TFE3 protein level. We find SLC36A1 is overexpressed in kidney cancer, which promotes mTOR activity and kidney cancer cell proliferation. Importantly, SLC36A1 level is induced by glucose starvation through TFE3, which enhances cellular resistance to glucose starvation. Suppressing TFE3 or SLC36A1 significantly increases cellular sensitivity to GLUT1 inhibitor in kidney cancer cells. Collectively, we uncover a functional TFE3-SLC36A1 axis that responds to glucose starvation and enhances starvation tolerance in kidney cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Glucose , Neoplasias Renais , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glucose/deficiência , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Sistemas de Transporte de Aminoácidos , Simportadores
17.
NanoImpact ; 34: 100505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579989

RESUMO

The increasing application of quantum dots (QDs) increases interactions with organisms. The inflammatory imbalance is a significant manifestation of immunotoxicity. Macrophages maintain inflammatory homeostasis. Using macrophages differentiated by phorbol 12-myristate 13-acetate-induced THP-1 cells as models, the study found that low-dose (5 µM) cadmium telluride QDs (CdTe-QDs) hindered monocyte-macrophage differentiation. CD11b is a surface marker of macrophage, and the addition of CdTe-QDs during induction resulted in a decrease in CD11b expression. Moreover, exposure of differentiated THP-1 macrophage (dTHP-1) to 5 µM CdTe-QDs led to the initiation of M1 polarization. This was indicated by the increased surface marker CD86 expression, along with elevated level of NF-κB and IL-1ß proteins. The potential mechanisms are being explored. The transcription factor EB (TFEB) plays a significant role in immune regulation and serves as a crucial regulator of the autophagic lysosomal pathway. After exposed to CdTe-QDs, TFEB activation-mediated autophagy and M1 polarization were observed to occur simultaneously in dTHP-1. The mTOR signaling pathway contributed to TFEB activation induced by CdTe-QDs. However, mTOR-independent activation of TFEB failed to promote M1 polarization. These results suggest that mTOR-TFEB is an advantageous target to enhance the biocompatibility of CdTe-QDs.


Assuntos
Compostos de Cádmio , Macrófagos , Pontos Quânticos , Serina-Treonina Quinases TOR , Telúrio , Telúrio/farmacologia , Compostos de Cádmio/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células THP-1 , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
18.
Eur J Pharmacol ; 974: 176621, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38679118

RESUMO

BACKGROUND AND AIM: Necrosis of random-pattern flaps restricts their application in clinical practice. Puerarin has come into focus due to its promising therapeutic effects in ischemic diseases. Here, we employed Puerarin and investigated its role and potential mechanisms in flap survival. EXPERIMENTAL PROCEDURE: The effect of Puerarin on the viability of human umbilical vein endothelial cells (HUVECs) was assessed by CCK-8, EdU staining, migration, and scratch assays. Survival area measurement and laser Doppler blood flow (LDBF) were utilized to assess the viability of ischemic injury flaps. Levels of molecules related to oxidative stress, pyroptosis, autophagy, transcription factor EB (TFEB), and the AMPK-TRPML1-Calcineurin signaling pathway were detected using western blotting, immunofluorescence, dihydroethidium (DHE) staining, RT-qPCR and Elisa. KEY RESULTS: The findings demonstrated that Puerarin enhanced the survivability of ischemic flaps. Autophagy, oxidative stress, and pyroptosis were implicated in the ability of Puerarin in improving flap survival. Increased autophagic flux and augmented tolerance to oxidative stress contribute to Puerarin's suppression of pyroptosis. Additionally, Puerarin modulated the activity of TFEB through the AMPK-TRPML1-Calcineurin signaling pathway, thereby enhancing autophagic flux. CONCLUSIONS AND IMPLICATIONS: Puerarin promoted flap survival from ischemic injury through upregulation of TFEB-mediated autophagy and inhibition of oxidative stress. Our findings offered valuable support for the clinical application of Puerarin in the treatment of ischemic diseases, including random-pattern flaps.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Endoteliais da Veia Umbilical Humana , Isquemia , Isoflavonas , Piroptose , Espécies Reativas de Oxigênio , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Autofagia/efeitos dos fármacos , Humanos , Piroptose/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Retalhos Cirúrgicos/irrigação sanguínea , Camundongos , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/irrigação sanguínea , Pele/patologia
19.
Am J Pathol ; 194(7): 1306-1316, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588851

RESUMO

The role of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in renal cell carcinoma (RCC) progression, metastasis, and resistance to therapies has not been investigated thoroughly. Transcription factor E3 (TFE3) expression is related to a poorer prognosis and tumor microenvironment in patients with RCC. This study aimed to determine the relationship between TFE3 and the PI3K/Akt pathway. TFE3 down-regulation was achieved by transient transfection of siRNA and shRNA in UOK146 cells. TFE3 overexpression was induced by transient transfection with pcDNA3.1 encoding the constitutively active form of TFE3. The cells were treated with mammalian target of rapamycin (mTOR) and PI3K inhibitors. Western blot was performed to detect TFE3, programmed death-ligand 1, phospho-Akt, and Akt. Phospho-Akt expression increased significantly upon TFE3 down-regulation, and decreased significantly upon up-regulation. When RCC cells were treated with a PI3K inhibitor (LY294002), TFE3 expression increased and phospho-Akt expression decreased. Data from this study indicate that TFE3 plays a role in the PI3K/Akt pathway in RCC. The results of this study suggest that PI3K/Akt inhibitors may aid in the treatment of patients with RCC by affecting the tumor microenvironment.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Carcinoma de Células Renais , Neoplasias Renais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/fisiologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica
20.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 453-462, 2024 May 09.
Artigo em Chinês | MEDLINE | ID: mdl-38636999

RESUMO

Objective: To investigate the mechanism of proanthocyanidin (PA) in regulating the osteogenic differentiation of human periodontal ligament stem cells (PDLSCs), and to explore the effects of PA on the expression and nuclear translocation of transcription factor EB (TFEB) and on the autophagy-lysosome pathway. Methods: PDLSCs were divided into control group and PA group, which were subjected to RNA sequencing analysis (RNA Seq) to detect differentially expressed genes. The osteogenic differentiation ability and autophagy level were observed by real-time fluorescence quantitative PCR (RT-qPCR) analysis, alkaline phosphatase (ALP) staining and transmission electron microscope (TEM), respectively. Scratch assay and Transwell assay were used to detect the migration ability of PDLSCs. Lysotracker and immunofluorescence staining were used to detect the biogenesis of lysosomes. The total protein expression of transcription factor EB (TFEB) as well as that in cytoplasm and nucleus were detected by Western blotting. Confocal laser scanning microscope (CLSM) was used to observe the nuclear translocation of TFEB. The PDLSCs were treated with small interfering RNA (siRNA) technology to knock down the expression levels of TFEB gene with or without PA treatment. Western blotting was used to analyze the expressions of autophagy-related proteins Beclin1 and microtubule-associated protein 1 light chain 3 (LC3B), as well as osteogenic-related proteins runt-related transcription factor 2 (RUNX2), ALP, and osteocalcin in PDLSCs. Results: Compared with the control group, the osteogenic-related and autophagy-related genes showed differential expression in PDLSCs after PA treatment (P<0.05). The mRNA expression levels of osteogenic-related genes RUNX2 (2.32±0.15) and collagen type Ⅰ alpha 1 (COL1α1) (1.80±0.18), as well as the autophagy related genes LC3B (1.87±0.08) and Beclin1 (1.63±0.08) were significantly increased in the PA group, compared with the control group (1.01±0.16, 1.00±0.10, 1.00±0.07, 1.00±0.06, respectively, all P<0.01). Compared with the control group, the PA group had higher ALP activity, and more autophagosomes and autophagolysosomes observed by TEM. PA promoted the migration of PDLSCs (P<0.05) and the increased number of lysosomes and the expression of lysosomal associated membrane protein 1 (LAMP1). In the PA group, the relative expression level of total TFEB protein (1.49±0.07) and the nuclear/cytoplasmic expression of TFEB protein (1.52±0.12) were significantly higher than the control group (1.00±0.11, 1.00±0.13, respectively) (t=6.43, P<0.01; t=5.07, P<0.01). The relative nuclear/cytoplasmic fluorescence intensity of TFEB in the PA group (0.79±0.09) was increased compared with the control group (0.11±0.08) (t=8.32, P<0.01). Knocking down TFEB significantly reduced the expression of TFEB (1.00±0.15 vs 0.64±0.04), LAMP1 (1.00±0.10 vs 0.69±0.09), Beclin1 (1.00±0.05 vs 0.60±0.05), and LC3B Ⅱ/Ⅰ (1.00±0.06 vs 0.73±0.07) in PDLSCs (P<0.05, P<0.05, P<0.01, P<0.01). When TFEB gene was knocked down, the expression levels of Beclin1 (1.05±0.11), LC3B Ⅱ/Ⅰ (1.02±0.09), RUNX2 (1.04±0.10), ALP (1.04±0.16), and osteocalcin (1.03±0.15) proteins were significantly decreased in the PA group compared with the pre-knockdown period (1.28±0.03, 1.44±0.11, 1.38±0.11, 1.62±0.11, 1.65±0.17, respectively) (P<0.05, P<0.01, P<0.05, P<0.01, and P<0.01, respectively). Conclusions: PA promotes the osteogenic differentiation of PDLSCs through inducing the expression and nuclear translocation of TFEB and activating the autophagy-lysosome pathway.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Lisossomos , Osteogênese , Proantocianidinas , Células-Tronco , Humanos , Fosfatase Alcalina/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Proantocianidinas/farmacologia , Células-Tronco/metabolismo , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA