Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(42): e2400709121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39374387

RESUMO

Developmental and epileptic encephalopathies (DEE) are rare but devastating and largely intractable childhood epilepsies. Genetic variants in ARHGEF9, encoding a scaffolding protein important for the organization of the postsynaptic density of inhibitory synapses, are associated with DEE accompanied by complex neurological phenotypes. In a mouse model carrying a patient-derived ARHGEF9 variant associated with severe disease, we observed aggregation of postsynaptic proteins and loss of functional inhibitory synapses at the axon initial segment (AIS), altered axo-axonic synaptic inhibition, disrupted action potential generation, and complex seizure phenotypes consistent with clinical observations. These results illustrate diverse roles of ARHGEF9 that converge on regulation of the structure and function of the AIS, thus revealing a pathological mechanism for ARHGEF9-associated DEE. This unique example of a neuropathological condition associated with multiple AIS dysfunctions may inform strategies for treating neurodevelopmental diseases.


Assuntos
Fatores de Troca de Nucleotídeo Guanina Rho , Animais , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Camundongos , Humanos , Modelos Animais de Doenças , Segmento Inicial do Axônio/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Axônios/metabolismo , Axônios/patologia , Epilepsia/genética , Epilepsia/patologia , Masculino , Feminino , Potenciais de Ação
2.
Genes (Basel) ; 15(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39336703

RESUMO

In plants, RopGEF-mediated ROP signaling is pivotal in cellular signaling pathways, including apical growth, pollen germination and perception, intercellular recognition, as well as in responses to biotic and abiotic stresses. In this study, we retrieved a total of 37 RopGEF members from three C4 Crops, of which 11 are from millet, 11 from sorghum, and 15 from maize. Based on their phylogenetic relationships and structural characteristics, all RopGEF members are classified into four subfamilies. The qRT-PCR technique was utilized to evaluate the expression profiles of 11 SiRopGEFs across different tissues in foxtail millet. The findings indicated that the majority of the SiRopGEFs exhibited higher expression levels in leaves as opposed to roots and stems. The levels of expression of SiRopGEF genes were examined in response to abiotic stress and plant hormones. SiRopGEF1, SiRopGEF5, SiRopGEF6, and SiRopGEF8 showed significant induction under abiotic stresses such as salt, cold, and heat. On the other hand, SiRopGEF1, SiRopGEF2, and SiRopGEF7 were consistently upregulated, while SiRopGEF3, SiRopGEF4, SiRopGEF6, SiRopGEF9, and SiRopGEF10 were downregulated upon exposure to abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and gibberellic acid (GA3) hormones. The alterations in the expression patterns of RopGEF members imply their potential functions in plant growth and development, abiotic stress response, and hormone signal transduction. These discoveries suggest that the RopGEF genes may function as a potential genetic marker to facilitate future studies in elucidating the functional characteristics of RopGEFs.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Família Multigênica , Sorghum/genética , Setaria (Planta)/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Genoma de Planta/genética
3.
Sci Signal ; 17(853): eado9852, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255336

RESUMO

Structural plasticity of dendritic spines in the nucleus accumbens (NAc) is crucial for learning from aversive experiences. Activation of NMDA receptors (NMDARs) stimulates Ca2+-dependent signaling that leads to changes in the actin cytoskeleton, mediated by the Rho family of GTPases, resulting in postsynaptic remodeling essential for learning. We investigated how phosphorylation events downstream of NMDAR activation drive the changes in synaptic morphology that underlie aversive learning. Large-scale phosphoproteomic analyses of protein kinase targets in mouse striatal/accumbal slices revealed that NMDAR activation resulted in the phosphorylation of 194 proteins, including RhoA regulators such as ARHGEF2 and ARHGAP21. Phosphorylation of ARHGEF2 by the Ca2+-dependent protein kinase CaMKII enhanced its RhoGEF activity, thereby activating RhoA and its downstream effector Rho-associated kinase (ROCK/Rho-kinase). Further phosphoproteomic analysis identified 221 ROCK targets, including the postsynaptic scaffolding protein SHANK3, which is crucial for its interaction with NMDARs and other postsynaptic scaffolding proteins. ROCK-mediated phosphorylation of SHANK3 in the NAc was essential for spine growth and aversive learning. These findings demonstrate that NMDAR activation initiates a phosphorylation cascade crucial for learning and memory.


Assuntos
Proteínas do Tecido Nervoso , Plasticidade Neuronal , Proteoma , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Plasticidade Neuronal/fisiologia , Camundongos , Fosforilação , Proteoma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Masculino , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Camundongos Endogâmicos C57BL , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Aprendizagem/fisiologia , Aprendizagem da Esquiva/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Sinapses/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Espinhas Dendríticas/metabolismo
4.
Mol Biol Cell ; 35(10): ar134, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39196644

RESUMO

RhoGEFs are critical activators of Rho family small GTPases and regulate diverse biological processes, such as cell division and tissue morphogenesis. We reported previously that the RhoGEF gene plekhg5 controls apical constriction of bottle cells at the blastopore lip during Xenopus gastrulation, but the detailed mechanism of plekhg5 action is not understood in depth. In this study, we show that localization of Plekhg5 in the apical cortex depends on its N-terminal sequences and intact guanine nucleotide exchange activity, whereas the C-terminal sequences prevent ectopic localization of the protein to the basolateral compartment. We also reveal that Plekhg5 self-associates via its PH domain, and this interaction leads to functional rescue of two mutants that lack the N-terminal region and the guanine nucleotide exchange factor activity, respectively, in trans. A point mutation in the PH domain corresponding to a variant associated with human disease leads to loss of self-association and failure of the mutant to induce apical constriction. Taken together, our results suggest that PH-mediated self-association and N-terminal domain-mediated subcellular localization are both crucial for the function of Plekhg5 in inducing apical constriction.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteínas de Xenopus , Animais , Proteínas de Xenopus/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Xenopus laevis/metabolismo , Polaridade Celular/fisiologia , Domínios Proteicos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Gastrulação , Humanos , Xenopus , Domínios de Homologia à Plecstrina
5.
Mol Cell Biol ; 44(9): 372-390, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39133105

RESUMO

A significant number of the genetic alterations observed in cancer patients lie within nonprotein-coding segments of the genome, including regions coding for long noncoding RNAs (lncRNAs). LncRNAs display aberrant expression in breast cancer (BrCa), but the functional implications of this altered expression remain to be elucidated. By performing transcriptome screen in a triple negative BrCa (TNBC) isogenic 2D and 3D spheroid model, we observed aberrant expression of >1000 lncRNAs during BrCa progression. The chromatin-associated lncRNA MANCR shows elevated expression in metastatic TNBC. MANCR is upregulated in response to cellular stress and modulates DNA repair and cell proliferation. MANCR promotes metastasis as MANCR-depleted cells show reduced cell migration, invasion, and wound healing in vitro, and reduced metastatic lung colonization in xenograft experiments in vivo. Transcriptome analyses reveal that MANCR modulates expression and pre-mRNA splicing of genes, controlling DNA repair and checkpoint response. MANCR promotes the transcription of NET1A, a Rho-GEF that regulates DNA damage checkpoint and metastatic processes in cis, by differential promoter usage. Experiments suggest that MANCR regulates the expression of cancer-associated genes by modulating the association of various transcription factors and RNA-binding proteins. Our results identified the metastasis-promoting activities of MANCR in TNBC by cis-regulation of gene expression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Animais , Feminino , Camundongos , Ciclo Celular/genética , Proliferação de Células/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Movimento Celular/genética , Reparo do DNA/genética
6.
FASEB J ; 38(15): e23848, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092889

RESUMO

Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-ß pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.


Assuntos
Transdiferenciação Celular , Dexametasona , Glaucoma , Miofibroblastos , Fatores de Troca de Nucleotídeo Guanina Rho , Malha Trabecular , Dexametasona/farmacologia , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/citologia , Transdiferenciação Celular/efeitos dos fármacos , Animais , Humanos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Camundongos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Glaucoma/patologia , Glaucoma/metabolismo , Células Cultivadas , Glucocorticoides/farmacologia , Camundongos Endogâmicos C57BL , Masculino
7.
Clin Res Hepatol Gastroenterol ; 48(8): 102446, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128592

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) stands as the prevailing manifestation of primary liver cancer. Previous studies have implicated ARHGEF39 in various cancer progression processes, but its impact on HCC metastasis remains unclear. METHODS: Bioinformatics analysis and qRT-PCR were employed to test ARHGEF39 expression in HCC tissues and cells, identified enriched pathways associated with ARHGEF39, and investigated its regulatory relationship with E2F1. The impact of ARHGEF39 overexpression or knockdown on cellular phenotypes in HCC was assessed through the implementation of CCK-8 and Transwell assays. Accumulation of neutral lipids was determined by BODIPY 493/503 staining, while levels of triglycerides and phospholipids were measured using specific assay kits. Expression of E-cadherin, Vimentin, MMP-2, MMP-9, and FASN were analyzed by Western blot. The interaction between ARHGEF39 and E2F1 was validated through ChIP and dual-luciferase reporter assays. RESULTS: Our study demonstrated upregulated expression of both ARHGEF39 and E2F1 in HCC, with ARHGEF39 being associated with fatty acid metabolism (FAM) pathways. Additionally, ARHGEF39 was identified as a downstream target gene of E2F1. Cell-based experiments unmasked that high expression of ARHGEF39 mediated the promotion of HCC cell viability, migration, and invasion via enhanced FAM. Moreover, rescue assays demonstrated that the promotion of HCC cell metastasis by high ARHGEF39 expression was attenuated upon treatment with Orlistat. Conversely, the knockdown of E2F1 suppressed HCC cell metastasis and FAM, while the upregulation of ARHGEF39 counteracted the repressive effects of E2F1 downregulation on the metastatic potential of HCC cells. CONCLUSION: Our findings confirmed the critical role of ARHGEF39 in HCC metastasis and unmasked potential molecular mechanisms through which ARHGEF39 fostered HCC metastasis via FAM, providing a theoretical basis for exploring novel molecular markers and preventive strategies for HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Fator de Transcrição E2F1 , Ácidos Graxos , Neoplasias Hepáticas , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Ácidos Graxos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Metástase Neoplásica , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
8.
Biochem Soc Trans ; 52(4): 1947-1956, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39051125

RESUMO

The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influence cell migration. Here, we follow each of these pathways, examine how these pathways modulate epithelial cell migration, and discuss the cross-talk between these pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase (PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell migration. While obscurin's effect on the PI3K pathway agrees with the literature, obscurin's effect on the RhoA pathway runs counter to most other RhoA effectors, whose activation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and this may also influence cell motility. When taken together, obscurin's ability to modulate three independent cell migration pathways is likely why obscurin knockout cells experience enhanced epithelial to mesenchymal transition, and why obscurin is a frequently mutated gene in several types of cancer.


Assuntos
Movimento Celular , Células Epiteliais , Proteínas Serina-Treonina Quinases , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais , Proteína rhoA de Ligação ao GTP , Humanos , Células Epiteliais/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Transição Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Quinases Associadas a rho/metabolismo , Caderinas/metabolismo
9.
Drug Des Devel Ther ; 18: 3075-3088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050797

RESUMO

Background and Objective: GIT1 (G-protein-coupled receptor kinase interacting protein-1) has been found to be highly related with cancer cell invasion and metastasis in many cancer types. ß-Pix (p21-activated kinase-interacting exchange factor) is one of the proteins that interact with GIT1. Targeting GIT1/ß-Pix complex might be a potential therapeutic strategy for interfering cancer metastasis. However, at present, no well-recognized small-molecule inhibitor targeting GIT1/ß-Pix is available. Thus, we aim to discover novel GIT1/ß-Pix inhibitors with simple scaffold, high activity and low toxicity to develop new therapeutic strategies to restrain cancer metastasis. Methods: GIT1/ß-Pix inhibitors were identified from ChemBridge by virtual screening. Briefly, the modeling of GIT1 was performed and the establishment of GIT1/ß-Pix binding pocket enabled the virtual screening to identify the inhibitor. In addition, direct binding of the candidate molecules to GIT1 was detected by biolayer interferometry (BLI) to discover the hit compound. Furthermore, the inhibitory effect on invasion of stomach and colon cancer cells in vitro was carried out by the transwell assay and detection of epithelial-mesenchymal transition (EMT)-related proteins. Finally, the binding mode of hit compound to GIT1 was estimated by molecular dynamics simulation to analyze the key amino residues to guide further optimization. Results: We selected the top 50 compounds from the ChemBridge library by virtual screening. Then, by skeleton similarity analysis nine compounds were selected for further study. Furthermore, the direct interaction of nine compounds to GIT1 was detected by BLI to obtain the best affinitive compound. Finally, 17302836 was successfully identified (KD = 84.1±2.0 µM). In vitro tests on 17302836 showed significant anti-invasion effect on gastric cancer and colorectal cancer. Conclusion: We discovered a new GIT1/ß-Pix inhibitor (17302836) against gastrointestinal cancer invasion and metastasis. This study provides a promising candidate for developing new GIT1/ß-Pix inhibitors for tumor treatment.


Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Descoberta de Drogas , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Relação Dose-Resposta a Droga , Invasividade Neoplásica , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Avaliação Pré-Clínica de Medicamentos , Movimento Celular/efeitos dos fármacos
10.
Mol Pharmacol ; 106(3): 117-128, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38902036

RESUMO

Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.


Assuntos
Carcinogênese , Fatores de Troca do Nucleotídeo Guanina , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , Animais , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Carcinogênese/metabolismo , Carcinogênese/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais
11.
Am J Physiol Cell Physiol ; 327(2): C387-C402, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912734

RESUMO

RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-ß1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.


Assuntos
Fibrose , Fatores de Troca de Nucleotídeo Guanina Rho , Fator de Transcrição Sp1 , Transativadores , Proteína rhoA de Ligação ao GTP , Animais , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transativadores/metabolismo , Transativadores/genética , Camundongos , Ratos , Retroalimentação Fisiológica , Masculino , Camundongos Endogâmicos C57BL , Humanos , Transdução de Sinais , Suínos , Fosforilação , Modelos Animais de Doenças , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/genética , Ratos Sprague-Dawley , Linhagem Celular , Fatores de Transcrição
12.
J Am Heart Assoc ; 13(13): e034965, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38934856

RESUMO

BACKGROUND: Rostral ventrolateral medulla (RVLM) neuron hyperactivity raises sympathetic outflow, causing hypertension. MicroRNAs (miRNAs) contribute to diverse biological processes, but their influence on RVLM neuronal excitability and blood pressure (BP) remains widely unexplored. METHODS AND RESULTS: The RVLM miRNA profiles in spontaneously hypertensive rats were unveiled using RNA sequencing. Potential effects of these miRNAs in reducing neuronal excitability and BP and underlying mechanisms were investigated through various experiments. Six hundred thirty-seven miRNAs were identified, and reduced levels of miR-193b-3p and miR-346 were observed in the RVLM of spontaneously hypertensive rats. Increased miR-193b-3p and miR-346 expression in RVLM lowered neuronal excitability, sympathetic outflow, and BP in spontaneously hypertensive rats. In contrast, suppressing miR-193b-3p and miR-346 expression in RVLM increased neuronal excitability, sympathetic outflow, and BP in Wistar Kyoto and Sprague-Dawley rats. Cdc42 guanine nucleotide exchange factor (Arhgef9) was recognized as a target of miR-193b-3p. Overexpressing miR-193b-3p caused an evident decrease in Arhgef9 expression, resulting in the inhibition of neuronal apoptosis. By contrast, its downregulation produced the opposite effects. Importantly, the decrease in neuronal excitability, sympathetic outflow, and BP observed in spontaneously hypertensive rats due to miR-193b-3p overexpression was greatly counteracted by Arhgef9 upregulation. CONCLUSIONS: miR-193b-3p and miR-346 are newly identified factors in RVLM that hinder hypertension progression, and the miR-193b-3p/Arhgef9/apoptosis pathway presents a potential mechanism, highlighting the potential of targeting miRNAs for hypertension prevention.


Assuntos
Pressão Sanguínea , Hipertensão , Bulbo , MicroRNAs , Animais , Masculino , Ratos , Apoptose , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Hipertensão/genética , Hipertensão/metabolismo , Bulbo/metabolismo , Bulbo/fisiopatologia , Bulbo/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Sistema Nervoso Simpático/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(26): e2315100121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38889143

RESUMO

Synapses containing γ-aminobutyric acid (GABA) constitute the primary centers for inhibitory neurotransmission in our nervous system. It is unclear how these synaptic structures form and align their postsynaptic machineries with presynaptic terminals. Here, we monitored the cellular distribution of several GABAergic postsynaptic proteins in a purely glutamatergic neuronal culture derived from human stem cells, which virtually lacks any vesicular GABA release. We found that several GABAA receptor (GABAAR) subunits, postsynaptic scaffolds, and major cell-adhesion molecules can reliably coaggregate and colocalize at even GABA-deficient subsynaptic domains, but remain physically segregated from glutamatergic counterparts. Genetic deletions of both Gephyrin and a Gephyrin-associated guanosine di- or triphosphate (GDP/GTP) exchange factor Collybistin severely disrupted the coassembly of these postsynaptic compositions and their proper apposition with presynaptic inputs. Gephyrin-GABAAR clusters, developed in the absence of GABA transmission, could be subsequently activated and even potentiated by delayed supply of vesicular GABA. Thus, molecular organization of GABAergic postsynapses can initiate via a GABA-independent but Gephyrin-dependent intrinsic mechanism.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Terminações Pré-Sinápticas , Receptores de GABA-A , Sinapses , Ácido gama-Aminobutírico , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ácido gama-Aminobutírico/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
14.
Cancer Lett ; 596: 216961, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823764

RESUMO

Extracellular vesicles are essential for intercellular communication and are involved in tumor progression. Inhibiting the direct release of extracellular vesicles seems to be an effective strategy in inhibiting tumor progression, but lacks of investigation. Here, we report a natural flavonoid compound, apigenin, could significantly inhibit the growth of hepatocellular carcinoma by preventing microvesicle secretion. Mechanistically, apigenin primarily targets the guanine nucleotide exchange factor ARHGEF1, inhibiting the activity of small G protein Cdc42, which is essential in regulating the release of microvesicles from tumor cells. In turn, this inhibits tumor angiogenesis related to VEGF90K transported on microvesicles, ultimately impeding tumor progression. Collectively, these findings highlight the therapeutic potential of apigenin and shed light on its anticancer mechanisms through inhibiting microvesicle biogenesis, providing a solid foundation for the refinement and practical application of apigenin.


Assuntos
Apigenina , Carcinoma Hepatocelular , Micropartículas Derivadas de Células , Neoplasias Hepáticas , Neovascularização Patológica , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Animais , Apigenina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/irrigação sanguínea , Camundongos , Linhagem Celular Tumoral , Proteína cdc42 de Ligação ao GTP/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Hep G2 , Camundongos Nus , Angiogênese
15.
EMBO J ; 43(13): 2715-2732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769437

RESUMO

Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.


Assuntos
Adesões Focais , Cinesinas , Microtúbulos , Fatores de Troca de Nucleotídeo Guanina Rho , Adesões Focais/metabolismo , Microtúbulos/metabolismo , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Miosina Tipo II/metabolismo , Talina/metabolismo , Talina/genética , Animais
16.
Toxicology ; 505: 153843, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801936

RESUMO

Benzene, a widely used industrial chemical, has been clarified to cause hematotoxicity. Our previous study suggested that miR-451a may play a role in benzene-induced impairment of erythroid differentiation. However, the mechanism underlying remains unclear. In this study, we explored the role of miR-451a and its underlying mechanisms in hydroquinone (HQ)-induced suppression of erythroid differentiation in K562 cells. 0, 1.0, 2.5, 5.0, 10.0, and 50 µM HQ treatment of K562 cells resulted in a dose-dependent inhibition of erythroid differentiation, as well as the expression of miR-451a. Bioinformatics analysis was conducted to predict potential target genes of miR-451a and dual-luciferase reporter assays confirmed that miR-451a can directly bind to the 3'-UTR regions of BATF, SETD5, and ARHGEF3 mRNAs. We further demonstrated that over-expression or down-regulation of miR-451a altered the expression of BATF, SETD5, and ARHGEF3, and also modified erythroid differentiation. In addition, BATF, SETD5, and ARHGEF3 were verified to play a role in HQ-induced inhibition of erythroid differentiation in this study. Knockdown of SETD5 and ARHGEF3 reversed HQ-induced suppression of erythroid differentiation while knockdown of BATF had the opposite effect. On the other hand, we also identified c-Jun as a potential transcriptional regulator of miR-451a. Forced expression of c-Jun increased miR-451a expression and reversed the inhibition of erythroid differentiation induced by HQ, whereas knockdown of c-Jun had the opposite effect. And the binding site of c-Jun and miR-451a was verified by dual-luciferase reporter assay. Collectively, our findings indicate that miR-451a and its downstream targets BATF, SETD5, and ARHGEF3 are involved in HQ-induced erythroid differentiation disorder, and c-Jun regulates miR-451a as a transcriptional regulator in this process.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Diferenciação Celular , MicroRNAs , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células K562 , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Células Eritroides/efeitos dos fármacos , Células Eritroides/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Metiltransferases/genética , Metiltransferases/metabolismo
17.
Cell Rep ; 43(5): 114016, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38636520

RESUMO

How cancer cells determine their shape in response to three-dimensional (3D) geometric and mechanical cues is unclear. We develop an approach to quantify the 3D cell shape of over 60,000 melanoma cells in collagen hydrogels using high-throughput stage-scanning oblique plane microscopy (ssOPM). We identify stereotypic and environmentally dependent changes in shape and protrusivity depending on whether a cell is proximal to a flat and rigid surface or is embedded in a soft environment. Environmental sensitivity metrics calculated for small molecules and gene knockdowns identify interactions between the environment and cellular factors that are important for morphogenesis. We show that the Rho guanine nucleotide exchange factor (RhoGEF) TIAM2 contributes to shape determination in environmentally independent ways but that non-muscle myosin II, microtubules, and the RhoGEF FARP1 regulate shape in ways dependent on the microenvironment. Thus, changes in cancer cell shape in response to 3D geometric and mechanical cues are modulated in both an environmentally dependent and independent fashion.


Assuntos
Forma Celular , Fatores de Troca do Nucleotídeo Guanina , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Linhagem Celular Tumoral , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Melanoma/patologia , Melanoma/metabolismo
18.
Mol Biol Cell ; 35(6): ar87, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656797

RESUMO

Recent findings indicate that Solo, a RhoGEF, is involved in cellular mechanical stress responses. However, the mechanism of actin cytoskeletal remodeling via Solo remains unclear. Therefore, this study aimed to identify Solo-interacting proteins using the BioID, a proximal-dependent labeling method, and elucidate the molecular mechanisms of function of Solo. We identified PDZ-RhoGEF (PRG) as a Solo-interacting protein. PRG colocalized with Solo in the basal area of cells, depending on Solo localization, and enhanced actin polymerization at the Solo accumulation sites. Additionally, Solo and PRG interaction was necessary for actin cytoskeletal remodeling. Furthermore, the purified Solo itself had little or negligible GEF activity, even its GEF-inactive mutant directly activated the GEF activity of PRG through interaction. Moreover, overexpression of the Solo and PRG binding domains, respectively, had a dominant-negative effect on actin polymerization and actin stress fiber formation in response to substrate stiffness. Therefore, Solo restricts the localization of PRG and regulates actin cytoskeletal remodeling in synergy with PRG in response to the surrounding mechanical environment.


Assuntos
Citoesqueleto de Actina , Actinas , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , Citoesqueleto de Actina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Actinas/metabolismo , Domínios PDZ , Ligação Proteica , Citoesqueleto/metabolismo , Animais , Células HEK293
19.
Curr Biol ; 34(10): 2132-2146.e5, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688282

RESUMO

Actin cortex patterning and dynamics are critical for cell shape changes. These dynamics undergo transitions during development, often accompanying changes in collective cell behavior. Although mechanisms have been established for individual cells' dynamic behaviors, the mechanisms and specific molecules that result in developmental transitions in vivo are still poorly understood. Here, we took advantage of two developmental systems in Drosophila melanogaster to identify conditions that altered cortical patterning and dynamics. We identified a Rho guanine nucleotide exchange factor (RhoGEF) and Rho GTPase activating protein (RhoGAP) pair required for actomyosin waves in egg chambers. Specifically, depletion of the RhoGEF, Ect2, or the RhoGAP, RhoGAP15B, disrupted actomyosin wave induction, and both proteins relocalized from the nucleus to the cortex preceding wave formation. Furthermore, we found that overexpression of a different RhoGEF and RhoGAP pair, RhoGEF2 and Cumberland GAP (C-GAP), resulted in actomyosin waves in the early embryo, during which RhoA activation precedes actomyosin assembly by ∼4 s. We found that C-GAP was recruited to actomyosin waves, and disrupting F-actin polymerization altered the spatial organization of both RhoA signaling and the cytoskeleton in waves. In addition, disrupting F-actin dynamics increased wave period and width, consistent with a possible role for F-actin in promoting delayed negative feedback. Overall, we showed a mechanism involved in inducing actomyosin waves that is essential for oocyte development and is general to other cell types, such as epithelial and syncytial cells.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas Ativadoras de GTPase , Animais , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Actomiosina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Embrião não Mamífero/metabolismo , Padronização Corporal
20.
Biochem Pharmacol ; 223: 116141, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38499108

RESUMO

Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.


Assuntos
Linfoma de Células B , Neoplasias , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Carcinogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...